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Abstract

The last two decades have shown an increasing trend in the use of navigation technologies
such as Strapdown Inertial Navigation Systems(SDINS) in several applications including land
vehicles and automated car navigation. On the other hand it can cause large position errors
over short time, due to the low quality of the Inertial Measurement Unit (IMU). These errors
determine the performance and the navigation accuracy of the INSs. Although the huge efforts
to improve SDINS in terms of its mechanization equations, it could not cover the remaining
drawbacks of SDINS; such as the impact of INS short term errors, model dependency, prior
knowledge dependency, sensor dependency, and computational errors.

This paper proposed an intelligent navigator to overcome the limitations of existing INS
algorithms. The intelligent navigator is based on Adaptive Neuro-Fuzzy Inference System
(ANFIS).

The proposed conceptual intelligent navigator consisted of SDINS architecture that was
developed using adaptive fuzzy system networks to acquire the navigation knowledge. In
addition, a navigation information DataBase, and a window-based learned parameters
updating method were implemented to store and accumulate navigation knowledge.
Kevwords: vehicular navigation, Inertial Navigation System (INS), DataBase, Adaptive
Neuro-Fuzzy Inference System (ANFIS).
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1. Introduction

Most of the present vehicle navigation
instruments rely mainly on the Global
Positioning System (GPS) as the primary source
of information to provide the vehicles position.
GPS is capable of providing precise positioning
information to an unlimited number of users any
where on the planet. However, GPS can provide
this type of information only when there is a
direct line of sight to four or more satellite [1].
In other words, the system does not work
properly in urban areas due to signal blockage
and attenuation that may deteriorate the overall
positioning accuracy.

An INS is a self-contained positioning
and attitude device that continuously measures
three orthogonal linear accelerations and three
angular rates. By measuring vehicle acceleration
and angular velocity in an inertial frame of
reference, integrating it with respect to time and
transforming it to the navigational frame,
velocity, attitude and position components can
be obtained. Sensors used to implement such a
system are accelerometers for the measurement
of a vehicles linear acceleration (specific force)
and gyroscopes for monitoring vehicle rotation
(angular velocity) with respect to an inertial
frame [2]. Since specific force measurements
contain the effect of the earth's gravity field, a
gravity model is used to extract vehicle
acceleration from the measurements. Because
they employ three translational (accelerometers)
and three rotational (gyroscopes) sensors,
Inertial Measuring Units (IMU) can be used as
positioning and attitude monitoring devices [3].

In fact, INS can not operate as a stand-
alone navigation system like GPS. Residual bias
errors in both the accelerometers and the
gyroscopes may deteriorate the long-term
positioning accuracy. A comparison between the
two navigation systems is illustrated in table (1).
In addition, these bias errors are random in
nature and need to be modeled using empirical
and adaptive model processes. And since there
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is a lack of researches towards the conceptual
intelligent navigator, this paper is devoted to
develop an intelligent navigator that consists of
daptive Neuro-Fuzzy Inference System (ANFIS)
based on Terrestrial SDINS algorithm

described in [4]. As each of these limitations
contributes to certain amount of positional error
accumulation during computational errors,
therefore, the proposed new algorithm are
expected to reduce the impact of these
limitations by reducing the positional error
accurmulation during navigation phase. In land
vehicle and submarine navigation. Regular
updates are needed to limit the rapidly growing
positional error. It is often possible to
considerably improve the accuracy of the SDINS
by building a conceptual intelligent navigator to
accumulate the navigation knowledge and
retrieve it to trim down the SDINS error.

1.1 Objectives and Motivation

This paper aims at introducing a novel
method based on Adaptive Neuro-Fuzzy
Inference System (ANFIS) to fuse the outputs of
IMU and provide accurate positioning and
velocity information for the moving vehicle.

In addition, this paper suggests a
navigation DataBase to retrieve the navigation
knowledge to provide an accurate real-time
computing system for the strapdown INS
algorithm for vehicular navigation.

In other words, this paper introduces a
conceptual intelligent navigator for next
generation navigation systems to accumulate the
navigation knowledge and retrieving the stored
navigation knowledge to be able to provide the
real time prediction. Ultimately, the conceptual
intelligent navigator is expected to overcome or,
at least, reduce the limitations of the
conventional based SDINS algorithms.

2. Adaptive Neuro Fuzzy Inference Svstems
Ever since the artificial intelligence,
considered as a powerfull and applicable tool in
engineering modeling, computation, nonlinear
function approximation, system identification
and estimation theory. The neuro fuzzy models
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have the connectionist structure of neural
networks combined with flexibility and intuitive
learning capabilities of fuzzy system. It has
hybrid learning method based on gradient
descent and least square estimation [5].

In order for an FIS to be mature and well
established so that it can work appropriately in
prediction mode, its initial structure and
parameters (linear and non-linear) need to be
tuned or adapted through a learning process
using a sufficient input-output pattern of data.
One of the most commonly used learning
systems for adapting the linear and non-linear
parameters of an FIS, particularly Takagi and
Sugeno (TS) type, is the ANFIS. ANFIS is a
class of adaptive networks that are functionally
equivalent to fuzzy inference systems [6].
Different interpretations for the fuzzy IF-THEN
rules result in different mappings of the fuzzy
inference engine, also there are different types of
fuzzifier and defuzzifier. Several combinations
of the fuzzy inference engine, fuzzifier, and
defuzzifier may constitute useful fuzzy logic
system. If the fuzzy logic system can be
represented as a feed forward network, then the
idea of back propagation training algorithm can
be used to train it. The structure of ANFIS and
the main concepts and algorithm adopted during
its learning process will be introduced later.

3. Proposed Conceptual Intelligent Navigator
based on ANFIS

The proposed conceptual intelligent
navigator integrates the data from IMU and
mimics the dynamical model of the vehicle to
generate navigation knowledge. Thus the latest
acquired navigation knowledge can be applied to
predict the vehicles velocity and position during
IMU errors in real time.

The resulting ANFIS has the structure
depicted in figure (1) . It consists of 5 layers.
Layer 1 and layer 5 define the input and output
spaces respectively. Layer 2 and layer 3 are used
to perform the IF part of fuzzy rules. Layer 4
performs the normalization of each node in layer
3. The THEN part of the fuzzy rules is
completed in the fifth layer. Detailed
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descriptions and equations for each layer are
given here [7].

Layer 1: Input-variable layer. This is the layer
where the input signals first enter the neural
network, and each node in layer 1 represents an
input linguistic variable.

Layer 2: Each node in layer 2 represents a
membership function (MF), which is a Gaussian
function of the following form:
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where r is the number of input variables and u is
the number of membership functions.

Layer 3: The rule layer associated with the input
variables is given by eq.(2). Each node in this
layer is a radial basis function (RBF) unit which
represents a possible IF- part of the fuzzy rule.
The outputs are given by:
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Layer 4: This layer consists of normalized
nodes. The number of nodes is equal to that of
RBF units. The output is given by:
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Layer 5: This is the output layer, which
comprises of output nodes, each of which is
weighted according to eq. (4). This layer
performs defuzzification (weighted average) of
the output as follows:

N, =
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y(X) = ZL. w,,.N,
(4

The weight is of linear structure and can be
expressed as follows:

Wy =k +k,x +..k,x,

(5

where k , are real-valued parameters.

4. ANFIS Learning using Hybrid Technique
As mentioned earlier, both the premise
(non-linear) and consequent (linear) parameters
of the FIS should be tuned, utilizing the so-
called learning process, to optimally represent
the factual mathematical relationship between
the input space and output space. Normally, as a
first step, an approximate fuzzy model is
initiated by the system and then improved
through an iterative adaptive learning process.
The training algorithm, namely ANFIS,
was developed by [6]. Basically, ANFIS takes
the initial fuzzy model and tunes it by means of a
hybrid technique combining gradient descent
back-propagation and mean least-squares

optimization algorithms figure (2). At each
epoch, an error measure, usually defined as the
sum of the squared difference between actual
and desired output, is reduced. Training stops
when either the predefined epoch number or
error rate is obtained. The gradient descent
algorithm is mainly implemented to tune the
non-linear premise parameters while the basic
function of the mean least-squares is to optimize
or adjust the linear consequent parameters. Table
(2) shows the two stages of hybrid learning
process of ANFIS.
5. Intellicent Navigator Architecture

The general architecture of ANFIS is
shown in figure (1), the input vectors for the
ANFIS are the raw accelerations at each current

epoch 4,,,, (1), and angular velocity at current
epoch AV, () while the output of ANFIS was

the instant position and velocity at each current
epoch for both position and velocity in the three
directions for the moving vehicle.

Window-Updated Method for Strapdown Inertial

44

Systems Based on Adaptive Neuro-Fuzzy Inference System

ANFIS and SDINS algorithms receive
raw outputs of accelerometers and gyros,
respectively as inputs and generate navigation
state as outputs as shown in figure (3). Thus,
SDINS mechanization illustrated in [4] is
replaced by proposed ANFIS.

So, the navigation knowledge can be
learnt, stored and accumulated during the
availability of the INS signal. On the other hand,
during INS signal absence or IMU errors, the
latest acquired navigation knowledge can be
retrieved from the navigation information
DataBase.,

6. Navigation Information DataBase

The second step towards building the
intelligent navigator is to store the Ilearnt
navigation knowledge provided by SDINS
algorithm. As a result, a navigation information
DataBase that contains the acquired and learnt
navigation knowledge can serve as the "brain" of
the intelligent navigator. Therefore, several
issues regarding the DataBase are addressed as
follows:
Content of DataBase: The DataBase
consists of the training samples (input vectors
and desired output vectors) and estimated
learned parameters during the availability of the
IMU signal. Thus, these components can be
regarded as the navigation knowledge. In other
words, the content of the DataBase varies with

the structure of different INS algorithm (i.e.,
according to navigation solutions that will be
given by SDINS algorithm).

Distributed navigation knowledge
storage: The content of DataBase becomes more
complicated  with  complicated = SDINS
architectures or solutions. Therefore, considering
the efficiency of DataBase maintenance and
retrieval, the navigation knowledge learnt by
each  sub-component should be stored
individually in a distributed way, as shown in
figure (4).

e Off-line DataBase maintenance: The
simplest way to reduce the storage requirement
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is to remove any redundant training samples that
include inputs and their corresponding desired
outputs. As for the learned parameters, they
should be kept without any change as they are
the core component of the navigation
knowledge. Using ANFIS architecture as an
example, a simple procedure that can be applied
prior to navigation (i.e., during alignment) or
after navigation before shutting down the
system, is given below:

i. Regroup the training samples: Using one of
the training inputs (i.e., 4/ (1) or AV (1))
as the index; the training inputs can be
regrouped to increase the efficiency for
maintenance.

ii. Locate redundant navigation knowledge:
Although it is difficult to locate a pair of
training samples that are exactly the same,
searching the most similar pairs of training
samples using threshold values then deciding
if they are redundant or not is possible.

iii. Remove the redundant navigation
knowledge.

It must be mentioned that the implementation
of DataBase was done with MatLab application.
Up to now, the intelligent navigator has been
given the ability to generate, and learn
navigation knowledge and it also has been given
the "space" to store navigation knowledge.
However, there is still one thing missing. It
requires a way to accumulate the acquired and
learnt navigation knowledge and store them for
further retrieving or

generalization and this navigation knowledge
must be updated during the training procedure
when INS signal is available so, a windowing
method used to perform this goal as will be
described later.
7. Window-Based
updating Method

As the learned parameters (x,c,o) are the
core components of the navigation knowledge,
the final step towards building the intelligent
navigator is to develop a method to accumulate
the acquired navigation knowledge by updating

Learned parameters
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the learned parameters whenever the IMU signal
is available (i.e., no sensor errors or absence of
signal ).

In most of their applications, ANFIS are
trained using some known training data set
(input/desired output) to obtain the optimal
values of the learned parameters via off-line
training. For any other set of inputs, different
from those used in training, the learned
parameters can then be applied to provide
prediction of the network outputs. It is worth
mentioning that ANFIS parameters are frozen
after completing the training procedure and no
further modification will be made during the
prediction process.

In fact, off-line training can work well in
case of slowly changing time sequences [8]. In
the case of INS navigation applications, it is
required to track direction changes and mimic
the motion dynamics utilizing the latest available
INS data. In other words, the learned parameters
should be updated during the navigation process
to adapt the network to the latest INS sensor
readings whenever the INS signal is available.

To implement such criterion, a window-
based learned parameters updating method,
which utilizes the learned parameters obtained
during the conventional off-line training
procedure (or probably from previous navigation
missions) is stored in the DataBase and is
presented in this paper. This criterion utilizes the
latest available navigation information provided
by the INS signal window to adapt the stored
learned parameters so that they can be applied to
mimic the latest motion dynamic. The window-
updated learned parameters are stored afier each
training procedure. They are then used as initial
values

for the parameters to be estimated during the
next training window or for prediction during
INS signal absence. Prior to looking into the
details of the window-based learned parameters
updating method, several aspects of traditional
learned parameters updating methods are given.
Traditional methods can be classified as [8]:
| Sample-by-sample training, also known
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as on-line or sequential training, that modifies
the parameters for each input record after
computing the learned parameters updates;

Batch training, which computes the
learned parameters updates for each sample
and stores these values (without changing the
parameters). At the end of the whole training
procedure, all the learned parameters updates
are added together and then the parameters are
modified with the accumulated learned
parameters updates.

From an online operational point of view, the
sequential mode of training is preferred over the
batch mode since less local storage is required.
In addition, the random presentation of the
pattern makes it less likely for the standard back-
propagation algorithm which is used in ANFIS
network to be trapped in a local minimum if the
sequential mode of training is utilized. In
contrast, the use of batch mode provides a more
accurate estimate of the learned parameters, thus
giving more accurate estimation of the
navigation information learned parameters.

Another major advantage of sequential
training over batch training arises if there is a
high degree of redundancy in the data.

On the other hand, the sequential training
updates the parameters after receiving each
record of the input samples. Therefore, it will not
be affected by such highly redundant data.
However, during batch training, the network can
learn more general relationships as it utilizes
most of the available training data at the same
time instead of sample by sample. Both
generalization and training efficiency are very

2.

critical for SDINS applications, therefore,
developing a special learned parameters
updating method that can preserve the

generalization ability without losing too much
training efficiency is very important.

8. Development of Window-based learned
parameters updating method

Although the stored parameters might not be
able to provide accurate prediction during all
INS absence, it can be applied as the initial
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parameters at the beginning of a new navigation
mission. The INS window signal concept is then
applied to introduce new navigation knowledge
to modify stored learned parameters during
navigation. In fact, this method combines the
advantages of both sequential mode and batch
mode of training in order to make the training
procedure suitable for real-time processes. In
addition, the parameters of each window are then
updated via batch training mode. In other words,
the parameters of each window are updated
sequentially. As depicted in figure (5), the
procedure of the window-based learned
parameters updating method is given below:
i. Learned parameters initialization: The
initial parameters can be obtained using
previously stored parameters that are stored
in DataBase or random initialization
procedure. In this paper, the initial
parameters were obtained using random
initialization at the first time when the
ANFIS architecture were set up and they are
illustrated in table (3). Concequently, the
parameters are stored in DataBase after
completing one navigation mission and are
applied as the initial parameters for the next
mission. Accurate initial parameters may
significantly reduce training time.

INS signal reception: Within the first INS
window (i=1), INS(i), the learned parameters
are not updated, thus the stored parameters
are still the initial parameters P(i-1) (i.e.,
P(0) in first INS window).

INS signal reception: At the next INS
window, INS(i+1), the stored parameters,
P(i-1), are updated utilizing the presently
available INS information (INS(i)). These
parameters are stored as P(i) after training is
completed. Steps (ii) and (iii) are repeated
until an INS signal blockage is detected.

INS outage: As depicted in figure (5), in the
case of a INS outage (after INS(i)), P(i-1) is
first applied for real-time prediction and then
P(i) is then utilized to replace P(i-

ii.

iv.

1) and carry on real-time prediction during
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the remaining INS outages.

Since the ANFIS training procedure takes
time, wupdating the learned parameters
immediately at the latest available sample of INS
signal before outage is difficult. However, the
utilization of the proposed method can still
provide reasonable prediction accuracy during
INS blockage since it provides the latest updated
parameters instead of real-time updated
parameters for real-time prediction. Therefore,
failure in providing real-time updated learned
parameters doesn't mean the intelligent navigator
is not able to provide real-time prediction. In
contrast, it can utilize the latest acquired and
learnt navigation knowledge to provide real-time
solutions. Combining the latest INS window
signals, the stored parameters can be adaptively
updated to follow the latest dynamic condition
and INS errors thus improving the prediction
accuracy during INS outage.

As mentioned previously the 5" layer (output
layer) generates velocity and position in the local
level frame at the current epoch. Thus, the
navigation knowledge can be learnt, stored and
accumulated during the availability of the INS
signal. On the other hand, during INS signal
absence or IMU errors, the latest acquired
navigation knowledge can be retrieved from the
"brain" (navigation information DataBase) of the
intelligent navigator to predict the velocity and
position in real time. The proposed navigator
consist of two main procedures, the initialization
and training procedures so, if the network well
initialized and trained a good prediction will be
obtained.

During the initializition of ANFIS
network, where the parameters x,c,o are the

ANFIS learning parameters computed during the
training procedure and they are determine the
input/output functionality of the network. The
initial values for the ANFIS learning prarmeters
are obtained by trail and error and they are stated
as in table (3). in contrast, the selection of the
number of rules and the learning rate are very
important to get fast and accurate training as
illustrate below:

i. Selection of the number of rules.
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As mentioned previously, the arbitrarily
selection of the number of rules (M) is also
based on the trial-and-error procedures. The
purpose of this illustration to show the
relationship between the number of rules and the
mean square error (MSE) for the ANFIS
network.

The value of M was varied from 5 to 50 in a
step of 5. For each value of M, the network is
initialized randomly over specified ranges of the
parameters x, ¢, and o. These ranges will be the
same for all values of M.

The - results shown in figure (6) were
obtained after implementing the six networks of
position and velocity components using the same
initial values listed in table (3). For each value of
M, the number of epochs was 10 and the value
of the learning rate was 0.6 in all networks.

It was noticed that, as the number of rules
increases as the training process becomes
slower; therefore, if the value of the error is
decreasing then because of this slow training
process, the convergence to a minimum error
value will also be slow and the specified number
of iterations might be ended without reaching
that minimum error value. Hence it can be
noticed from figure (6) that, in general, as the
number of rules increases as the value of the
MSE increases. Even if a high value of M
achieves small error value, because of the
randomly initialized parameters, it is not
recommended to use this value because the
training process will be too slow and requires a
lot of time, i.e. it is better to look for the value of
M that achieves minimum error and with
minimum time (small M values).

It can also be seen from figure (6) that the
values of M equal to 5, 10, and 15 give
minimum error values in all networks; therefore,
M=10 was used to implement all the networks in
learning process.

ii Selection of the learning rate.
The selection of different values of the
learning rate which affect the speed of
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convergence during the training process will be
presented below.

To illustrate the relationship between the
value of the learning rate and the MSE for all
networks of position and velocity, the learning
rate was varied from 0.1 to 0.9 in a step of 0.1.

For each of these values of the learning rate, the
networks were initialized randomly over
specified ranges of x, ¢, and ¢. The same initial
ranges will be used for all values of the learning
rate.

For each network, the same initial values
listed in table (3) were used to obtain the results
shown in figure (7). For each value of the
learning rate, the number of epochs was 10 and
the number of rules was 10 in all networks.

It was noticed that when the learning rate
was small, the network will adjust its parameters
gradually but in this case convergence might be
slow, on the other hand, a high learning rate
might make drastic changes that are not
desirable; therefore, medial values of the
learning rate are preferable to choose.

Also, it can be seen from figure (7) that the
value of learning rate equal to 0.5 or 0.6 gives
small error value in most of the networks;
therefore, the value of 0.6 for the learning rate
was used to obtain the results from all networks
in the training process.

The ANFIS used in this paper to predict
the SDINS position and velocity in real time. So
after completing the initialzintion procedure the
ANFIS network can be trained and according to
figure (3) which illustrates the training procedure
of the ANFIS, the network output is compared to
the SDINS algorithm output figure (8) show the
SDINS and ANFIS outputs in inertial-frame for
position and velocity and the error between them
was shown in figure (9), this error is feed to the
ANFIS network, which adjust the network
learning parameters in a way to minimize the
mean square value of error.

The output is obtained and compared to
the target (desired performance) to determine the
estimation error. This error is propagated
through the network in the backward direction
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(opposite to the flow of the input data) starting
from output layer and is utilized to update the
computation of the network parameters. The
forward and backward computations are repeated
until the optimal value of the learning
parameters are achieved, which correspond to
certain objective mean square estimation errors,
The network parameters are updated according
to certain learning rules to minimize the mean
square value of the estimation error. the training
process continued for 10 epochs to reduce the

MSE value and the relation between the
number of epochs and MSE is shown in figure
(10).

After the training is completed the
network is ready to work in the prediction mode.
However the parameters of the networks are
modified during the availability of the IMU
signals (i.e. the training procedure continues)
and network is considered working in the update
mode. During IMU errors, the network will use
the latest estimation parameters saved in the
DataBase to perform the prediction process.

9. Conclusions and Suggestions for Future
Work.

The conclusions drawn from the results
presented in this paper and future work are:

1. In this paper, an attempt to build a
reliable navigation system is made by combining
the merits of INS, and ANFIS.

The parameters of the intelligent
navigator are included in the navigation
knowledge. Thus they can be updated without a
human expert during navigation whenever newly
updated navigation knowledge is acquired.

3. The long procedure of trial-and-error in
finding the optimal number of layers in the
network, the number of nodes in each layer, and
the activation function in each node, which
exists in Artificial Neural Network (ANN), has
been avoided in this paper by using the proposed
ANFIS with its constant structure as described in
this paper.

4. The appropriate selection of the initial
values of the parameters x, ¢, and ¢ has a
significant effect on the performance of the

2

L.
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ANFIS network and plays an important role in
decreasing the convergence time to the best
solution (minimum error value).

5. The selection of M (number of fuzzy
rules) is essential in achieving good results. It
was noticed that using large number of rules
results in slow training and large error values
whereas the small M values lead to small error
values and fast training performance.

6. The speed of convergence during the
training process is remarkably affected by the
value of the learning rate. Small values of
learning rate cause slow convergence, on the
other hand, undesirable results may appear when
using large values; therefore, most reasonable
performance is achieved with medial values of
learning rate.

7 The results presented in this paper
strongly indicate the potential of including the
intelligent navigator as the core navigation
algorithm for the next generation navigation
system.

8. Using neural network adaptive wavelets
(wavenet) to filter out the noise that exists at the
IMU outputs.

9. Finding the appropriate initial values of
the parameters x, ¢, and o by means of the
Genetic Algorithm.

10. Using other types of fuzzy logic system
structure that can be built based on different

11. combinations of the fuzzy inference
engine, fuzzifier, defuzzifier, and membership
function.

12. The proposed conceptual intelligent
navigator can be used instead of Kalman
filter or others traditional techniques to
support INS/GPS integrated system, and
to generate more reliable navigation
solutions.
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Table (1): Comparison of INS and GPS Systems.

INS GPS
Short term position and velocity accuracy Long term position and velocity accuracy
Accurate attitude information Noisy attitude information
Decreasing accuracy over time Uniform accuracy over time
High measurement output Low measurement output rate
Autonomous Non-autonomous
No signal outages Subject to signal outages
Affected by gravity Not sensitive to gravity

Y
3 Acceler- |
ometer
Reading }\ W
—d
Ap (1) \!
&

3Gyros __ /

Input layer MFs Hidden layer Normalized laver  Output layer

Figure (1): Adaptive Neuro Fuzzy Inference System Structure.

Forward pass

Premise parameters Consequent parameters

Gradient
descent

Backward pass

Figure (2): ANFIS learning using hybrid technique.
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Table (2): Hybrid learning process of ANFIS.

-Forward Pass [ Backward Pass
Fixed Gradient Descent
Least-square estimator | Fixed
Node outputs Error signals

-Premise Pacameters 2"

‘Consequent Par ‘
<Signals R ST

Ax}MU (1) SDINS position or velocity samples

AY gy (1)

Az, (1) $

AW (1) -

AVy (1)

A VZWU ( !) ANFIS poszi:ritl;Tegr velocity
Training

Criteria =

adjustment

Figure (3): Proposed Conceputal Inelligent Navigator structure,

Position Velocity
Network | Network

Figure (4): Distributed Navigation DataBase.
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Measurement
Domain

Time Domain

Systems Based on Adaptive Neuro-Fuzzy Inference System

Solution
Domain

Figure (5): Window-Based learned parameters updating method.

Table (3): Initial values for the ANFIS network for position and velocity.
g Position SRR [TARENE Velocity
X-axis Y-axis Z-axis
x |0, 5] [-5, 5] [-1, 1]
c 10, 5] [-5, 5] [-3, 3]
c 10, 5] I-1, 2] [-1, 1]
M 10 10 10 10 10 10
Learning rate 0.6 0.6 0.6 0.6 0.6 0.6
No. of epoch 10 10 10 10 10 10
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Abstract
The last two decades have shown an increasing trend in the use of navigation technologies
such as Strapdown Inertial Navigation Systems(SDINS) in several applications including land
vehicles and automated car navigation. On the other hand it can cause large position errors
over short time, due to the low quality of the Inertial Measurement Unit (IMU). These errors
determine the performance and the navigation accuracy of the INSs. Although the huge efforts
to improve SDINS in terms of its mechanization equations, it could not cover the remaining
drawbacks of SDINS; such as the impact of INS short term errors, model dependency, prior
knowledge dependency, sensor dependency, and computational errors.

This paper proposed an intelligent navigator to overcome the limitations of existing INS
algorithms. The intelligent navigator is based on Adaptive Neuro-Fuzzy Inference System
(ANFIS).

The proposed conceptual intelligent navigator consisted of SDINS architecture that was
developed using adaptive fuzzy system networks to acquire the navigation knowledge. In
addition, a navigation information DataBase, and a window-based learned parameters
updating method were implemented to store and accumulate navigation knowledge.
Kevwords: vehicular navigation, Inertial Navigation System (INS), DataBase, Adaptive
Neuro-Fuzzy Inference System (ANFIS).
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1. Introduction

Most of the present vehicle navigation
instruments rely mainly on the Global
Positioning System (GPS) as the primary source
of information to provide the vehicles position.
GPS is capable of providing precise positioning
information to an unlimited number of users any
where on the planet. However, GPS can provide
this type of information only when there is a
direct line of sight to four or more satellite [1].
In other words, the system does not work
properly in urban areas due to signal blockage
and attenuation that may deteriorate the overall
positioning accuracy.

An INS is a self-contained positioning
and attitude device that continuously measures
three orthogonal linear accelerations and three
angular rates. By measuring vehicle acceleration
and angular velocity in an inertial frame of
reference, integrating it with respect to time and
transforming it to the navigational frame,
velocity, attitude and position components can
be obtained. Sensors used to implement such a
system are accelerometers for the measurement
of a vehicles linear acceleration (specific force)
and gyroscopes for monitoring vehicle rotation
(angular velocity) with respect to an inertial
frame [2]. Since specific force measurements
contain the effect of the earth's gravity field, a
gravity model is used to extract vehicle
acceleration from the measurements. Because
they employ three translational (accelerometers)
and three rotational (gyroscopes) sensors,
Inertial Measuring Units (IMU) can be used as
positioning and attitude monitoring devices [3].

In fact, INS can not operate as a stand-
alone navigation system like GPS. Residual bias
errors in both the accelerometers and the
gyroscopes may deteriorate the long-term
positioning accuracy. A comparison between the
two navigation systems is illustrated in table (1).
In addition, these bias errors are random in
nature and need to be modeled using empirical
and adaptive model processes. And since there

Window-Updated Method for Strapdown Inertial
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is a lack of researches towards the conceptual
intelligent navigator, this paper is devoted to
develop an intelligent navigator that consists of
daptive Neuro-Fuzzy Inference System (ANFIS)
based on Terrestrial SDINS algorithm

described in [4]. As each of these limitations
contributes to certain amount of positional error
accumulation during computational errors,
therefore, the proposed new algorithm are
expected to reduce the impact of these
limitations by reducing the positional error
accummulation during navigation phase. In land
vehicle and submarine navigation. Regular
updates are needed to limit the rapidly growing
positional error. It is often possible to
considerably improve the accuracy of the SDINS
by building a conceptual intelligent navigator to
accumulate the navigation knowledge and
retrieve it to trim down the SDINS error.

1.1 Objectives and Motivation

This paper aims at introducing a novel
method based on Adaptive Neuro-Fuzzy
Inference System (ANFIS) to fuse the outputs of
IMU and provide accurate positioning and
velocity information for the moving vehicle.

In addition, this paper suggests a
navigation DataBase to retrieve the navigation
knowledge to provide an accurate real-time
computing system for the strapdown INS
algorithm for vehicular navigation.

In other words, this paper introduces a
conceptual intelligent navigator for next
generation navigation systems to accumulate the
navigation knowledge and retrieving the stored
navigation knowledge to be able to provide the
real time prediction. Ultimately, the conceptual
intelligent navigator is expected to overcome or,
at least, reduce the limitations of the
conventional based SDINS algorithms.

2. Adaptive Neuro Fuzzy Inference Svstems
Ever since the artificial intelligence,
considered as a powerfull and applicable tool in
engineering modeling, computation, nonlinear
function approximation, system identification
and estimation theory. The neuro fuzzy models
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have the comnectionist structure of neural
networks combined with flexibility and intuitive
learning capabilities of fuzzy system. It has
hybrid learning method based on gradient
descent and least square estimation [5].

In order for an FIS to be mature and well
established so that it can work appropriately in
prediction mode, its initial structure and
parameters (linear and non-linear) need to be
tuned or adapted through a learning process
using a sufficient input-output pattern of data.
One of the most commonly used learning
systems for adapting the linear and non-linear
parameters of an FIS, particularly Takagi and
Sugeno (TS) type, is the ANFIS. ANFIS is a
class of adaptive networks that are functionally
equivalent to fuzzy inference systems [6].
Different interpretations for the fuzzy IF-THEN
rules result in different mappings of the fuzzy
inference engine, also there are different types of
fuzzifier and defuzzifier. Several combinations
of the fuzzy inference engine, fuzzifier, and
defuzzifier may constitute useful fuzzy logic
system. If the fuzzy logic system can be
represented as a feed forward network, then the
idea of back propagation training algorithm can
be used to train it. The structure of ANFIS and
the main concepts and algorithm adopted during
its learning process will be introduced later.

3. Proposed Conceptual Intelligent Navigator
based on ANFIS

The proposed conceptual intelligent
navigator integrates the data from IMU and
mimics the dynamical model of the vehicle to
generate navigation knowledge. Thus the latest
acquired navigation knowledge can be applied to
predict the vehicles velocity and position during
IMU errors in real time.

The resulting ANFIS has the structure
depicted in figure (1) . It consists of 5 layers.
Layer 1 and layer 5 define the input and output
spaces respectively. Layer 2 and layer 3 are used
to perform the IF part of fuzzy rules. Layer 4
performs the normalization of each node in layer
3. The THEN part of the fuzzy rules is
completed in the fifth layer. Detailed
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descriptions and equations for each layer are
given here [7].

Layer 1: Input-variable layer. This is the layer
where the input signals first enter the neural
network, and each node in layer 1 represents an
input linguistic variable.

Layer 2: Each node in layer 2 represents a
membership function (MF), which is a Gaussian
function of the following form:

Gi-¢,)’
MEF, (x,) = exp| TR T
O-l
icl 2o sesges] 2ma

..(1)

where 7 is the number of input variables and « is
the number of membership functions.

Layer 3: The rule layer associated with the input
variables is given by eq.(2). Each node in this
layer is a radial basis function (RBF) unit which
represents a possible IF- part of the fuzzy rule.
The outputs are given by:

4 3
DI
B S L
o

R; =exp)
7
2
Sl |
J
w.(2)
where
X= {.\'sz, X, ]r

CJ =[c,j,c2/,“..,c,/]r.

Layer 4: This layer consists of normalized
nodes. The number of nodes is equal to that of
RBF units. The output is given by:

2B
Layer 5: This is the output layer, which
comprises of output nodes, each of which is
weighted according to eq. (4). This layer
performs defuzzification (weighted average) of
the output as follows:
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YX) =3 N,
(4

The weight is of linear structure and can be
expressed as follows:

Wy =k Hhx 4ok, x,

..(5)

where k , are real-valued parameters.

4. ANFIS Learning using Hybrid Technique
As mentioned earlier, both the premise

(non-linear) and consequent (linear) parameters
of the FIS should be tuned, utilizing the so-
called learning process, to optimally represent
the factual mathematical relationship between
the input space and output space. Normally, as a
first step, an approximate fuzzy model is
initiated by the system and then improved
through an iterative adaptive learning process.
The training algorithm, namely ANFIS,
was developed by [6]. Basically, ANFIS takes
the initial fuzzy model and tunes it by means of a
hybrid technique combining gradient descent
back-propagation and mean least-squares

optimization algorithms figure (2). At each
epoch, an error measure, usually defined as the
sum of the squared difference between actual
and desired output, is reduced. Training stops
when either the predefined epoch number or
error rate is obtained. The gradient descent
algorithm is mainly implemented to tune the
non-linear premise parameters while the basic
function of the mean least-squares is to optimize
or adjust the linear consequent parameters. Table
(2) shows the two stages of hybrid learning
process of ANFIS.
5. Intelligent Navigator Architecture

The general architecture of ANFIS is
shown in figure (1), the input vectors for the
ANFIS are the raw accelerations at each current
epoch 4, (1), and angular velocity at current

epoch AV, (1) while the output of ANFIS was

the instant position and velocity at each current
epoch for both position and velocity in the three
directions for the moving vehicle.
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ANFIS and SDINS algorithms receive
raw outputs of accelerometers and gyros,
respectively as inputs and generate navigation
state as outputs as shown in figure (3). Thus,
SDINS mechanization illustrated in [4] is
replaced by proposed ANFIS.

So, the navigation knowledge can be
learnt, stored and accumulated during the
availability of the INS signal. On the other hand,
during INS signal absence or IMU errors, the
latest acquired navigation knowledge can be
retrieved from the navigation information
DataBase.,

6. Navigation Information DataBase

The second step towards building the
intelligent navigator is to store the learnt
navigation knowledge provided by SDINS
algorithm. As a result, a navigation information
DataBase that contains the acquired and learnt
navigation knowledge can serve as the "brain" of
the intelligent navigator. Therefore, several
issues regarding the DataBase are addressed as
follows:
Content of DataBase: The DataBase
consists of the training samples (input vectors
and desired output vectors) and estimated
learned parameters during the availability of the
IMU signal. Thus, these components can be
regarded as the navigation knowledge. In other
words, the content of the DataBase varies with

the structure of different INS algorithm (i.e.,
according to navigation solutions that will be
given by SDINS algorithm).

e Distributed navigation knowledge
storage: The content of DataBase becomes more
complicated ~ with  complicated ~ SDINS
architectures or solutions. Therefore, considering
the efficiency of DataBase maintenance and
retrieval, the navigation knowledge learnt by
each  sub-component should be stored
individually in a distributed way, as shown in
figure (4).

Off-line DataBase maintenance: The
simplest way to reduce the storage requirement
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is to remove any redundant training samples that
include inputs and their corresponding desired
outputs. As for the learned parameters, they
should be kept without any change as they are
the core component of the navigation
knowledge. Using ANFIS architecture as an
example, a simple procedure that can be applied
prior to navigation (i.e., during alignment) or
after navigation before shutting  down the
system, is given below:

i. Regroup the training samples: Using one of
the training inputs (i.e., Anw (1) or AV )
as the index; the training inputs can be
regrouped to increase the efficiency for
maintenance.

ii.Locate redundant navigation knowledge:
Although it is difficult to locate a pair of
training samples that are exactly the same,
searching the most similar pairs of training
samples using threshold values then deciding
if they are redundant or not is possible.

Remove the redundant navigation
knowledge.

It must be mentioned that the implementation
of DataBase was done with MatLab application.
Up to now, the intelligent navigator has been
given the ability to generate, and learn
navigation knowledge and it also has been given
the "space" to store navigation knowledge.
However, there is still one thing missing. It
requires a way to accumulate the acquired and
learnt navigation knowledge and store them for
further retrieving or

generalization and this navigation knowledge
must be updated during the training procedure
when INS signal is available so, a windowing
method used to perform this goal as will be
described later.
7. Window-Based
updating Method

As the learned parameters (x,¢,0) are the
core components of the navigation knowledge,
the final step towards building the intelligent
navigator is to develop a method to accumulate
the acquired navigation knowledge by updating

Learned _ parameters
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the learned parameters whenever the IMU signal
is available (i.e., no sensor errors or absence of
signal ).

In most of their applications, ANFIS are
trained using some known training data set
(input/desired output) to obtain the optimal
values of the learned parameters via off-line
training. For any other set of inputs, different
from those used in training, the learned
parameters can then be applied to provide
prediction of the network outputs. It is worth
mentioning that ANFIS parameters are frozen
after completing the training procedure and no
further modification will be made during the
prediction process.

In fact, off-line training can work well in
case of slowly changing time sequences [8]. In
the case of INS navigation applications, it is
required to track direction changes and mimic
the motion dynamics utilizing the latest available
INS data. In other words, the learned parameters
should be updated during the navigation process
to adapt the network to the latest INS sensor
readings whenever the INS signal is available.

To implement such criterion, a window-
based learned parameters updating method,
which utilizes the learned parameters obtained
during the conventional off-line training
procedure (or probably from previous navigation
missions) is stored in the DataBase and is
presented in this paper. This criterion utilizes the
latest available navigation information provided
by the INS signal window to adapt the stored
learned parameters so that they can be applied to
mimic the latest motion dynamic. The window-
updated learned parameters are stored after each
training procedure. They are then used as initial
values

for the parameters to be estimated during the
next training window or for prediction during
INS signal absence. Prior to looking into the
details of the window-based learned parameters
updating method, several aspects of traditional
learned parameters updating methods are given.
Traditional methods can be classified as [8]:
1. Sample-by-sample training, also known
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as on-line or sequential training, that modifies
the parameters for each input record after
computing the learned parameters updates;

Batch training, which computes the
learned parameters updates for each sample
and stores these values (without changing the
parameters). At the end of the whole training
procedure, all the learned parameters updates
are added together and then the parameters are
modified with the accumulated learned
parameters updates.

From an online operational point of view, the
sequential mode of training is preferred over the
batch mode since less local storage is required.
In addition, the random presentation of the
pattern makes it less likely for the standard back-
propagation algorithm which is used in ANFIS
network to be trapped in a local minimum if the
sequential mode of training is utilized. In
contrast, the use of batch mode provides a more
accurate estimate of the learned parameters, thus
giving more accurate estimation of the
navigation information learned parameters.

Another major advantage of sequential
training over batch training arises if there is a
high degree of redundancy in the data.

On the other hand, the sequential training
updates the parameters after receiving each
record of the input samples. Therefore, it will not
be affected by such highly redundant data.
However, during batch training, the network can
learn more general relationships as it utilizes
most of the available training data at the same
time instead of sample by sample. Both
generalization and training efficiency are very

2.

critical for SDINS applications, therefore,
developing a special learned parameters
updating method that can preserve the

generalization ability without losing too much
training efficiency is very important.

8. Development of Window-based learned

parameters updating method
Although the stored parameters might not be

able to provide accurate prediction during all
INS absence, it can be applied as the initial
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parameters at the beginning of a new navigation
mission. The INS window signal concept is then
applied to introduce new navigation knowledge
to modify stored learned parameters during
navigation. In fact, this method combines the
advantages of both sequential mode and batch
mode of training in order to make the training
procedure suitable for real-time processes. In
addition, the parameters of each window are then
updated via batch training mode. In other words,
the parameters of each window are updated
sequentially. As depicted in figure (5), the
procedure of the window-based learned
parameters updating method is given below:
i. Learned parameters initialization: The
initial parameters can be obtained using
previously stored parameters that are stored
in DataBase or random initialization
procedure. In this paper, the initial
parameters were obtained using random
initialization at the first time when the
ANFIS architecture were set up and they are
illustrated in table (3). Concequently, the
parameters are stored in DataBase after
completing one navigation mission and are
applied as the initial parameters for the next
mission. Accurate initial parameters may
significantly reduce training time.

INS signal reception: Within the first INS

window (i=1), INS(i), the learned parameters

are not updated, thus the stored parameters

are still the initial parameters P(i-1) (i.e.,

P(0) in first INS window).

INS signal reception: At the next INS

window, INS(i+1), the stored parameters,

P(i-1), are updated utilizing the presently

available INS information (INS(i)). These

parameters are stored as P(i) after training is
completed. Steps (ii) and (iii) are repeated
until an INS signal blockage is detected.

iv. INS outage: As depicted in figure (5), in the
case of a INS outage (after INS(i)), P(i-1) is
first applied for real-time prediction and then
P(i) is then utilized to replace P(i-

ii.

1) and carry on real-time prediction during
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the remaining INS outages.

Since the ANFIS training procedure takes
time, updating the learned parameters
immediately at the latest available sample of INS
signal before outage is difficult. However, the
utilization of the proposed method can still
provide reasonable prediction accuracy during
INS blockage since it provides the latest updated
parameters instead of real-time updated
parameters for real-time prediction. Therefore,
failure in providing real-time updated learned
parameters doesn't mean the intelligent navigator
is not able to provide real-time prediction. In
contrast, it can utilize the latest acquired and
learnt navigation knowledge to provide real-time
solutions. Combining the latest INS window
signals, the stored parameters can be adaptively
updated to follow the latest dynamic condition
and INS errors thus improving the prediction
accuracy during INS outage.

As mentioned previously the 5" layer (output
layer) generates velocity and position in the local
level frame at the current epoch. Thus, the
navigation knowledge can be learnt, stored and
accumulated during the availability of the INS
signal. On the other hand, during INS signal
absence or IMU errors, the latest acquired
navigation knowledge can be retrieved from the
"brain" (navigation information DataBase) of the
intelligent navigator to predict the velocity and
position in real time. The proposed navigator
consist of two main procedures, the initialization
and training procedures so, if the network well
initialized and trained a good prediction will be
obtained.

During the initializition of ANFIS
network, where the parameters x,c,o are the
ANFIS learning parameters computed during the
training procedure and they are determine the
input/output functionality of the network. The
initial values for the ANFIS learning prarmeters
are obtained by trail and error and they are stated
as in table (3). in contrast, the selection of the
number of rules and the learning rate are very
important to get fast and accurate training as
illustrate below:

i. Selection of the number of rules.
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As  mentioned previously, the arbitrarily
selection of the number of rules (M) is also
based on the trial-and-error procedures. The
purpose of this illustration to show the
relationship between the number of rules and the
mean square error (MSE) for the ANFIS
network.

The value of M was varied from 5 to 50 in a
step of 5. For each value of M, the network is
initialized randomly over specified ranges of the
parameters x, ¢, and o. These ranges will be the
same for all values of M.

The - results shown in figure (6) were
obtained after implementing the six networks of
position and velocity components using the same
initial values listed in table (3). For each value of
M, the number of epochs was 10 and the value
of the learning rate was 0.6 in all networks.

It was noticed that, as the number of rules
increases as the training process becomes
slower; therefore, if the value of the error is
decreasing then because of this slow training
process, the convergence to a minimum error
value will also be slow and the specified number
of iterations might be ended without reaching
that minimum error value. Hence it can be
noticed from figure (6) that, in general, as the
number of rules increases as the value of the
MSE increases. Even if a high value of M
achieves  small error value, because of the
randomly initialized parameters, it is not
recommended to use this value because the
training process will be too slow and requires a
lot of time, i.e. it is better to look for the value of
M that achieves minimum error and with
minimum time (small M values).

It can also be seen from figure (6) that the
values of M equal to 5, 10, and 15 give
minimum error values in all networks; therefore,
M=10 was used to implement all the networks in
learning process.

ii Selection of the learning rate.
The selection of different values of the
learning rate which affect the speed of
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convergence during the training process will be
presented below.

To illustrate the relationship between the
value of the learning rate and the MSE for all
networks of position and velocity, the learning
rate was varied from 0.1 to 0.9 in a step of 0.1.

For each of these values of the learning rate, the
networks were initialized randomly over
specified ranges of x, ¢, and ¢. The same initial
ranges will be used for all values of the learning
rate.

For each network, the same initial values
listed in table (3) were used to obtain the results
shown in figure (7). For each value of the
learning rate, the number of epochs was 10 and
the number of rules was 10 in all networks.

It was noticed that when the learning rate
was small, the network will adjust its parameters
gradually but in this case convergence might be
slow, on the other hand, a high learning rate
might make drastic changes that are not
desirable; therefore, medial values of the
learning rate are preferable to choose.

Also, it can be seen from figure (7) that the
value of learning rate equal to 0.5 or 0.6 gives
small error value in most of the networks;
therefore, the value of 0.6 for the learning rate
was used to obtain the results from all networks
in the training process.

The ANFIS used in this paper to predict
the SDINS position and velocity in real time. So
after completing the initialzintion procedure the
ANFIS network can be trained and according to
figure (3) which illustrates the training procedure
of the ANFIS, the network output is compared to
the SDINS algorithm output figure (8) show the
SDINS and ANFIS outputs in inertial-frame for
position and velocity and the error between them
was shown in figure (9), this error is feed to the
ANFIS network, which adjust the network
learning parameters in a way to minimize the
mean square value of error.

The output is obtained and compared to
the target (desired performance) to determine the
estimation error. This error is propagated
through the network in the backward direction
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(opposite to the flow of the input data) starting
from output layer and is utilized to update the
computation of the network parameters. The
forward and backward computations are repeated
until the optimal value of the learning
parameters are achieved, which correspond to
certain objective mean square estimation errors,
The network parameters are updated according
to certain learning rules to minimize the mean
square value of the estimation error. the training
process continued for 10 epochs to reduce the

MSE value and the relation between the
number of epochs and MSE is shown in figure
(10).

After the training is completed the
network is ready to work in the prediction mode.
However the parameters of the networks are
modified during the availability of the IMU
signals (i.e. the training procedure continues)
and network is considered working in the update
mode. During IMU errors, the network will use
the latest estimation parameters saved in the
DataBase to perform the prediction process.

9. Conclusions and Suggestions for Future
Work.

The conclusions drawn from the results
presented in this paper and future work are:

1 In this paper, an attempt to build a
reliable navigation system is made by combining
the merits of INS, and ANFIS.

2 The parameters of the intelligent
navigator are included in the navigation
knowledge. Thus they can be updated without a
human expert during navigation whenever newly
updated navigation knowledge is acquired.

3. The long procedure of trial-and-error in
finding the optimal number of layers in the
network, the number of nodes in each layer, and
the activation function in each node, which
exists in Artificial Neural Network (ANN), has
been avoided in this paper by using the proposed
ANFIS with its constant structure as described in
this paper.

4. The appropriate selection of the initial
values of the parameters x, ¢, and ¢ has a
significant effect on the performance of the
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ANFIS network and plays an important role in
decreasing the convergence time to the best
solution (minimum error value).

5. The selection of M (number of fuzzy
rules) is essential in achieving good results. It
was noticed that using large number of rules
results in slow training and large error values
whereas the small M values lead to small error
values and fast training performance.

6. The speed of convergence during the
training process is remarkably affected by the
value of the learning rate. Small values of
learning rate cause slow convergence, on the
other hand, undesirable results may appear when
using large values; therefore, most reasonable
performance is achieved with medial values of
learning rate.

T The results presented in this paper
strongly indicate the potential of including the
intelligent navigator as the core navigation
algorithm for the next generation navigation
system.

8. Using neural network adaptive wavelets
(wavenet) to filter out the noise that exists at the
IMU outputs.

9. Finding the appropriate initial values of
the parameters x, ¢, and ¢ by means of the
Genetic Algorithm.

10. Using other types of fuzzy logic system
structure that can be built based on different

11. combinations of the fuzzy inference
engine, fuzzifier, defuzzifier, and membership
function.

12. The proposed conceptual intelligent
navigator can be used instead of Kalman
filter or others traditional techniques to
support INS/GPS integrated system, and
to generate more reliable navigation
solutions.
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Table (1): Comparison of INS and GPS Systems.

INS GPS
Short term position and velocity accuracy Long term position and velocity accuracy
Accurate attitude information Noisy attitude information
Decreasing accuracy over time Uniform accuracy over time
High measurement output Low measurement output rate
Autonomous Non-autonomous
No signal outages Subject to signal outages
Affected by gravity Not sensitive to gravity

3 Acceler- |
ometer
Reading |}

Ap (1) = 2

&
3Gos __ /
Reading | |/
AV, (1)
|

Input layer MFs Hidden loyer  Normalized layer  Ouiput layer

Figure (1): Adaptive Neuro Fuzzy Inference System Structure.

Forward pass

Premise parameters Consequent parameters

Update

Gradient
descent

Backward pass >

Figure (2): ANFIS learning using hybrid technique.
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Table (2): Hybrid learning process of ANFIS.
. Forward Pass % | Backward Pass =
Fixed Gradient Descent

Least-square estimator | Fixed
Node ouiputs Error signals

Sl SDINS position or velocity samples
Ay (1)
Az (0)
AV (1)
AVY 3 (1)
AVzy (1) ANFIS pas:x'i:?“nr velocity
Training
adjustment Criteria

Figure (3): Proposed Conceputal Inelligent Navigator structure.

Position | Velocity
Network |/ Network

Figure (4): Distributed Navigation DataBase.
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Measurement |,
Domain

Time Domain

Stored
Solution
Domain |}
Figure (5): Window-Based learned parameters updating method.
Table (3): Inital values for the ANFIS network fcr osition and velocit
Y-axis Z-axis
x [-5, 5] -1, 1]
c [-5,5] 1-3,3]
o 1,2] | L1
M 10 10 10 10 10 10
Learning rate 0.6 0.6 0.6 0.6 0.6 0.6
No. of epoch 10 10 10 10 10 10
<
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Figure (6): The relation between the number of rules (M) and the MSE for the ANFIS networks of position and
velocity components.
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Figure (7): The relation between the value of the learning rate and the MSE for the ANFIS networks of position
and velocity components.
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Figure (9): Error between the desired and actual output of the conceptual intelligent navigator along all

components for position and velocity.
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Figure (10): The relation between the number of epochs and the mean square error for the net

and velocity.
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