
IJCCCE,VOL. 5, NO,2. 2005 IJCCCE,VOL. 5, NO,2. 2005                                                  Design and implementation of 
a single layer feed   
                                                                                                  forward neural network using stand-alone architecture       
                                                                                                  FPGAs-based platform 

 

Department of Electrical Engineering    University of  Baghdad    Baghdad, Iraq* 
Department of Computer Engineering University of Al-Mustansiriya    Baghdad, Iraq** 

1 

Design and implementation of a single layer feed forward neural network 
using stand-alone architecture FPGAs-based platform 

 
 

Walid A .mahmoud*                 Munther h.**                     Muthana h.** 
 
 

Received on: 29/ 4 /2004  
Accepted on: 30/6 /2005  

 
 
Abstract 

A single layer feed-forward neural network are proposed and implemented using the 
schematic editor of the Xilinx foundation series 2.1i. First the mathematical model of the 
data set (weights and inputs) is presented in a matrix multiplication format. Secondly the 
five design stages are presented and implemented without using the finite state machine, 
which control the processes of the forward propagation phase, error calculation, and the 
training algorithm. Finally the design can be optimized to decrease the total execution time 
and to minimize the cost, which eventually will increase the performance and improve the 
function density. 

  الخلاصة 
   FPGAذات الطبقة الواحدة تم افتراضها وتنفيذها باستخدام تقنية      feed forward الشبكات العصبية     

 i    2.1 الاصدار 
  0بطريقة ضرب المصفوفات ) بيانات الادخال والاوزان ( اعداد الصيغة الرياضية لمجموعة البيانات  " تم اولا
حيث تمت ) finit state machine( ميم وتنفيذها بدون استخدام برامج السيطرة تم بناء مراحل التص "  ثانيا  

و    error  caiculationو   forward propagationالسيطرة على عمليات معالجة البيانات باطوارها الثلاثة  
training algorithm  ماديا "pure hardware) .  (  

سوف تزيد " تقليل زمن التنفيذ الكلي وتخفيض كلفة البناء والتي حتميا من الممكن تحسين التصميم وذلك ب"  اخيرا 
  . ( function density )الاداء وتعزز من كثافة العمليات  

 
 
Index Termsـ feed forward, neural network, FPGA, schematic editor, stand-alone. 

 
1. Introduction 
           Implementing neural networks in 
FPGAs can be quite complicated due to 
the large number of multiply-accumulate 
operations, which require a huge number 
of logic devices that must be employed. 
Although neural networks have been 
implemented mostly in software, hardware 
design is gaining some importance 
especially for real time applications. 

Software versions have the advantage of 
being easy to implement, but with poor 
performance[1,2,3]. Hardware versions 
are more difficult and time consuming to 
implement, but with better performance 
than software versions. There are many 
constraints that must be considered when 
the hardware design is the choice, namely 
1. The application employed (digital,      
       analog, or hybrid); 



IJCCCE,VOL. 5, NO,2. 2005                                                          Design and implementation of a single layer feed   
                                                                                                         forward neural network using stand-alone architecture       
                                                                                                         FPGAs-based platform 

 

2 

2.  The data format (fixed or floating     
     point); 

The precision of the data (number of bits). 
Analog design is difficult to implement 
but it has good performance and low cost. 
Digital implementation using FPGAs have 
good performance and allows the 
reconfigurable of the neural networks 
(NNs) topology, but generally it is slower 
than Application Specific Integrated 
Circuits (ASICs). The XC4000 series is 
the third generation of FPGA that offers 
many features and flexibility over the two 
pervious generations of devices. The 
enhancements in software consist of added 
and improved features for schematic entry, 
simulation, partitioning, placement, 
routing, and generation of the 
configuration bit file. The hardware 
improvement includes more versatile and 
powerful CLBs and IOBs. Also, design 
rule shrinks, to the sub-micro range, have 
resulted in additional and faster Logic Cell 
Arrays (LCAs), interconnect points, and 
routing paths. Other features consist of 
boundary scan circuit, on-chip user RAM 
and Check Redundancy Cycle(CRC) error 
checking for configuration data. The most 
important application fields of the 
XC4000 are listed below: 
1- Real time image processing.  
2- Real time control system. 
3-Customer processors. 
4-Network protocols (Ethernet controller 
and TCP/IP). 
 

A field programmable gate array is 
in a way a Complex Programmable Logic 
Device (CPLD) turned inside out. The 
logic is broken into a large number of 
programmable logic blocks that are 
individually smaller than a Programmable 
Logic Device (PLD). They are distributed 
across the entire chip in a sea of 

programmable interconnections, and 
programmable I/O blocks surround the 
entire array. The FPGA-based platform 
can be classified into two styles of 
architecture as either a co-processor or as 
a stand-alone architecture. On the other 
hand, when an FPGA-based platform takes 
on the role of a stand-alone architecture, it 
becomes self-contained and does not 
depend on any other devices to function. 
In relation to a co-processor, a stand-alone 
architecture does not depend on a host 
computer, and is responsible for carrying 
out all the tasks of a given 
algorithm[4,5,1]Artificial neural networks 
(ANNs) are a form of artificial 
intelligence, which have proven useful in 
different areas of application, such as 
pattern recognition [6,7] and function 
approximation /prediction [4]. The most 
popular Neural Network is the multi-layer 
perceptron. The multilayer perceptron 
(MLP) or Multilayer feedforward is 
divided into three layers: the input layer, 
the hidden layer and the output layer, 
where each layer in this order gives the 
input to the next. The extra layers gives 
the structure needed to recognise non-
linearly separable classes. Well known 
multi-layer perceptrons[8,9], have proved 
capable of solving various problems., but 
because of their relatively high 
complexity, they are not well suited for 
hardware implementation also the radial 
basis function networks can offer high 
performance, but may not have sufficient 
generalization  power for some  
applications[5,10]. 
P.Lysaght[11] produced a feed-forward 
ANN designed on a fine-grained AT6000 
FPGA. The system has a single layer with 
four neurons, each with four synapses. A 
finite state machine controls the dynamic 
reconfiguration,  with  a  20MHz - system 
clock; each layer of ANN takes  6.5µs  to pr oduce an output. Every reconfigura tion  



IJCCCE,VOL. 5, NO,2. 2005 IJCCCE,VOL. 5, NO,2. 2005                                                  Design and implementation of 
a single layer feed   
                                                                                                  forward neural network using stand-alone architecture       
                                                                                                  FPGAs-based platform 

 

Department of Electrical Engineering    University of  Baghdad    Baghdad, Iraq* 
Department of Computer Engineering University of Al-Mustansiriya    Baghdad, Iraq** 

3 

clock; each layer of ANN takes 6.5µs to 
produce an output. Every reconfiguration 
has an overhead of 10 bytes for preamble 
and control information. To fully 
reconfigure the Atmel chip takes a 
minimum of 808µs. 

Aydogan Savran [12] realized a 
feedforward multilayer NN using VHDL 
and implemented it in Spartan II FPGA. 
The system has three inputs and nine 
neurons (3 neurons in the input layer, five 
neurons in the hidden layer and one 
neuron in the output layer). The 20 
multiplication and 20 summation 
processes takes only 10 clock cycles to 
calculate it’s output, where each clock 
period can be as low as 20ns 
This paper presents an FPGAs 
implementation of a feed-forward artificial 
neural network using two project libraries 
XC4000x and Vertix. The Xilinx 
foundation series 2.1i project library is a 
collection of libraries assigned to a given 
project and consisting of the project-
working library and system libraries.  
The Project Manager Design Tools is the  
top level software module in the Xilinx 
development system. it provides access to  
 

 
 

   
 
 
 

 
 

 
 

all the tools we need to read a design file 
from a design entry tool and implement it 
in a Xilinx device. The Design Manager 
performs the following functions. 

1. Organizes  and  manages  our design    
    implementation data. 

2. Creates multiple design versions  for   
   management of design changes 

3. Creates    multiple    implementation  
   revisions    for      management    of   
   implementation strategies 

4. Provides access to reports 
5. Export of the design for timing  
   simulation and programming 

2. Feed forward model 
The neural network that will be 

considered, is a feed forward with two 
layers, the input layer and the output layer. 
Input layer containing 125 input value as a 
vector, called data set (x1, x2…x125) and 
the output layer containing two output 
neurons, neuron 1 and neuron 2 as shown 
in figure 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
  X1 

 
  X2                                                              
                                                                      Y1                   f  (Y1) = tansh (Y1)                    o1   
  X3         
                                                                   Y2                   f (Y2) = tansh (Y2)                     o2                                                    

                                                     
      

 
 X125    

θ1 

θ2 

Figure 1: Artificial feed-forward neural network structure. 
 



IJCCCE,VOL. 5, NO,2. 2005                                                          Design and implementation of a single layer feed   
                                                                                                         forward neural network using stand-alone architecture       
                                                                                                         FPGAs-based platform 

 

4 

 
The results are presented at the neurons of 
the output layers as Y1 and Y2. The 
connection weights are distributed over 
links that joined the nodes of the two 
layers. Therefore, 
 

Y1=  (∑ (xi * w1i) )+ θ1    for i=1,2,3,  
 
…..125                                    (1)                                                                       
        

 Y2=  ( ∑ (xi * w2i) )+ θ2   for i=1,2,3,  
 
…..125                       (2)   
 
The final sums Y1 and Y2 are the input  
 
 
 
 
 
 
 
 
For one output neuron there is 126-
multiplication process and 125-summation 
process, so for two output neurons we 
have 252-multiplication process and 250-
summation process. These operations are 
just to find Y1 and Y2 in the forward 
propagation.  
 
3.  The training algorithm 

 The training algorithm found by[5] 
is quite sufficient for hardware 
implementation than back propagation 
algorithm. This algorithm depend on a set 
of training patterens and  computes the 
error derivative with respect to the weight 
using analytical method. After calculating 
the error the new weights can be computed 
using the following formula, 

 
value to the transfer function f(.). The  
transfer function is usually a sigmoid-
shaped function having output varies 
between –1 and +1. This transfer function  
is often a hyperbolic tangent used due to 
it’s characteristic of convergence on a 
correct solution with smooth effect, 
although it is complex to implement as a 
hardware. Hence, 
 
o1 = tanh (Y1)                           (3) 
o2 = tanh (Y2)                           (4) 
 
The pervious equations can be represented 
as a mathematical model of two-
dimension matrix multiplication, as 
follows:       
 
 
 
 
 
 
 
 
wt+1=wt - η ∂E /∂w                               (5)                                                                                        
where η is the learning rate 
 ∂E /∂w  is calculated as follows, 
 
E=1/2( ∑(o-t)2   )                                   (6) 
and  after added the small value h, 
(1>h>0)  
using Eular formula    Eh=1/2( ∑ (oh-t)2   )        
                                                                             (7) 
   
∂E /∂w =(Eh-E)/h                                (8) 
 

Introducing some assumptions and 
modification steps in equation (5), (6), and  
(8) in order to make the logical design of 
the neural network more optimum and 
take less space area, and execution time.  

 w11  w12 ………..w1 125     θ1 
 
 w21 w22 ……… ..w2 125     θ2 

X1 
  : 
X125 
 
1 

Y1 
 
 
Y2 
 



IJCCCE,VOL. 5, NO,2. 2005                                                          Design and implementation of a single layer feed   
                                                                                                         forward neural network using stand-alone architecture       
                                                                                                         FPGAs-based platform 

 

5 

1. Let the value of η in equation (5) 
equal 1. 

2. Defer the division over 2 in 
equation (6)to a latter stage. 

3. Equation (8) will be, 
 

∂E /∂w =(Eh-E)/2h                     (9) 
 
4. Assume that h value equal to 0.5, 

this will lead to     
 
     ∂E /∂w =(Eh-E)/2*0.5                (10) 
     Hence  ∂E /∂w =(Eh-E)                (11) 
 

The benefit from steps1- 4 can be 
seen logically in the design procedure; i.e. 
step1 will cancel the multiplier device, 
step2-4 will cancel two dividers device. 
This modification and assumption will 
decrease the execution time up to 0.605 
microsecond.  
 
4.  Block diagram of the proposed 
design 

For simplicity the design of the feed-
forward ANNs, error calculations, and it’s 
training algorithm on pure hardware logic 
circuits are methodized in five stages, each 
stage is dedicated to provide part of the 
overall NNs system functionality; stage 
one maps the multiplication parts of 
equations (1) and (2) into two parallel 
buses (8*8)multipliers and five 256x16bits 
synchronize RAMs. Stage two classifies 
the weighted input values according to 
their signs (positive or negative) then 
sum’s the two final values to find y1 and 
y2 as in equation (1) and (2). Stage three is 
responsible for satisfing equation (3), (4), 
and (6) by mapping the two actual output 
neuron values y1 and y2 in- to two look-up 
tables 128x8 bits RAMs. The two values 
o1 and o2  of the equations (3) and (4) are 
now used with the desired values t1 and t2 

for computing the two neurons error 
values E1 and E2 as in equation (6). Stage 4 
puts the final touches of the forward 
propagation phase, where the two error 
values E1 and E2 are summed to find out 
the error mean square (EMS)  as in 
equation (6). Also in order to calculate the 
error derivation with respect to weight as 
in equation (8), the second half of 
memories weights (wgt+h) in stage one 
will take the same pervious procedures 
through all the predecessor stages. The 
final stage is stage five. This stage 
provides two important things, first one  is 
to control and implement the training 
algorithm or in other words to update the 
connection weights as in equation (8).  
Second, it manages and synchronizes the 
data flow between the overall system 
stages operations figure 2. According to 
the functions types that are provided by 
stage five, this stage was distributed over 
all the four system stages as a logical 
circuit design or as a timer value. 
Explanation about the five stages 
operations and design will be illustrated in 
the following, 
 
4.1. Stage#1  

This stage is responsible for 
implementing the multiplication processes 
of 126 input values and 252 weight values 
in the forward phase for the two output 
neurons. This operation will be repeated 
every time when the derivative (Eh-E)/h of 
the stage#4 is computed. The new idea of 
the stage#5,  is the swapping operation of 
the two neurons RAMs. The core of the 
synchronized circuit operation is the j-k 
flip-flop toggle properties figure 3. When 
the Q value of this flip-flop equal zero, 
two RAMs will be in read operation to 
compute the new weights according to 
equation (5), also the multiplication 



IJCCCE,VOL. 5, NO,2. 2005                                                          Design and implementation of a single layer feed   
                                                                                                         forward neural network using stand-alone architecture       
                                                                                                         FPGAs-based platform 

 

6 

processes continue multiplying the input 
value by the updated weight value. At the 
same time, the two remaining RAMs will 
be in write operation to record all the 
updated weight values of the two RAMs, 
which are in read operation. When the 
second iteration starts, and this is usually 
after the derivative term (EH-E) of stage#4 
has been computed and ready to be used in 
stage#1, the Q value will be equal one. 
The four RAMs will exchange their roles, 
so the two RAMs that were in write 
operation will be now in read operation 
and vise versa. By this technique stage#1 
will be in operation all the time the NNs in 
execution phase, except the waiting time 
slice to trigger from stag#4. The four zero 
locations in four memories are protected 
of their content values by embedded the 
control logic circuit of stage#5 with the j-k 
synchronized circuit. All stages take in 
account of their designs all the 
probabilities of data magnitude and signs 
values for multiplying, subtracting, 
summing, and accumulating processes, 
figure 4 summaries up to bit level a logic 
circuit design for stage#1 and the 
embedded logic circuit design of stage#5. 
 
4.1.1. Data format 
 Accuracy has a great impact in error 
calculation and learning phase, so the 
precision must be as high as possible. The 

 
 
 
 
 
 
 
 
 
 
 
 

activation function shape of neuron output 
is tanh(y), like the sigmoid function shape, 
and the range of it’s value between [1, -1]. 
Also this function has a linear region 
between y = 6 and y = -6  therefore, the 
system precision data format will be like 
this; SDDD.FFFF, where S represents the 
sign value (0 for positive values, 1 for 
negative values). D represents the integer 
values [7, -7]. F represents the sixteen 
different decimal values. Table 1 shows 
some weights and input values 
representation 

 
 

Table 1. Some weights and input values  
epresentation. 

 
 
 
 
 
 
 
 
 
 
 

 

Decimal Data Representation in Binary 

X1= 5.3 01010101 

X2= -5.3 11010101 

W11= 3.25 00110100 

W12= -7.9375 11111111 

W22= 6.875 01101110 

X126=1 00010000 

W1126= -0.0625 10000001 

W21= 0.125 00000010 



IJCCCE,VOL. 5, NO,2. 2005                                                          Design and implementation of a single layer feed   
                                                                                                         forward neural network using stand-alone architecture       
                                                                                                         FPGAs-based platform 

 

7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Block diagram of  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the five-stage architecture 
 

Stage#1 
 

Five RAMs, each one has 256x16 bits for two neurons. 
Each neuron has two swapping in operations RAMs. 

Two parallel lines (8x8) multipliers. 
TS1=1.315 μs 
Ths1=2.595 μs 

Neuron#2 
 
 
 

Neuron#1 

Stage#2 
  

Sum the positive weighted input data 
Sum the negative weighted input 

data 
Subtract the two values to find Y1 

Ts2=1.35 μs 
Ths2=2.64 μs  

Stage#3 
 

Mapping to find tanh(Y1) 
Mapping to find the training value t1 

Find the EMS1, E1 
Ts3=1.625 μs 

Ths3=2.905 μs 

Stage#2 
Sum the positive weighted input data 

Sum the negative weighted input 
data 

Subtract the two values to find Y2 
Ts2=1.35 μs 

Ths2=2.64 μs 

Stage#3 
 

Mapping to find tanh(Y2) 
Mapping to find the training value t2 

Find the EMS2, E2 
Ts3=1.625 μs 
Ths3=2.905 μs  

Stage#4 
Sum the two EMS values (E1+E2). 

Hold the EMS1 of the 2nd half memory (wgt+h). 
Find the derivative (Eh-E)/h. 

Count the number of iterations 
Ts4=2.935 μs 

Stage#5 
Implement the training algorithm by updating the weights in stage#1. 

Control and synchronize the swapping operation of the four weights memory in stage#1. 
And, control and synchronize the operations in all remaining stages 

Figure 2: Block diagram of  the five-stage architecture 
 



IJCCCE,VOL. 5, NO,2. 2005                                                          Design and implementation of a single layer feed   
                                                                                                         forward neural network using stand-alone architecture       
                                                                                                         FPGAs-based platform 

 

8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

     Figure 3: The j-k synchronized circuit and zero-bytes setting control circuit for stage#5. 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               Figure 4: Stage#1 swapping circuit.  

 



IJCCCE,VOL. 5, NO,2. 2005                                                          Design and implementation of a single layer feed   
                                                                                                         forward neural network using stand-alone architecture       
                                                                                                         FPGAs-based platform 

 

9 

4.2. Stage#2 
  In order to accomplish the 
weighted input summation operation for 
the two neurons, there are four 
accumulators, two for each neuron, one for 
positive weighted input values and the 
other for negative weighted input values. 
As soon as the first zero-byte (address 126 
in memory) is received and detected by 
the 16bits AND gate control circuit, the 
two opposite in signs accumulated values  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Figure 5:Weighted input accumulating 
logic circuit design for stage#2 and 
Synchronized circuit (timer) of stage#5. 
 
 
 
 

for each neuron will be subtract from each 
other. The final values of the two output 
Y1 and Y2 as in equation (1) and (2) 
respectively. Also the other control logic 
circuit in this stage is a timer circuit which 
resets the contents of the accumulator 
registers in order to repeat the same 
procedure of the second half memory 
weights (i.e., weight + h). Figure 5 shows 
the logic circuit design for one output 
neuron.  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Figure 5: Weighted input accumulating logic circuit design for stage#2 and              
                   Synchronized circuit (timer) of stage#5. 

 



IJCCCE,VOL. 5, NO,2. 2005                                                          Design and implementation of a single layer feed   
                                                                                                         forward neural network using stand-alone architecture       
                                                                                                         FPGAs-based platform 

 

10 

4.3. Stage#3 
Two look-up tables’ 128x8-RAMs are 

used to map the actual value Y1 and Y2 to 
their correspondence tanh( ) function, also 
the two desired values t1 and t2 are 
selected from two look-up tables 16x8-
RAMs. In order to reduce the design space 
area, one look-up table is used for each 
output neuron, where the signs of Y1 and 
Y2 are transferred to their mapped values 
(O1, O2), this of course due to the 
behavior shape of the activation function. 
The 16bits AND gate of the zero-byte  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4. Stage#4  
In this stage the two neurons EMS 

are added and the derivation of equation 
(8) is computed in order to estimate the 
new update weights value in stage#1. The 
two-control circuits of stage#5 are to  

 
 

synchronize circuit also used here with 
nine delays D-type flip-flops. The main 
function of this circuit is to permit the 
training value t1 and t2 to flow from the 
look-up table out put and then to calculate 
the errors as in equation (6). Three 
equations are implemented in this stage, 
where the final data is the Error Mean 
Square value.  Optimization of the logic 
circuit design will be discussed in the next 
sections. The divider in figure 6 will be 
removed, where the most execution time 
of this stage is spent .   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

synchronize  the  arrival  time  occurrence 
of the error value from stage#3. This stage 
put the final touches of the forward phase 
and starts the learning phase as shown in 
figure 7. 

 
 

Figure 6: Stage#3 logic circuit design. 



IJCCCE,VOL. 5, NO,2. 2005                                                          Design and implementation of a single layer feed   
                                                                                                         forward neural network using stand-alone architecture       
                                                                                                         FPGAs-based platform 

 

11 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.5. Stage#5 

As mentioned previously, stage#5 
functionality can be divided into two main 
functions, first it is responsible to 
implement and manage the learning phase 
algorithm. Secondly it synchronizes the 
data flow among all system stages; 
therefore it must be distributed. The 
second function operation doesn’t conflict 
with the zero-bytes synchronized circuit 
which are founded in stage#2 and stage#3. 
The zero-bytes synchronized circuits 
design are related to input system 
parameters and hence to an input system 
architecture, so any change in order or 
number of the memories contents will 
come into effect in the synchronized  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

operation of the zero-bytes circuits. 
Stage#5 adds more flexible fashion in the 
re-design system, this can be noticed when 
optimizing the design to decrease the 
execution time and minimizes the logic 
space area. The only changes are to  
modify the synchronizing time of the data 
flow between stages are: 

1- Add/remove the delay time units 
(D flip-flops). 

2- Increases/decreases the timer 
duration time. 
Point 2 refers to the counters address bus, 
which are used as a timer unit in all stages 
of the neural network system design. 
Figure 8 explains the swapping technique 
for two memories out of four memories. 
 
 
 
 
 
 

        Figure 7: Stage#4 logic circuit design and the two embedded   
                      synchronize circuit  
               (timers) of stage#5 



IJCCCE,VOL. 5, NO,2. 2005                                                          Design and implementation of a single layer feed   
                                                                                                         forward neural network using stand-alone architecture       
                                                                                                         FPGAs-based platform 

 

12 

 

 
 
 
 

5. System stages timing 
The time required for the five stages to 
complete their functions is illustrated in 
table 2. The processing time in any stage 
can be defined as the time spent for this 
stage to receive data, manipulating data, 
and to output data in appropriate time. 
Therefore, 
Processing time for stage#n = time of data 
output (tm) – time of data input(to) 
This is true for one stage and for all 
system stages. The control signals may be 
exist or may be not if the data bus taken  
 
 

 

 
 
 
 
 
this role.   Table 2 shows that one iteration  
of the feed-forward system required 2.935 
µs to complete the following operations: 
1. Multiply and sum-up 126 input values 

with the first 252 weight values. 
2. Multiply and sum-up 126 input values 

with the second 252 weight values. 
3. Calculate the two neurons output values 

Y1, Y2, Yh1, and Yh2. 
4. Mapping to find 01, 02, 0h1, and 0h2. 
5. Compute the EMS values. 
6. Compute the error derivative with 

respect to weight. 
7. Updating the weights. 
 
 

Figure 8: Swapping circuit of stage#5 applied on two memories in stage#1. 
 



IJCCCE,VOL. 5, NO,2. 2005                                                          Design and implementation of a single layer feed   
                                                                                                         forward neural network using stand-alone architecture       
                                                                                                         FPGAs-based platform 

 

13 

 
 

 

 
 
 
 

The processing time (65ns) for 
stage#1 refers to the time consumed by the 
first word addresses in two memory, so the 
two time values 1.315 µs and 2.959 µs are 
specifying the total processing time of 126 
words in memories. From the table, it can 
be concluded that: - 

If the network is learned in some 
few iterations i.e., when the error value is 
acceptable, then it is fine. But if the error 
value is still undesirable, the number of 
iterations will be increased to reach up the 
designer value. This is limited to a 
maximum value of 50, this means after 
fifty iterations the total execution time of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

the system will be 146.75µs. although this  
result is almost acceptable, it can be 
improved by applying the modification of 
training algorithm that mention in section 
4.3. 
Figures 9, 10, 11, and 12 show samples of 
the processing time diagram for each 
stage. It can be observed that the divider in 
figures 12, 13 takes 180ns to finish its 
operation. When applying the 
modification procedure and remove 
divider from stage#3 circuit, the new 
timing states of this stage are 1.445µs and  
2.725µs instead of 1.625µs and 2.905µs 
respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stage no. 
 Data input time(µs) Data output time(µs) Processing time 

T Th T Th 
1 0 0 1.315 2.595 65 ns 
2 1.315 2.595 1.35 2.63 35 ns 
3 1.35 2.63 1.625 2.905 275 ns 
4 1.625 2.905 2.935 2.935 30 ns 

Table 2: the feed-forward system execution time. 
 

* T: is processing time of the first 252 weights in the first half of memories. 
** Th:  is processing time of the second 252 weights in the second half of memories. 

 



IJCCCE,VOL. 5, NO,2. 2005                                                          Design and implementation of a single layer feed   
                                                                                                         forward neural network using stand-alone architecture       
                                                                                                         FPGAs-based platform 

 

14 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Stage#1 timing diagram 

          Figure 10: Stage#2 timing diagram. 
 



IJCCCE,VOL. 5, NO,2. 2005                                                          Design and implementation of a single layer feed   
                                                                                                         forward neural network using stand-alone architecture       
                                                                                                         FPGAs-based platform 

 

15 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Stage#3 timing diagram-error square. 

Figure 12: Stage#4 timing diagram. 



IJCCCE,VOL. 5, NO,2. 2005                                                          Design and implementation of a single layer feed   
                                                                                                         forward neural network using stand-alone architecture       
                                                                                                         FPGAs-based platform 

 

16 

6. Conclusion 
This paper has presented the design 

and implementation of a single layer feed-
forward NN by XC4000 FPGA using the 
schematic editor of Xilinx 2.1i. The 
proposed design architecture is simple, 
flexible, and inexpensive. All design steps 
are implemented, as pure hardware; i.e. 
not upon the finite state machine software. 
New control methods are used in the 
design procedure depending on the 
memory data itself or in a separate timers 
distributed over the five system stages. 
The memories swapping technique make 
the following: 
• Update the weights, 
•  forward the data, 
•  and record the updated weights in the 

same time.  
Comparison between the P.Lysaght 

[11] design and the proposed design 
appears, the execution time of [11] to full 
reconfigure is minimum of 808µs, while 
the execution time of the proposed design 
after 50 iterations is 136.25µ.  this 
difference candidate to be larger if only 
four inputs is consider to the proposed 
design.  
Aydogan Savran [12] system design takes 
only 10 clock cycles to calculate it’s 
output for 20 multiplication and 
summations operations. This means for 
252-multiplication process and 250-
summation process the system 
approximately takes 2.52µs, where the 
propagation and gate delays are neglected. 
When comparing this result with stage#2 
execution time which is 2.63µs, the [12] 
execution time is faster by 0.11µs, but if 
take the cost in consider, [12] is too more 
costly although the limited number of its 
inputs. A fully parallel network is fast but 
inflexible. Because; in a fully parallel 
network the number of multipliers per 

neuron must be equal to the number of 
connections to this neuron (imaging our 
system which have 252 connections). 
Since all products must be summed, the 
number of full adders equals to the 
number of connections to the pervious 
layer minus one. For example in a 3-5-1 
network the output neuron must have 5 
multipliers and 4 full adders, while the 
neurons in the hidden layer must have 3 
multipliers and 2 full adders. Therefore 
our system design have 252 connections 
for two neurons are implemented in two 
parallel line multipliers and four 
accumulators. So the costly and 
complexity of our design are too low 
comparing with the [12]. The proposed 
design is candidate to represents the best 
and the fast among other designs 
philosophy. 
 
7. References 
1- David Sikter,”Benchmarking and 
feasibility study of the a J100 TM Java 
Processor in a real time image processing 
application”, 
http://www.paricle.kth.sel~/indsey/Java 
2- Kristian R . ,” A reconfigurable 
Architecture for Artificial Neural 
Networks”, Thesis April 2003. 
3- P.Lysaght  ,” Artificial Neural Network 
Implementation on a Fine-Grained 
FPGA”, http://Oak.eee.strath.ac.uk/ 
papers/PL- fp149.pdf 
4- Felix S . ,” Towards an Artificial Neural 
Network Framework”, 
http://www.kip.uni-heidelberg.de/vision 
5- Attila Hidegi  ,” Implementation of 
Neural Network in FPGAs”,phd.thesis 
2002. 
6- Richard M . ,” Designing and Training 
an RBF” , lecture p1 RJM 1/08/03, 
http://www.kip.uni-cybernetics.de/vision 

http://www.paricle.kth.sel~/indsey/Java
http://Oak.eee.strath.ac.uk/
http://www.kip.uni-heidelberg.de/vision
http://www.kip.uni-cybernetics.de/vision


IJCCCE,VOL. 5, NO,2. 2005                                                          Design and implementation of a single layer feed   
                                                                                                         forward neural network using stand-alone architecture       
                                                                                                         FPGAs-based platform 

 

17 

7- PHILIPP F . ,” Parallel Neural Network 
Training on Multi-Spert”, 
http://citeseer.nj.nec.com/190273.htmp 
8- Rolf F . ,” Codesign of Fully Parallel 
Neural Network for a Classification 
Problem”, http://www.inf.pucrs.br/2000-
SCI.pdf 
9- G. Orr and K.-R. Miuller , “Solving the 
III- Conditioning in Neural Network 
Learning”, In: Neural Networks: Tricks of 
the Trade, (eds), Lecture Notes in 
Computer Science 1524, Springer-Verlag, 
pp.193-206, 1998 
10- A Feed Forward Neural Network for 
Determining  a User’s Location, 
www.edgelab.sfu.ca/publications/feed_ 
forward. pdf 
11- Creating a feed forward / 
backpropagation neural network, 
mathforum.com/epigone/comp.soft-sys. 
matlab/prouherthol 
12- On The Mapping Strategy Of A Feed-
Forward Neural Network, 
www.lbl.gov/LBL-Publications/ 
Proceedings/ CHEP94 / Hardware -
Architectures/Ab13Ses2. html 

http://citeseer.nj.nec.com/190273.htmp
http://www.inf.pucrs.br/2000
http://www.edgelab.sfu.ca/publications/feed_
http://www.lbl.gov/LBL-Publications/

