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Abstract
The paper describes approach to the image compression using new hybrid

Transforms, namely, the improvement ridgelet transform that has proven to show
promising results over ridgelet transform.The hybrid transform based of replacing the
wavelet transform with the slantlet transform, the slantlet transform is a discrete
wavelet transform with two zero moments and with improved time localization. A
comparison was made with compression using ridgelet transform for different images.
A high quality image compression has been achieved for natural images. Computer
simulation results indicate that the improvement ridgelet transform offers superior and
faster compression performance compared to the ridgelet transform based approaches.
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1. Introduction

Over the past decade, digital computers,
consumer electronics and rapidly evolving
telecommunication networks have brought
about an information revolution. One of the
enabling technologies in facilitating this
revolution has been digital data compression[1].

Wavelet based compression of digital
signals and images have been a topic of interest
for quiet sometime now. In many hundreds of
papers published in journals throughout the
scientific and engineering disciplines, a wide
range of tools and ideas have been proposed and
studied. [2]. The degree to which a wavelet
basis can yield sparse representation of different
signals depends on the time- localization and
smoothness property of the basis function. The
DWT is usually carried out by filterbank
iteration, but for a fixed number of zero moment
it does not yield a discrete time basis that is
optimal with respect to time-localization. A
fundamental trade off exists between time-
localization and smoothness characteristics [3].
In this paper, we use The slantlet transform
(SLT) as a tool in devising an efficient method
for compression of different images.

2. The Discrete Ridgelet Transform
The main idea behind the Ridglet

transform is first to apply the two dimensions
Discrete Fourier Transform (2-D DFT) to the
Two-dimensional signal (image). Next, to map
line sampling scheme into a point sampling
scheme using the Radon transform. Hence, it is
required to take the one dimension inverse
Discrete Fourier Transform (1-D IDFT) for
each column of the produced two dimensions
signal. Finally, it is required to perform the
Wavelet transform to each row of the resultant
two dimensions signal[4]. Thus the structure of
this transform consists of four fundamentals
parts, these are:

a) Two dimensions Discrete Fourier Transform
(2-D DFT).

b) Radon Transform (RT).

¢) One Dimension Inverse Discrete Fourier
Transform (1-D IDFT).
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d) One Dimension Discrete Wavelet
Transform (1-D DWT)

It is expected that this Transform will give a
high performance and strong properties.
That is because this transform combines
together the good properties of the local
transforms. The structure of the Discrete
Ridgelet Transform is given in Figure.1.

2.1 Radon Transform

The order of the coefficients in the
corresponding Fourier slices are controlled
by the direction of a set of normal vectors,
namely, (a,by), where k=0,1,2,....p.

It was shown that the optimum
number of radon projections is p+/, one
projection for each column, and the best
ordering of the 2DFFT coefficients in these
projections which is controlled by the
normal
vectors can be achieved
vectors determined from:

if the normal

min
(ax by e frry 1205 p
eyt

(a,,b,) = arg )l\(C,, (@,).C, (5,

O]

Here Cy(x) denotes the centralized
function of period p; Cp(x) =x-p.round(x/p).

Hence, H(CF (ak)’cp (bx ))” represents the
distance from the origin to the point (ax,bx)
on the Fourier plane. The constraint Cp(b)
> 0 is imposed in order to remove the
ambiguity in deciding between (a,b) and (-
a,-b) as the normal vector for the projection.
As a result the optimal normal vectors are
restricted to have angles in (0,n). Now, the
matrix F is assigned the symbol Fp, after
the reordering[5].

2.2 Improved Ridgelet Algorithm

The main idea of this improvement is to
replace the Wavelet Transform in the
Ridgelet Transform structure by the Slantlet
Transform. Since the Slantlet Transform is
an orthogonal DWT and provides improved
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time localization than the DWT [3]. So that this
new Hybrid Transform will give a high
performance and strong properties.

2.3 Slantlet Transform

The SLT uses a special case of a class of
bases described by Alpert [6], the construction
of  which relies on  Gram-Schmidt
orthogonalization. The SLT is based on a
filterbank structure where different filters are
used for each scale. Let us consider a usual two-
scale iterated DWT filterbank shown in Fig. 2
and its equivalent form Fig. 3 The SLT
filterbank employs the structure of the
equivalent form shown in Fig. 3 ,but it is
occupied by different filters that are not
products. With this extra degree of freedom
obtained by giving up the product form, filters
of shorter length are designed satisfying

orthogonality ~and ~ zero  moment
conditions.  For  two-channel ~case the
Daubechies filter [7] is the shortest filter which
makes the filterbank orthogonal and has K zero
moments. For K zero moments the iterated
filters of Fig. 3(a, b) are of lengths 10 and 4 but
the SLT filterbank with K=2 zero moments
shown in Fig. 3(a, b) has filter lengths 8 and 4.
Thus the two-scale SLT filterbank has a filter
length which is two samples less than that of a
two-scale iterated Daubechies-2 filterbank. This
difference grows with the number of stages.
Some characteristic features of the SLT
filterbank are orthogonal, having two zero
moments and has octave-band characteristic.
Each filterbank has a scale dilation factor of two
and provides a multiresolution decomposition.
The slantlet filters are piecewise linear. [8]. We
will denote, by scale i , the scale with which
gi(n),fi(n), and hi(n) analyze a signal. The length
of the filters for scale i will be proportional to 2'.
That is approximately true for iterated
filterbanks; however, it is exact for slantlet
filterbanks. In general, the support of gi(n),fi(n) ,
and hy(n) will be 2"*' . We should clarify the way
in which the slantlet filterbanks in Fig.3 are
generalized to € scales. This is done as follows:
The (-scale filterbank has 2¢ channels. The low
pass filter is to be called hi(n) . The filter
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adjacent to the low pass channel is to be
called fi(n) . Both hj(n) and fi(n) are to be
followed by downsampling by 2. The
remaining 2(-2 channels are filtered by gi(n)
and its shifted time-reverse for subscale
i=1,..., €-1 . Each is to be followed by
downsampling by 21 1t follows that the
filterbank is critically sampled. Note that in
the slantlet filterbank, each filter g(n)
appears together with its time reverse. While
hi(n) does not appear with its time reverse,
it always appears paired with the filter fi(n) .
In addition, note that the {-scale and (+1—
scale filterbanks have in common the filters
for and their time-reversed versions(8].

2.3.1 Derivations of Filters

Because the sought-after filter gi(n)
is to be linear over the two above-mentioned
intervals, it is described by four parameters
and can be written as

r.n=0.2-1
i Gty for.n W @
a,+a,-2), . for.u=2,.. v —IJ

Where

g = (50 +1)/2

s = (52

a,, = (s +1)/2

aj, =(s;=1)}/2

5, ==s.(m=1)/2

1, =((n+1)5,/3—mg)(m=1)2m

5, =6 (7 ~1)(@nd 1))
= 21/3/(771.(/712 -1)

m=2

Therefore, to obtain such that the sought-
after —scale filterbank is orthogonal with
two zero moments requires obtaining
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parameters and so that we have the following.

1)gi(n) is of unit norm for each scale i.

i+l
271

> gln=1

n=0

3)

2) gi(n) is orthogonal to its shifted time reverse.

> g (mg, (2" ~1-m)=0 ()
n=0

2em=0 ®
:”Zdng, (n)=0 )

Each of the conditions can be written as an
algebraic equation in terms of the four
parameters agg ,ag) ,aj0and aj ;.

Note that the parameters agp a0 ,a10
and a;; depend on i The same approach works
for fi(n) and hy(n) . Using, again, a piecewise
linear form fi(n) and hi(n) can be written in
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g =~/3/(m(m* =1))/m
Coy =q.(v—m;

e, = o
+1-2m)/2
Coo = Coy-(V+1)/2

u= I/\/;

v=y@m +1)/3

m=2"
The orthogonality and moment conditions
require the following.

C o=

1) fi(n) and hi(n) are of unit norm for 4
scale i.

2

Shim=1 ©)
n=0

24

> fim=1 (10)
n=0

2) fin) and hn)
shifted versions.

are orthogonal to their

terms of eight unknown parameters bog ,bo1 ,bro 2!
bii, coo,Co,croandey Zh.(")h,(”Jrz'):O an
byy wbgym, for n=0,.2"-1" ’
h,(n) = £/ (n+2)=0 (12)
by +by,(n=2"), for n=2',...2"" ~
271 (13)
@) Zh, ) f,(m)=0
n=0
N 14
oot for n=0.2-1 ;h’ (n)f(n+2)=0 (14)
Jim= X 8) 3) fi(n) annihilates linear discrete ()
c,0+0, (1-2).for n=2/,..2" 1 polynomials.
24y
2 f(m)=0 as)
Where -
byo = u.(v+1)/(2m) & (16)
! nf(n)=0
b= -t 210
by, = u/m We make several comments regarding Fig. 3
by =—by, 1) Each filterbank (equivalently, discrete-
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filters in the synthesis filterbank are obtained by
time reversal of the analysis filters.
2) Each filterbank has two zero moments. The
filters (except for the low pass ones) annihilate
discrete-time polynomials of degree less than 2.
Because it represents equation of line.
3) Each filterbank has an octave-band
characteristic.
4) The scale-dilation factor is 2 for each
filterbank. Between scales, the filters dilate by
roughly a factor of 2. (In the slantlet
filterbanks, they dilate by exactly a factor of
2)
5) Each filterbank provides a multiresolution
decomposition. By discarding the high pass
channels and passing only the low pass channel
outputs through the synthesis filterbank, a lower
resolution version of the original signal is
obtained.
6) The slantlet filterbank is less frequency
selective than the traditional DWT filterbank
due to the shorter length of the filters. The time
localization is improved with a degradation of
frequency selectivity.
7) The slantlet filters are piecewise linear [8].
We note that hj(n) and fi(n) specialize to
the Daubechies length-4 filters for i=1 , as
expected. Fig .5 show slantlet transform for the
image inthe Fig.4 .

2.3.2 Filters Length

In Fig.3 , it was seen that the support of
the slantlet filters is less than those of the filters
obtained by filterbank iteration. It is interesting
to note the difference for the general [-scale
case. The iterated filterbank, with Daubechies
length-4 filters, analyzes scale with a filter of
length 3*2'-2. On the other hand, the slantlet
filterbank analyzes scale with the filter gi(n) of
length 2! . That gives a reduction of 2'-2
samples for scale i. The ratio tends to two thirds
as i increase (for coarser scales). That reduction
in the support of the analysis filters is precisely
what was sought([8].

3. Proposed Improve Ridgelet Transform
Based Image Compression
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The main block diagram of the image
compression using Improve Ridgelet
Transform consists of two stages, namely
the Image Encoder(compression stage) and
the Image decoder(decompression stage).
Fig.6 shows compression encoder.
3.1 Compression Steps

The following steps are followed in
the encoder phase:
We taking Improve Ridgelet Transform for
an input image. In this step the image
decompose to Ridgelet coefficients. In
certain signals, many of the Ridgelet
coefficients are close or equal to zero.
Through a method called thresholding, these
coefficients may be modified so that the
sequence of slantlet coefficients contains
long strings of zeros.The final step of the
process, known as quantization, converts a
sequence of floating numbers to a sequence
of integers. The simplest form is to round to
the nearest integer.

3.2 Decompression Steps

The stages of image Decoder are
shown in Fig.7. To get the reconstructed
image, we apply the inverse improve
ridgelet transform on compressed image.

4. Simulation Result

Following the study of the efficiency
of the improved ridgelet transform, we
perform a numerical comparison on the gray
image (3 images) of the same function using
two competitive transforms: improved
ridgelet transform and ridgelet transform.
Table 1 show the difference between the :
improved ridgelet transform and ridgelet
transform. we note that the length of filter of
the slantlet transform is smaller than wavelet
filters and equation of it is linear, for this
reason the improved ridgelet transform
achieves the best performance, as expected
from the continuous theory.

5. Conclusion
In this paper, we presented a strategy
for newly build ridgelet transform for gray-
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scaled image compression. The resulting
implementation is found to posses high
reconstruction property and provides better
compression ratios as compared to ridgelet
transform. The measure criterion for comparison
was PSNR, which can be calculated directly
from the original and reconstructed data.

The relation of peak signal to noise ratio,
defined it as shown in Eq. (17) below:

(255)

SNR e\ =101log
{I(r,c)- ](r,c)]

T |(17)

N1

2

No1

1
N=eS
The comparison of ridgelet transform and the
proposed ridgelet transform codec for the test
image . In terms of statistical error, proposed
ridgelet transform codec gives higher signal to
noise ratio in three of the examples

In this paper, the : improved ridgelet
transform has been applied for compression of
image. The compression performance of the
new approach is assessed through computer
simulation and the results are compared with the
DWT approaches, it is, in general, observed that
the accuracy of the reconstruction of the
proposed SLT method is better than that DWT.
Exhaustive computer simulation results on
different image signals indicate this trend. Thus
it is, in general, concluded that the SLT based
compression technique yields better
performance compared to the DWT.
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Figure. 5 Slantlet transform of original image

Input Improved Threshol- Quantizatio- Compresse
image—p| Ridgelet ding —» n » Image
Transfor
Figure .6 Image Encoder
Compressed Inverse Improve Reconstructed
Image —» Ridgelet > Image
Transform

Figure .7 Image Decoder

Table 1

compression ratio and the PSNR in dB obtained using the improve
ridgelet transform and ridgelet transform based compression for

different image .

Image | Transform CR CR CR
92% 95% 97%
1 Improve Ridgelet | 27.42dB | 26.64 dB | 25.46 dB
Ridgelet 26.77dB | 25.70 dB 23.52dB
2 Improve Ridgelet | 25.58dB | 24.76 dB | 23.44 dB
Ridgelet 24.82dB | 23.64dB 21.11dB
3 Improve Ridgelet [ 29.83dB |28.93dB |27.32dB
Ridgelet 29.13dB [ 27.87dB | 24.94dB
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