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 The equation of Kepler is used to solve different problems associated with celestial 

mechanics and the dynamics of the orbit. It is an exact explanation for the movement of any 

two bodies in space under the effect of gravity. This equation represents the body in space 

in terms of polar coordinates; thus, it can also specify the time required for the body to 

complete its period along the orbit around another body. This paper is a review for 

previously published papers related to solve Kepler’s equation and eccentric anomaly. It 

aims to collect and assess changed iterative initial values for eccentric anomaly for forty 

previous years. Those initial values are tested to select the finest one based on the number of 

iterations, as well as the run time for each starting initial value that is required for 

completing the solution. The method of Newton–Raphson is employed to acquire a final 

value for an eccentric anomaly; this method considers a typical method for a solution with 

less divergence as compared with an ideal solution, and the best initial value is chosen. The 

applicable selection of the initial value of the eccentric anomaly will decrease the 

calculation time and confirm the convergence of the curves of the eccentric anomaly with 

ideal curves. 
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Introduction  

The systematic study of celestial objects and space 

actions is identified as astronomy. This science clarifies 

the development, source, growth, and astronomical 

actions in space via physics and mathematics [1]. From 

1650 to the present, numerous studies have been 

employed to find the value of an eccentric anomaly. 

Many methods have been described to calculate this 

value. Essentially, its calculation depends on the 

motivation of the solver and the mathematical procedure 

or tools that are obtainable according to the requirements 

of calculation. The era of calculators and computers has 

facilitated rapid and precise calculations of the value of 

eccentric anomaly. In particular, Matlab is a very 

influential program that is simple and easy to use. 

Moreover, a standard programming language, like 

Fortran, is used for numerical calculations [2, 3, 4]. The 

Kepler equation deals with dissimilar difficulties related 

to celestial mechanics. It is a description of the motion 

of two bodies in space under the impact of gravitational 

forces on each other. It represents the body in terms of 

polar coordinates, so it can also determine the required 

time for the body to complete its period along the orbit 

[5, 6, 7]. This equation requires three parameters to 

work: eccentricity (e), mean anomaly (Me), and initial 

value of eccentric anomaly (Ei). 
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Eccentricity defines the shape of the orbit; mean 

anomaly describes the motion of a body along untrue 

orbit; and the last is considered a starter value for a 

solution to find a final value for eccentric anomaly [8, 9, 

10]. In general, this is solved by three methods: classical 

methods [11], iterative methods, and non-iterative 

methods. The classical methods use power series (E) for 

solution, so it is considered a direct solution to obtain 

the value of the eccentric anomaly for one period (0°–

360°) and does not need a tolerance to complete the 

solution [12, 13, 14]. It is divided into two types: one 

based on the Bessel function, and the other is based on 

the Lagrange series. An iterative of the Newton–

Raphson method is employed to calculate the final value 

of eccentric anomaly using different initial values for 

eccentric anomaly. The non-iterative method is similar 

to the classical method; it provides a direct solution for 

the equation of Kepler and also requires a tolerance [15, 

16]. In 1987, Mikkola used a non-iterative initial value, 

which yields a rough calculation for the eccentric 

anomaly value [17]. 

 

Theory  

 The Formula of Kepler’s Equation  

It is a non-linear equation and seems simple; it is 

illustrated below [5]:     

 

              (  )                    ( ) 
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Here,    is designated to eccentricity and defined by (e × 

57.3248 °), which means that it is measured in degrees. 

Its range for an elliptical orbit is from 0 to 1. Me 

designates the motion of an object along a circle orbit. It 

is an angle measured in degrees from the center of the 

circle and has a range from 0° to 360° [4, 5, 7]. Ei 

represents the angle from the closest point to the object 

to the position of an extended object along an auxiliary 

circle, measured in degrees from 0° to 360°, as shown in 

Figures 1a and 1b [5]. This parameter is considered a 

starter value for a solution, and it has different values to 

test by the Newton–Raphson method.      is the final 

value for an eccentric anomaly. The general form of the 

equation of Kepler is Equation (1), which reflects a 

direct solution to obtain the value of the eccentric 

anomaly. In some references, this equation is measured 

in radians. Eccentricity and mean anomaly must be 

identified to find the eccentric anomaly value, and 

eccentric anomaly can then be calculated directly [4, 5]. 

The Newton–Raphson method is one of the best 

standard methods for determining the root of a well-

behaved function, as presented in Figure 2. The 

reiteration using this method will continue until the next 

value (Ei+2) is estimated from the previous value of the 

eccentric anomaly (Ei+1), ceasing only when the user-

defined degree of precision is achieved. The Newton–

Raphson method is expressed as follows [4, 14]:  
 

Ei+1=Ei+ [ Ei – e × sin (Ei) – Me ] / [1– e × cos (Ei)]     (2) 

 

 
Figure 1. (a) Representation of the eccentric and mean 

anomalies in their orbits [5], and (b) the result of mean 

anomaly as a function of eccentric anomaly for the initial 

value Ei=Me and eccentricity = 0.8 by the Newton–Raphson 

method [5]. 

 

 
Figure 2. Representation of the Newton–Raphson 

method [5]. 

 

Once the user uses the above method, he will face two 

problems that must be considered. First, the required 

property for the algorithm offers the degree of 

convergence. By contrast, if the starting initial value is 

not correctly near to the solution, the curve’s behavior 

for an eccentric anomaly will deviate. Second, the 

derivative of the function has a zero value. Thus, this 

method begins to miss the required property for the 

algorithm that makes the degree of convergence 

(quadratic) available. This comes about when the 

solution has a slope with a zero value. Thus, at each 

stage of iteration, the slope of the function must not be 

zero. Halley used the second derivative, which results 

from Tylor series expansion with the Newton–Raphson 

method [15]: 
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           (  )      (  )  [  (  )]
 
   (  )  

     (  )                                                  ( ) 
 

where  (  )   (  )        (  )  are the first, second, and 

third derivatives, respectively. Extra terms of derivatives 

for the Halley method are considered to determine the 

convergence behavior at each stage. This method is 

created by the initial value of an eccentric anomaly with 

a high convergence property [5]. 

 

 Initial Values of Eccentric Anomaly (Ei) 

Regardless of using the non-iterative method 

and classical methods to determine eccentric anomaly, 

numerous researchers and scholars have proposed that, 

unlike initial values, the majority are derived from 

eccentricity and mean anomaly parameters, or one of 

them. Specific initial values incorporate an additional 

formula that is based on the sine or cos function. 

Furthermore, the formula encompasses eccentricity, 

mean anomaly, or both. Changed initial values are used 

in Equation 1, especially instead of the (Ei) parameter, 

to obtain a rough final value for the eccentric anomaly 

(Ei+1). The reiteration by the Newton–Raphson method 

will carry on until the next value, which is (Ei+2) from 

the previous value of the eccentric anomaly (Ei+1). At 

that point, the values of (Ei+3), (Ei+4), and (Ei+5) are 

calculated based on the previous values [4, 5, 7]. In 

1972, complex adaptable analysis was conducted to 

develop an ideal solution to find the value of eccentric 

anomaly for both types of orbits, which are elliptical and 

hyperbolic. Riemann problems were appropriately 

displayed; they were formed by the simple properties of 

canonical solutions. Thus, the final results will be 

obtained by elementary quadrature formulas [18]. In 

1978, Smith used the root of the Kepler equation and 

considered the eccentric anomaly instead of Me and Me+ 

e to provide an initial value of the eccentric anomaly as 

below [19]: 

 

            (  )       (    )  
    (  )                                                                               ( )  

 

The root of Kepler’s equation between Me and Me + e 

above reflected a linear approximation. A comparison 

was made by Smith between the initial value and the 

Newton–Raphson method within two sections with 

respect to another value. These sections are imaginary: 

section 1 has a limit of 0.05 ≤ Me ≤ π and 0.01 ≤ e ≤ 0.9, 

and section 2 has a limit of 0.005 ≤ Me ≤ 0.4 and 0.95 ≤ 

e ≤ 0.99. The average number of repetitions was 

determined by Smith’s measurement to obtain a good 

initial value for eccentric anomaly via the Newton–

Raphson method to each section. The tolerance to 

discontinue the program was 5×10
-8

. After obtaining the 

initial values, an assessment was made between them to 

choose the finest, which is given by [19]: 

 

Ei = Me+ α (− 
 

 

 
)                         (5) 

 

At this point, α = e sin (Me)/1− e cos (Me). In section 2, 

the variation between Me + e and the initial value for 

Smith was not remarkable. As the solver uses a suitable 

initial value, a correction factor does not need to be 

added by using the Newton–Raphson method. Two 

manners must be taken into account for calculation: 

good convergence and required number of iterations. 

Smith used another initial value [19]: 

 Ei= Me                                    (6) 

Ei= Me+ e                                 (7) 

Ei =Me+ e sin (Me)                         (8) 

Ei = Me – e ×[sin (Me) / 1 − sin (Me+ e) + sin (Me)]   (9)                       

Ei = Me+ e sin (Me) + e
2 
sin (Me) cos (Me)   (10)                           

Ei =Me + α (− 
 

 

 
)                         (11) 

 

In 1979, Edward used the same method that Halley 

followed. He created separate regions in space, which 

were Me and e. The first three regions had topical 

designs. He found that the equation of Kepler was 

treated as a third-degree function with nearly Me = 0 and 

e = 1, and he used a third-degree root for this region 

[20]. In 1981, Alefeld used Halley’s method with the 

below initial value [21]: 

          (  )    (  )        (  )  (  ) 
  (  )                                                                                    (  )  

 

At this point, i must be greater than or equal to 0. The 

above equation was known as the tangent to the 

hyperbola orbit [21]. 1983, Danby and Burkardt 

suggested another iterative initial value, which was 

Ei=Me. He considered the behavior of function directly 

toward the upper. The rate of the deviation was reduced 

as follows [22]: 

                                              (  ) 
 

where    =   (  )   (  )  which was the Newton–

Raphson method. Further derivatives were used   = 

  (  )   (  )            (  )  and   =   (  ) 
  (  )            (  )  + [0.166×  

      (  )]. 

The use of    =   (  )   (  ) signified Halley’s 

method and the fourth derivative of convergence or 

meeting, respectively [22, 23]. In 1985, Ioakimidis and 

Papadakis suggested a new simple method for 

transcendental equations and the non-linear algebraic by 

an integral formulation of the closed procedure. 
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Furthermore, they used Gauss category quadrature 

procedures to develop accurate results [24]. In 1986, 

Serafin employed the property of the sin function to 

describe the intervals that contained the root of the 

equation of Kepler. He identified a good initial value for 

eccentric anomaly, but he needed to find the root of 

eccentric anomaly [25]. In the same year, Gooding and 

Odell calculated twelve different initial values. They 

considered the rapid convergence in large eccentricity 

and small mean anomaly to be reasonable when the 

initial values showed a good state for eccentric anomaly 

[26]. Conway used Leguerr’s method to obtain the root 

of a polynomial [27]: 

     
       (  )   (  )  

√(   ) (  (  ))
   (   )   (  )                           (  )  

 

Where k is a parameter, and the selected value was 5. 

The convergence by Equation 14 is assured, regardless 

of the used initial value [27], as shown in Table 1. After 

4 years, Danby separated the regions into two parts, as 

shown in Table 2 [28]: 

 

Table 1. Clarify the intervals of initial value for 

eccentric anomaly [27]. 

Mean anomaly (Me
°) Initial value for eccentric anomaly (Ei

°) 

[0, 1– eα] 
  

   
 
 

    
  

   
 

[0, 1– e   , (π/2) – e] 
  

   
 
 

         

[(π/2) – e, π- (1– e  )] 
     

   
 
 

         

[π – (1– e  ), π] 
     

   
 
 

    
     

   
 

 

Table 2. Illustrate the initial values for eccentric 

anomaly and their intervals [28]. 
Used Initial value of eccentric anomaly 

(Ei
°) 

Interval 

Me+((   )
   -   ) e2 0 ≤ Me < 0.1 

Me+ 0.85 e 0.1 ≤ Me ≤ π 

 

Taff evaluated 13 changed initial values in 1989, and the 

finest one was Ei=Me + e by using Wegstein’s method 

[29]. In 1991, Nijenhuis also separated Me and e into 

four sections, using dissimilar initial values for each 

sector. His work was similar to that of Edward and 

Danby but included slight modification. The initial 

values were as follows [30]: 

Section 1: It has a large mean anomaly as 

Ei= Me+ eπ / 1+ e                            (15) 

Section 2: It has a middle mean anomaly as 

Ei= Me / 1  e                               (16) 

Section 3: It has a small mean anomaly as 

Ei= Me / 1  e                               (17) 

 Section 4: It contains a space near the mean anomaly = 

0 and eccentricity = 1, which used Mikkola’s method as 

follows: 

    Ei= Me +e (3R  4R
3
)                       (18) 

 

Here, R is a parameter necessary for the solution [17]. In 

1995, Markly suggested a final value for eccentric 

anomaly, which was built on Pede calculations for the 

sine function; he reduced the trigonometric function 

using [31]. Besides, Shiming and Desmond also used 

Halley’s method, but their calculations were based on 

the Kantorovich theorem. The purpose of using this 

theorem was to decrease the region conditions and give 

an operator equation for the Kantorovich theorem [32]. 

In the same year, Chobtov compared Conway’s with the 

Newton–Raphson method. He showed that, despite the 

assured convergence behavior of Conway’s method, the 

Newton–Raphson method for calculating the completing 

time was preferred [33]. In 1996, Toshio determined an 

approximate solution, and he considered the starter value 

of (y) to be insignificant or a trivial solution, and (x) 

represents (y) and (j) is the solution index. The Newton–

Raphson method included an additional approximation, 

which was the corrected value for (y). It was an iterative 

initial value that did not require the evolution of a 

transcendental function [34]. In 1997, Toshio solved the 

Kepler equation for all types of orbits, namely, elliptic, 

parabolic, and hyperbolic. He studied two kinds of 

orbits: elliptic and hyperbola; two different initial values 

were used as follows [35]: 

 

Ei= Me +e                               (19) 

Ei= Me + e sin Me + e × sin 2Me /2            (20) 

 

He concluded that the initial value in Equation 20 that 

was solved by the Newton–Raphson method, as 

compared with Equations 5 and 19, had a convergence 

performance with a lower number of iterations. He 

recognized that the starting value in Equation 19 was 

15% faster than the initial value in Equation 5, whereas 

the initial value in Equation 19 was 2% faster. He 

selected the initial value in Equation 19 for the 

hyperbola and elliptic orbits based on the total 

calculating time to skip the deviation by Newton–

Raphson and reduce the time of calculation [35]. In 

1998, Charles and Tatum indicated that the Newton–

Raphson method analyzes the initial values Ei = Me and 

Ei = π. He reported that the Newton–Raphson method 

was convergent for Ei = π, but there was a risk for 
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divergence when Ei = Me. The following equation was 

offered to obtain an enhanced beginning value [36]: 

 

Ei= Me +e [(      )
                 ]         (21)                    

 

In 2006, Feinstein proved that a non-iterative method 

was better than using dynamical discretization methods 

in conjunction with a dynamic program to all earlier 

published procedures [37]. Mortari and Clocchiatti 

offered a non-iterative solution in 2007 to calculate the 

eccentric anomaly by using Bézier curves. In contrast to 

the method of dynamic discretization, this method did 

not require any initial calculated data [38]. In 2010, 

Curtis used the following initial values for the solution 

[39]: 

Ei={
   (   )                           

   (   )                           
 (22)     

                        

In the same year, Mohammed used the root based on an 

iterative solution by enhancing the method of 

convergence. An entirely new enhancement to Aitken’s 

method was used to quickly arrive at a numerical 

solution for the Kepler equation [40]. Boubaker 

proposed analytical initial values [41]. An algorithm was 

employed by Calvo et al. in 2013 for the iterative 

solution of an elliptic orbit. A new global effectiveness 

was calculated to compare the quality of initial values, 

and certain well-known initial values with low 

computing costs were assessed. Considering the 

measurements, an optimized starting value was obtained 

[42]. A number of researchers in 2014 [43–45] 

attempted to resolve several iterative approaches to 

determine the value of an eccentric anomaly. In 2017, 

the Adomian decomposition method was used by Aisha 

and Abdelhalim to obtain a periodic, analytical, and 

accurate solution [46]. In the same year, an effective 

program was generated by Raposo-Pulido and Pelaez to 

determine the eccentricity of an elliptical orbit [47]. In 

2019, Rasha and Abdul-Rahman used different initial 

values based on the Newton–Raphson method to 

calculate state vectors for the satellites at different orbits 

[48]. In 2020, Mohammed et al. refined the Halley 

method to provide a superior approximation of the ideal 

solution. They used the third order to find a value for 

eccentric anomaly [49]. Fouad and Abdulrahman 

investigated state vectors and predicted the directional 

and dimensional elements for the Spot-6 satellite by 

using the value of the eccentric anomaly derived from 

the Newton–Raphson method [50]. In 2021, Dike and 

Isaac determined the eccentric anomaly for a satellite 

with perturbations. Using hypothetical numerical 

examples with various mean anomaly and eccentricity 

values, the perturbation based on seeded secant 

iterations was demonstrated. The convergence cycle 

extended as eccentricity grew, according to the results of 

the eccentric anomaly with a mean anomaly of 30° and 

eccentricity limits between 0.001 and 1. Specifically, at 

eccentricity of 1, the cycle extended the design from 2 at 

eccentricity of 0.01 to 8 at eccentricity of 1. These 

results implied that additional iterations were required to 

determine the value [51]. In 2023, Selim used the 

homotopic continuation method and suggested 

convergent order using an effective iterative method that 

was designed to solve Kepler’s equation. This 

formulation has a dynamic component, moving from one 

iterative model to another with supplementary guidance. 

This method does not need any prior knowledge of 

initial assumptions and avoids crucial situations arising 

from deviations associated with numerical methods 

reliant on an initial estimation. As a result, the computed 

algorithm and a numerical demonstration of the method 

were provided [52]. In the same year, Doaa et al. 

improved the precision of prayer times and then 

calculated the change with geographical latitudes [53]. 

Duaa and Abdul-rahman calculated the optimal orbit for 

a satellite that rotates around Earth before being directed 

to another orbit [54].  

 

Method 

       In this article, two major parameters were taken into 

consideration to compare and select the best initial 

values of the eccentric anomaly. Those parameters were 

as follows:  

1. The time required to run the initial value by the 

Newton–Raphson method for each step of iteration in 

the program.  

2. The number of iterations.  

       The ideal solution depended on the above two 

parameters. The Newton–Raphson method was proposed 

as a standard method for finding the final value of 

eccentric anomaly. Thus, this method was selected to 

reduce the iteration numbers by choosing the best initial 

value. The only difficulty with the Newton–Raphson 

method was the probability of discrepancy in some areas 

according to the initial values cited previously in 

Equations 2–23 and Table 2 [55, 56, 57]. The original 

value of eccentric anomaly derived from Equation 1 will 

be improved, and this enhanced value will be used to 

obtain a further refined value for eccentric anomaly. A 

tolerance of 10
-10

 was used to terminate the method [58, 

59, 60, 61]. The derived eccentric anomaly was utilized 

to compute the distance and velocity components of 

satellites, with and without perturbations, and study the 

impact of these perturbations on the satellites [62, 63, 

64, 65, 66].   
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Results and Discussion  

A Matlab program was designed to test iterative 

initial values for eccentric anomaly to obtain the best 

final value for eccentric anomaly. The selection for the 

finest final value of eccentric anomaly depends on the 

number of iterations and the run time required for the 

initial value to complete one period (0°–360°). The 

Newton–Raphson method was used to apply the results 

at eccentricity of 0.8, mean anomaly of 0°–360°, and 

tolerance of 10
-10

, with eccentric initial values in Table 

3. The relation between the eccentric and mean 

anomalies was plotted and applied for one period. All 

the initial values that were mentioned before were used 

to find a new value of eccentric anomaly and display 

identical behavior, as clarified in Figure 3a. The object 

in an elliptical orbit started to move from perigee, which 

was the closest point of focus. The curve of the initial 

value for eccentric anomaly and the real Kepler’s orbit 

matched each other regardless of the initial value that 

starts the solution. This initial value was considered a 

basic value to start the solution. The new initial value 

was used another time to find a new value for the 

eccentric anomaly until it reached the desirable value. If 

the solver tried to use another initial value from Table 3, 

the same behavior was obtained, as illustrated in Figures 

3b–3f. The same performance would appear for all 

ranges of eccentricity in elliptical orbit (0–1). All the 

figures below represent the values of eccentric anomaly 

at perigee Me = 0°, apogee Me = 180°, and perigee Me = 

360°. Additionally, the run time for some initial values 

was calculated and compared with other methods, as 

shown in Figure 4. The results for the run time were 

between 175.09 and 195 ms, and this range was close to 

those of other methods. The initial values (Me – e), (Me + 

e), and Me + e sin(Me) / √      (  )     were 

faster than others. The selection of those initial values 

was based on the total calculation time to shrink the 

calculation time [26, 59]. 

 

 Table 3. Initial values of eccentric anomaly (Ei
°
) that 

were tested in the program by the Newton–Raphson 

method [15]. 

 
Ei

° 

1                       Me + e 

2                          Me 

3                    Me + (e / 2) 

4                        Me – e 

5                  Me + e sin (Me) 

 

 

 
(a) 

(b)   

                                                                   

  
(c) 
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(d) 

 

(e)  

(f) 
    Figure 3. Relation between Me as a function of Ei+1 for e =  

0.8 [15, 28, 48]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 4. Run time for each initial value and the comparison 

with other methods at e = 0.8 and Me = (0 - 360)° [15, 28]. 

 

Conclusions 

The conclusions of this article review showed several 

important points, which are as follows: 

1. The value of an eccentric anomaly converged with a 

low amount of iteration. The rate of convergence varied, 

based on the initial value formula for eccentric anomaly. 

2. The precise selection of the starting value and the 

quick property were both considered when choosing the 

initial value. By observing the time and iteration 

numbers required for running the Newton–Raphson 

method, a quick and precise beginning value was found.  

3. Each initial value has a certain limit of eccentricity 

and mean anomaly, but all of the initial values of 

eccentric anomaly were studied, and they all exhibited 

optimal presentation for the application of the solution. 

However, those initial values were considered.      

4. When near the starting value (Me + e), the runtime for 

each initial value was brief.  

5. The only difficulty with the Newton–Raphson method 

was the potential for disagreement in some sections 

according to the initial values mentioned previously. 

6. Nijenhui’s method will produce convergence behavior 

(coming close) for any starting value selected, 

preventing divergence in the final values of eccentric 

anomaly. As a result, Mikkola’s initial value was not 

considered as a solution.  
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 الخلاصة:      
سٍَن فً ذسرخذً ٍعادىح مثيش ىحو اىعذٌذ ٍن اىٌَاضٍع اىَرعيقح تاىٍَنانٍل اىسَاًي ًدٌناٍٍنٍح اىَذاساخ. ذعرثش ىزه اىَعادىح ذٌضٍح ىحشمح اىج 

جسٌ حرى ٌنَو دًسج حٌه جسٌ اخش. ىزا اىفضاء ذحد ذأشٍش قٌج اىجارتٍح ًذَصو تشنو الاحاشٍاخ اىقطثٍح ًعيى ىزا الاساس ٌَنن ذحذٌذ اىٌقد اىَسرغشق ىي

ٌيذف اىثحس ىجَع ًذقٌٍٍ عذج قٌٍٍ اترذائٍح  اىشار,اىثحس ىٌ ٍقاه ٍشاجعح ىيثحٌز اىَنشٌسج اىساتقح ىحو ٍعادىح مثيش فً ٍذاس اىيٍجً ًاٌجاد قٍَح الانحشاف 

اىَسرغشق ًاىٌقد تالاعرَاد عيى عذد اىرنشاساخ  أفضيياٌ الاترذائٍح لاخرٍاس ذنشاسٌح ٍخريفو ىلانحشاف اىشار خلاه الاستعٍن سنح اىَاضٍح. ٌرٌ اخرثاس ىزه اىقٍ

طشٌقح ىيحو  أفضوذعرثش ىزه اىطشٌقح  اىشار,سافسن ىيحو ىيحصٌه عيى اىقٍَح اىنيائٍح ىلانحشاف -ىنو قٍٍَح اترذائٍح فً اىثشناٍج. اسرخذٍد طشٌقح نٌٍذن

ىلانحشاف اىشار. ٌقيو الاخرٍاس اىَناسة ىيقٍَح الاترذائٍح ٍن صٍن اىرنفٍز فً اىثشناٍج ًٌضَن  ذٌ اٌضا اخرٍاس أفضو قٍَح اترذائٍح اىَصاىً,قيٍو عن اىحو  ًترثاعذ

 سيٌك اىرقاسب ىيَنحنً اىخاص تقٌٍٍ الانحشاف اىشار ٍع ٍنحنً اىحو اىَصاىً.

 ٍعذه الانحشاف. ,الانحشاف اىشار ,سافسن-طشٌقح نٌٍذن ,ٍعادىح مثيش ,دٌناٍٍنٍح اىَذاس :المفتاحيةالكلمات 
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