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ABSTRACT

The equation of Kepler is used to solve different problems associated with celestial
mechanics and the dynamics of the orbit. It is an exact explanation for the movement of any
two bodies in space under the effect of gravity. This equation represents the body in space
in terms of polar coordinates; thus, it can also specify the time required for the body to
complete its period along the orbit around another body. This paper is a review for
previously published papers related to solve Kepler’s equation and eccentric anomaly. It
aims to collect and assess changed iterative initial values for eccentric anomaly for forty
previous years. Those initial values are tested to select the finest one based on the number of
iterations, as well as the run time for each starting initial value that is required for
completing the solution. The method of Newton—Raphson is employed to acquire a final
value for an eccentric anomaly; this method considers a typical method for a solution with
less divergence as compared with an ideal solution, and the best initial value is chosen. The
applicable selection of the initial value of the eccentric anomaly will decrease the
calculation time and confirm the convergence of the curves of the eccentric anomaly with

ideal curves.

Introduction

The systematic study of celestial objects and space
actions is identified as astronomy. This science clarifies
the development, source, growth, and astronomical
actions in space via physics and mathematics [1]. From
1650 to the present, numerous studies have been
employed to find the value of an eccentric anomaly.
Many methods have been described to calculate this
value. Essentially, its calculation depends on the
motivation of the solver and the mathematical procedure
or tools that are obtainable according to the requirements
of calculation. The era of calculators and computers has
facilitated rapid and precise calculations of the value of
eccentric anomaly. In particular, Matlab is a very
influential program that is simple and easy to use.
Moreover, a standard programming language, like
Fortran, is used for numerical calculations [2, 3, 4]. The
Kepler equation deals with dissimilar difficulties related
to celestial mechanics. It is a description of the motion
of two bodies in space under the impact of gravitational
forces on each other. It represents the body in terms of
polar coordinates, so it can also determine the required
time for the body to complete its period along the orbit
[5, 6, 7]. This equation requires three parameters to
work: eccentricity (e), mean anomaly (M), and initial
value of eccentric anomaly (E;).
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Eccentricity defines the shape of the orbit; mean
anomaly describes the motion of a body along untrue
orbit; and the last is considered a starter value for a
solution to find a final value for eccentric anomaly [8, 9,
10]. In general, this is solved by three methods: classical
methods [11], iterative methods, and non-iterative
methods. The classical methods use power series (E) for
solution, so it is considered a direct solution to obtain
the value of the eccentric anomaly for one period (0°—
360°) and does not need a tolerance to complete the
solution [12, 13, 14]. It is divided into two types: one
based on the Bessel function, and the other is based on
the Lagrange series. An iterative of the Newton—
Raphson method is employed to calculate the final value
of eccentric anomaly using different initial values for
eccentric anomaly. The non-iterative method is similar
to the classical method; it provides a direct solution for
the equation of Kepler and also requires a tolerance [15,
16]. In 1987, Mikkola used a non-iterative initial value,
which yields a rough calculation for the eccentric
anomaly value [17].

Theory
e The Formula of Kepler’s Equation

It is a non-linear equation and seems simple; it is
illustrated below [5]:

Ei+1 = Me + eiSil'l (El) (1)
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Here, e; is designated to eccentricity and defined by (e x
57.3248 °), which means that it is measured in degrees.
Its range for an elliptical orbit is from 0 to 1. M,
designates the motion of an object along a circle orbit. It
is an angle measured in degrees from the center of the
circle and has a range from 0° to 360° [4, 5, 7]. E;
represents the angle from the closest point to the object
to the position of an extended object along an auxiliary
circle, measured in degrees from 0° to 360°, as shown in
Figures 1a and 1b [5]. This parameter is considered a
starter value for a solution, and it has different values to
test by the Newton—-Raphson method. E;, is the final
value for an eccentric anomaly. The general form of the
equation of Kepler is Equation (1), which reflects a
direct solution to obtain the value of the eccentric
anomaly. In some references, this equation is measured
in radians. Eccentricity and mean anomaly must be
identified to find the eccentric anomaly value, and
eccentric anomaly can then be calculated directly [4, 5].
The Newton-Raphson method is one of the best
standard methods for determining the root of a well-
behaved function, as presented in Figure 2. The
reiteration using this method will continue until the next
value (Ei.,) is estimated from the previous value of the
eccentric anomaly (E;.;), ceasing only when the user-
defined degree of precision is achieved. The Newton—
Raphson method is expressed as follows [4, 14]:

Ei.i=Ei+ [ Ei—e xsin (E,) - M. ] / [1— € X COS (E|)] (2)

(a)
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Meoan anomaely (Mo) in degraes

Figure 1. (a) Representation of the eccentric and mean
anomalies in their orbits [5], and (b) the result of mean
anomaly as a function of eccentric anomaly for the initial
value Ei=M, and eccentricity = 0.8 by the Newton—-Raphson
method [5].

flE)

slop= df(E)/dE] at E=FE;

Figure 2. Representation of the Newton—Raphson
method [5].

Once the user uses the above method, he will face two
problems that must be considered. First, the required
property for the algorithm offers the degree of
convergence. By contrast, if the starting initial value is
not correctly near to the solution, the curve’s behavior
for an eccentric anomaly will deviate. Second, the
derivative of the function has a zero value. Thus, this
method begins to miss the required property for the
algorithm that makes the degree of convergence
(quadratic) available. This comes about when the
solution has a slope with a zero value. Thus, at each
stage of iteration, the slope of the function must not be
zero. Halley used the second derivative, which results
from Tylor series expansion with the Newton—Raphson
method [15]:
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Eit1 = Ej — 2 f(E;) X [,f(Ei)/z[,f(Ei)]z — f(Ey)
x "f(ED] 3)

where f(E;), f(E;),and f(E;) are the first, second, and
third derivatives, respectively. Extra terms of derivatives
for the Halley method are considered to determine the
convergence behavior at each stage. This method is
created by the initial value of an eccentric anomaly with
a high convergence property [5].

e Initial Values of Eccentric Anomaly (E;)

Regardless of using the non-iterative method
and classical methods to determine eccentric anomaly,
numerous researchers and scholars have proposed that,
unlike initial values, the majority are derived from
eccentricity and mean anomaly parameters, or one of
them. Specific initial values incorporate an additional
formula that is based on the sine or cos function.
Furthermore, the formula encompasses eccentricity,
mean anomaly, or both. Changed initial values are used
in Equation 1, especially instead of the (Ei) parameter,
to obtain a rough final value for the eccentric anomaly
(Ei+1). The reiteration by the Newton—Raphson method
will carry on until the next value, which is (E.,) from
the previous value of the eccentric anomaly (Ei+1). At
that point, the values of (Ei.3), (Eis), and (Eis) are
calculated based on the previous values [4, 5, 7]. In
1972, complex adaptable analysis was conducted to
develop an ideal solution to find the value of eccentric
anomaly for both types of orbits, which are elliptical and
hyperbolic. Riemann problems were appropriately
displayed; they were formed by the simple properties of
canonical solutions. Thus, the final results will be
obtained by elementary quadrature formulas[18]. In
1978, Smith used the root of the Kepler equation and
considered the eccentric anomaly instead of M, and M.+
e to provide an initial value of the eccentric anomaly as
below [19]:

E; = M, — e X [sin(M¢)/1 — sin (M +€) +
sin (Me)] @
The root of Kepler’s equation between M, and M, + e
above reflected a linear approximation. A comparison
was made by Smith between the initial value and the
Newton—Raphson method within two sections with
respect to another value. These sections are imaginary:
section 1 has a limit of 0.05 <M<mand 0.01 <e<0.9,
and section 2 has a limit of 0.005 < M.< 0.4 and 0.95 <
e < 0.99. The average number of repetitions was
determined by Smith’s measurement to obtain a good
initial value for eccentric anomaly via the Newton—
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Raphson method to each section. The tolerance to
discontinue the program was 5x10®. After obtaining the
initial values, an assessment was made between them to
choose the finest, which is given by [19]:

Ei=M+a(-3) (5)
At this point, a = e sin (M,)/1— e cos (M,). In section 2,
the variation between M. + e and the initial value for
Smith was not remarkable. As the solver uses a suitable
initial value, a correction factor does not need to be
added by using the Newton-Raphson method. Two
manners must be taken into account for calculation:
good convergence and required number of iterations.
Smith used another initial value [19]:

Ei= Me (6)
Ei= Me+ e (7)
Ei =M+ e sin (M,) (8)

Ei = M, —e x[sin (M) / 1 —sin (Mg+ €) + sin (M¢)] (9)
E; = Mc+ e sin (M,) + e%sin (M) cos (M) (10)

Ei=M.+a(-2) (11)

In 1979, Edward used the same method that Halley

followed. He created separate regions in space, which

were M, and e. The first three regions had topical

designs. He found that the equation of Kepler was

treated as a third-degree function with nearly M, = 0 and

e = 1, and he used a third-degree root for this region

[20]. In 1981, Alefeld used Halley’s method with the

below initial value [21]:

Eiv1 = E; — f(E;)/[Bf(E)) — O-Sf(Ei)[f(E(i)/)

12

At this point, i must be greater than or equal to 0. The
above equation was known as the tangent to the
hyperbola orbit [21]. 1983, Danby and Burkardt
suggested another iterative initial value, which was
Ei=M.. He considered the behavior of function directly
toward the upper. The rate of the deviation was reduced
as follows [22]:

BCE}]]

Eiy1 =Ei+6; (13)
where 8, = —f(E;)/Rf(E;), which was the Newton—
Raphson method. Further derivatives were used 6,=
—f(E;)/Bf(E;) — [0.5 x 6, ARAS(E;)] and &83= —f(E;)/
Bf(E;) — [0.5 x 6,BBf(E;)] + [0.166x62 ABAS(E;)].
The use of 8, = —f(E;)/Bf(E;) signified Halley’s
method and the fourth derivative of convergence or
meeting, respectively [22, 23]. In 1985, loakimidis and
Papadakis suggested a new simple method for
transcendental equations and the non-linear algebraic by
an integral formulation of the closed procedure.
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Furthermore, they used Gauss category quadrature
procedures to develop accurate results [24]. In 1986,
Serafin employed the property of the sin function to
describe the intervals that contained the root of the
equation of Kepler. He identified a good initial value for
eccentric anomaly, but he needed to find the root of
eccentric anomaly [25]. In the same year, Gooding and
Odell calculated twelve different initial values. They
considered the rapid convergence in large eccentricity
and small mean anomaly to be reasonable when the
initial values showed a good state for eccentric anomaly
[26]. Conway used Leguerr’s method to obtain the root
of a polynomial [27]:
Eiys1 =
Ei — [k f(E)/Bf(E;) £

V&= D2(@EEN)? — k(k — DEBFE)]

Where k is a parameter, and the selected value was 5.
The convergence by Equation 14 is assured, regardless
of the used initial value [27], as shown in Table 1. After
4 years, Danby separated the regions into two parts, as
shown in Table 2 [28]:

Table 1. Clarify the intervals of initial value for
eccentric anomaly [27].

Mean anomaly (M) | Initial value for eccentric anomaly (E;)
M, M,
[0, 1-ea] 1_22SES1_e
T
Me
[0, 1-eqy , (m/2) —€] 1_23SES M, +e
T
M, + 2e “F<
[(n/2) —e, 1- (1-eay)] 112 E< M t+e
M, + 2e M, + em
[n - (1-eay,), n] 1+22 <E< 1te

Table 2. Illustrate the initial values for eccentric
anomaly and their intervals [28].

Used Initial value of eccentric anomaly I |
E) nterva

Mg+((6M)/3- M,) e’ 0<M,<0.1

M+ 0.85¢e 0.1 <M.<m

Taff evaluated 13 changed initial values in 1989, and the
finest one was E=M, + e by using Wegstein’s method
[29]. In 1991, Nijenhuis also separated M, and e into
four sections, using dissimilar initial values for each
sector. His work was similar to that of Edward and
Danby but included slight modification. The initial
values were as follows [30]:

Section 1: It has a large mean anomaly as

E=Msten/1+e

Section 2: It has a middle mean anomaly as

(15)
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E=M./1-e (16)
Section 3: It has a small mean anomaly as
Ei= Me/ 1-e (17)

Section 4: It contains a space near the mean anomaly =
0 and eccentricity = 1, which used Mikkola’s method as
follows:

Ei= M, +e (3R— 4R?) (18)

Here, R is a parameter necessary for the solution [17]. In
1995, Markly suggested a final value for eccentric
anomaly, which was built on Pede calculations for the
sine function; he reduced the trigonometric function
using [31]. Besides, Shiming and Desmond also used
Halley’s method, but their calculations were based on
the Kantorovich theorem. The purpose of using this
theorem was to decrease the region conditions and give
an operator equation for the Kantorovich theorem [32].
In the same year, Chobtov compared Conway’s with the
Newton—Raphson method. He showed that, despite the
assured convergence behavior of Conway’s method, the
Newton—Raphson method for calculating the completing
time was preferred [33]. In 1996, Toshio determined an
approximate solution, and he considered the starter value
of (y) to be insignificant or a trivial solution, and (x)
represents (y) and (j) is the solution index. The Newton—
Raphson method included an additional approximation,
which was the corrected value for (y). It was an iterative
initial value that did not require the evolution of a
transcendental function [34]. In 1997, Toshio solved the
Kepler equation for all types of orbits, namely, elliptic,
parabolic, and hyperbolic. He studied two kinds of
orbits: elliptic and hyperbola; two different initial values
were used as follows [35]:

Ei: Me+e
Ei= M.+ e sin M. + e x sin 2M, /2

(19)
(20)

He concluded that the initial value in Equation 20 that
was solved by the Newton—Raphson method, as
compared with Equations 5 and 19, had a convergence
performance with a lower number of iterations. He
recognized that the starting value in Equation 19 was
15% faster than the initial value in Equation 5, whereas
the initial value in Equation 19 was 2% faster. He
selected the initial value in Equation 19 for the
hyperbola and elliptic orbits based on the total
calculating time to skip the deviation by Newton—
Raphson and reduce the time of calculation [35]. In
1998, Charles and Tatum indicated that the Newton—
Raphson method analyzes the initial values E; = M, and
Ei = m. He reported that the Newton—Raphson method
was convergent for E; = n, but there was a risk for
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divergence when E; = M. The following equation was
offered to obtain an enhanced beginning value [36]:
E= M. +e [(m? Mg )Y/3 — wsin Me/15 — M,] (21)
In 2006, Feinstein proved that a non-iterative method
was better than using dynamical discretization methods
in conjunction with a dynamic program to all earlier
published procedures [37]. Mortari and Clocchiatti
offered a non-iterative solution in 2007 to calculate the
eccentric anomaly by using Bézier curves. In contrast to
the method of dynamic discretization, this method did
not require any initial calculated data [38]. In 2010,
Curtis used the following initial values for the solution
[39]:

M, < m

Ei:{Me +(e/2) N

M, + (e/2)

In the same year, Mohammed used the root based on an
iterative solution by enhancing the method of
convergence. An entirely new enhancement to Aitken’s
method was used to quickly arrive at a numerical
solution for the Kepler equation [40]. Boubaker
proposed analytical initial values [41]. An algorithm was
employed by Calvo et al. in 2013 for the iterative
solution of an elliptic orbit. A new global effectiveness
was calculated to compare the quality of initial values,
and certain well-known initial values with low
computing costs were assessed. Considering the
measurements, an optimized starting value was obtained
[42]. A number of researchers in 2014 [43-45]
attempted to resolve several iterative approaches to
determine the value of an eccentric anomaly. In 2017,
the Adomian decomposition method was used by Aisha
and Abdelhalim to obtain a periodic, analytical, and
accurate solution [46]. In the same year, an effective
program was generated by Raposo-Pulido and Pelaez to
determine the eccentricity of an elliptical orbit [47]. In
2019, Rasha and Abdul-Rahman used different initial
values based on the Newton-Raphson method to
calculate state vectors for the satellites at different orbits
[48]. In 2020, Mohammed et al. refined the Halley
method to provide a superior approximation of the ideal
solution. They used the third order to find a value for
eccentric anomaly [49]. Fouad and Abdulrahman
investigated state vectors and predicted the directional
and dimensional elements for the Spot-6 satellite by
using the value of the eccentric anomaly derived from
the Newton—Raphson method [50]. In 2021, Dike and
Isaac determined the eccentric anomaly for a satellite
with perturbations. Using hypothetical numerical
examples with various mean anomaly and eccentricity
values, the perturbation based on seeded secant
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iterations was demonstrated. The convergence cycle
extended as eccentricity grew, according to the results of
the eccentric anomaly with a mean anomaly of 30° and
eccentricity limits between 0.001 and 1. Specifically, at
eccentricity of 1, the cycle extended the design from 2 at
eccentricity of 0.01 to 8 at eccentricity of 1. These
results implied that additional iterations were required to
determine the value [51]. In 2023, Selim used the
homotopic  continuation method and suggested
convergent order using an effective iterative method that
was designed to solve Kepler’s equation. This
formulation has a dynamic component, moving from one
iterative model to another with supplementary guidance.
This method does not need any prior knowledge of
initial assumptions and avoids crucial situations arising
from deviations associated with numerical methods
reliant on an initial estimation. As a result, the computed
algorithm and a numerical demonstration of the method
were provided [52]. In the same year, Doaa et al.
improved the precision of prayer times and then
calculated the change with geographical latitudes [53].
Duaa and Abdul-rahman calculated the optimal orbit for
a satellite that rotates around Earth before being directed
to another orbit [54].

Method

In this article, two major parameters were taken into
consideration to compare and select the best initial
values of the eccentric anomaly. Those parameters were
as follows:

1. The time required to run the initial value by the
Newton—Raphson method for each step of iteration in
the program.

2. The number of iterations.

The ideal solution depended on the above two
parameters. The Newton—Raphson method was proposed
as a standard method for finding the final value of
eccentric anomaly. Thus, this method was selected to
reduce the iteration numbers by choosing the best initial
value. The only difficulty with the Newton—-Raphson
method was the probability of discrepancy in some areas
according to the initial values cited previously in
Equations 2-23 and Table 2 [55, 56, 57]. The original
value of eccentric anomaly derived from Equation 1 will
be improved, and this enhanced value will be used to
obtain a further refined value for eccentric anomaly. A
tolerance of 10™° was used to terminate the method [58,
59, 60, 61]. The derived eccentric anomaly was utilized
to compute the distance and velocity components of
satellites, with and without perturbations, and study the
impact of these perturbations on the satellites [62, 63,
64, 65, 66].
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Results and Discussion

A Matlab program was designed to test iterative
initial values for eccentric anomaly to obtain the best
final value for eccentric anomaly. The selection for the
finest final value of eccentric anomaly depends on the
number of iterations and the run time required for the
initial value to complete one period (0°-360°). The
Newton—Raphson method was used to apply the results
at eccentricity of 0.8, mean anomaly of 0°-360°, and
tolerance of 10™°, with eccentric initial values in Table
3. The relation between the eccentric and mean
anomalies was plotted and applied for one period. All
the initial values that were mentioned before were used
to find a new value of eccentric anomaly and display
identical behavior, as clarified in Figure 3a. The object
in an elliptical orbit started to move from perigee, which
was the closest point of focus. The curve of the initial
value for eccentric anomaly and the real Kepler’s orbit
matched each other regardless of the initial value that
starts the solution. This initial value was considered a
basic value to start the solution. The new initial value
was used another time to find a new value for the
eccentric anomaly until it reached the desirable value. If
the solver tried to use another initial value from Table 3,
the same behavior was obtained, as illustrated in Figures
3b-3f. The same performance would appear for all
ranges of eccentricity in elliptical orbit (0-1). All the
figures below represent the values of eccentric anomaly
at perigee M, = 0°, apogee M, = 180°, and perigee M, =
360°. Additionally, the run time for some initial values
was calculated and compared with other methods, as
shown in Figure 4. The results for the run time were
between 175.09 and 195 ms, and this range was close to
those of other methods. The initial values (M- ¢), (M. +
e), and M, + e sin(M) /+/1— ecos(M,) + €% were
faster than others. The selection of those initial values
was based on the total calculation time to shrink the
calculation time [26, 59].

Table 3. Initial values of eccentric anomaly (E;) that
were tested in the program by the Newton—Raphson
method [15].

E;
M, +e
M.
M.+ (e/2)
M.—e
M, + e sin (Mg)
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Conclusions

The conclusions of this article review showed several
important points, which are as follows:

1. The value of an eccentric anomaly converged with a
low amount of iteration. The rate of convergence varied,
based on the initial value formula for eccentric anomaly.

2. The precise selection of the starting value and the
quick property were both considered when choosing the
initial value. By observing the time and iteration
numbers required for running the Newton—Raphson
method, a quick and precise beginning value was found.

3. Each initial value has a certain limit of eccentricity
and mean anomaly, but all of the initial values of
eccentric anomaly were studied, and they all exhibited
optimal presentation for the application of the solution.
However, those initial values were considered.

4. When near the starting value (M. + €), the runtime for
each initial value was brief.

5. The only difficulty with the Newton—Raphson method
was the potential for disagreement in some sections
according to the initial values mentioned previously.

6. Nijenhui’s method will produce convergence behavior
(coming close) for any starting value selected,
preventing divergence in the final values of eccentric
anomaly. As a result, Mikkola’s initial value was not
considered as a solution.
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