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 Asymmetry plays a remarkable role in the transmission dynamics of novel fractional 

calculus. Only a few studies have mathematically modeled such asymmetry properties, and 

none has developed Schrödinger models that incorporate different symmetry 

developmental stages. Laplace transform can be used to discover the analytic (exact) 

solution to linear fractional differential equations. This study recommends Laplace 

transform as a technique to resolve the fractional-order Schrödinger equation with 

boundary conditions, where the fractional derivatives of Caputo and Riemann–Liouville 

are applied. It can be used to resolve fractional and ordinary differential equations. 

Afterward, the precise solution to a specific fractional differential equation example is 

determined. Results show that when novel Laplace transform is applied to the provided 

fractional differential equation boundary value problem, it yields accurate solutions 

without the need for lengthy calculations. In addition, we investigate a class of fractional 

boundary value problems with two boundary value conditions, namely,    (2,3] and     

(0,  ], that involve orders of the fractional derivative. We show our primary findings 

through several cases. We provide multiple examples to highlight our main conclusions 

and prove the solution by employing Laplace transform after ascertaining solution‟s 

existence via fractional integral and integral operator methods. 
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1. Introduction  

The Schrödinger equation of the fractional-order 

boundary value problem has been studied in the context 

of general Schrödinger equations with super-linear 

nonlinearity, fractional q-difference Schrödinger 

equations, and time-fractional subdiffusion equations 

with arbitrary elliptic differential operators. Various 

studies have addressed the solvability and existence of 

solutions for these types of equations by using different 

mathematical methods, such as variational approaches, 

meromorphic solutions, and iterative positive solutions. 

Although much remains to be learned about fractional 

Schrödinger equations, recently published literature on 

the subject offers insights into the mathematical 

strategies applied to resolve these problems [1],[5].  
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Our search results include a large number of studies 

describing common Schrödinger equations with super-

linear nonlinearity, time-fractional subdiffusion 

equations with arbitrary elliptic differential operators, 

and boundary value problems for fractional q-difference 

Schrödinger equations. These studies have explored the 

solvability and existence of solutions for the presented 

problems by using various mathematical methodologies. 

Research on fractional Schrödinger equations is still in 

progress, and extant literature on the subject offers 

insights into how these problems are treated 

mathematically [4]–[6]. Fractional calculus is a useful 

tool when examining the memory and inherited features 

of various materials and processes [7]–[9]. Aside from 

its adoption in scientific and engineering domains, it is 

used in finance, biomedical engineering, signal 

processing, seismology, control systems, viscoelastic 

materials, and electrochemistry. 

       These applications involve a set of singularity-

containing integro-differential equations, including 

fractional differential equations [10]–[12]. Some 

analytical and numerical methods, including those in 

[11], [13], and [14], have been introduced to resolve 
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fractional differential equations. For example, a 

Schrodinger formula with Regge conditions, along with 

existence and uniqueness theorems, has been established 

for fractional-order differential equations. The 

Schrödinger equation with two specific boundary 

conditions is known as the T. Regge problem, which 

was explored in [6], [15], [16]. Prior studies, including 

[14], [17], and [18], have recommended some analytical 

or numerical methods for resolving fractional 

differential equations. With regard to resolving issues in 

engineering, social science, and science, researchers 

prefer to use integral transform instead of other 

mathematical techniques because of integral transform‟s 

main advantages, namely, simplicity, accuracy, and the 

ability to produce results without the need for laborious 

calculation [11], [19], [20]. Mathematical modeling and 

engineering benefit from fractional calculus [17], [21], 

[22]. For instance, certain novel integral transformations 

are intended to address differential and fractional 

differential equations. Kamal transformation [23] is one 

of the latest developments in fractional differential 

equations and integral transforms [24], [25]. Other 

developments include Sawi [26]–[28], Aboodh [29], 

Sumudu [30], and Rishi transformations [25], [31]. 

The study of the Schrodinger operator on half-axis  :  
with potential q compactly supported in the interval 
,   -, is the focus of this research. Specifically, we 

examine solutions for the fractional boundary value 

problem identified in [15]. The formula used in this 

study is  

   
 

 
   ( )  𝑞( ) ( )    𝑝( ) ( )    ,   - 

                                                                       (   )   

  ( )    ( )               ( )    ( )               (   ) 

in such a way that 𝑞( ) 𝑝( )   : ,   -  where 

 : ,   - comprises every integrable function.  ( ) is on 

,   -,    𝑛   ( )     ,   (   -, and   is a 

spectral parameter. 

In this study, we work on the Schrodinger equation for 

the fractional-order boundary value problem for 

      
 

2. Materials and Methods  

Preliminaries 

This section provides several definitions, lemmas, 

and theorems that are essential to comprehending our 

results. 

 

Definition 2.1 [11], [32]. The integral formula defines 

the gamma function. 

 ( )  ∫ 𝑠 ;  

 
 ;   𝑠  

The integral completely converges when   ( )   . 

Definition 2.2 [6], [11] (Fractional Integral [FI] of 

Order  ). For every     and local integrable function  

 ( ), the right FI of order   is defined as follows:  

    
𝜍 ( )  

 

 (𝜍)
∫  

 

 
(  𝑡)𝜍;  (𝑡) 𝑡        

 . 

Alternatively, it can be defined for the left    as  

    
𝜍 ( )  

 

 (𝜍)
∫  

 

 
(𝑡   )𝜍;  (𝑡) 𝑡         

 . 

Definition 2.3 [8], [11], [32] (Fractional Derivative of 

Order  ). For any   and 𝑚         the Riemann–

Liouville derivative of order   has the following 

definition: 

    
𝜍 (𝑡)  

 

 ( ;𝜍)

  

   ∫  
 

 
(𝑡  𝑠) ;𝜍;  (𝑠) 𝑠. 

Definition 2.4 [11], [22]
 
 . Assume that    , where 

𝑚      . When  (𝑡) is an 𝑚-times differentiable 

function and the Liouville–Caputo derivative operator of 

order   is applied, 𝑡    is defined as  

     
    

𝜍 (𝑢)  
 

 ( ;𝜍)
∫  

 

 
(𝑢   ) ;𝜍; .

 

  
/
 

 ( )  ,  

  or      
    

𝜍 (𝑢)  
 

 ( ;𝜍)
∫  

 

𝜍

  ( )

( ; ) ; :     For    , 

we introduce the notation    
𝜍 (𝑢)     𝜍 (𝑢). 

Remark 2.1  ([6], [11], [22], [32]). The following text 

shows some fundamental characteristics of fractional 

calculus. The fractional (integral and differential) 

operator is linear. 

1. The definition of the composition between two 

Riemann–Liouville integrations of orders    𝑛  𝛽 is  

  
 

 
    

𝛽
 
  (𝑡)     

𝛽
 
    

 
 
  (𝑡)     

𝛽: 
 (𝑡). 

If 𝑘 ≥    for  (𝑡)  𝐶,   - and at every point 𝑡  
,   -    

𝑅 
 
𝑘(   

 
 
  (𝑡))    

𝑅 
 
𝑘;  (𝑡).  

2. The definition of the composition between the 

fractional (differentiation and integration) of the 

Liouville–Caputo operator of order    is 

   
  

 
 (   

 
 
  (𝑡))   (𝑡). 

3. The definition of the composition between 𝑚  
    and the fractional (integration and differentiation) of 

the Liouville–Caputo operator of order   is  

  
 

 
 (   

  
 
  (𝑡))   (𝑡)  ∑

( ; )𝑘

𝑘!
 ; 
𝑘<   (𝑘)( ).  

In general,    
  

 
𝑘(   

 
 
  (𝑡)) ≠   

 
 
 (   

  
 
𝑘 (𝑡)). 

The Liouville differential and fractional integral 

are utilized. For function 𝑡  𝑛 ≥  , and the Caputo 

operator yields   
 

 
 𝑡  

 ( : )

 ( : : )
𝑡 :   𝑛  

   
  

 
𝑘𝑡  

 ( : )

 ( : ; )
𝑡 ; . 

 

Remark 2.2 (Association between the Caputo   Order 
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Derivative and the Riemann–Liouville   Order 

Derivative) [12, 29]. Assume that 𝑛      ,𝑛    𝑛) 

and suppose that  (𝑡) is a function, such that     
𝜍 (𝑡) 

and   
𝜍 (𝑡) exist. The relationship between the 

Riemann–Liouville and Caputo derivatives is 

    
𝜍 (𝑡)    

𝜍 (𝑡)  ∑   ; 
𝑘< 

( ; )𝑘; 

 (𝑘: ;𝜍)
 (𝑘)( ). 

Definition 2.5  [10], [33]. The definitions of the one- 

and two-parameter Mittag–Leffler functions are as 

follows:  𝐸 (𝑠)  ∑   
 <  

 𝑛

 (  : )
                     s  ℂ , 

𝐸   (𝑠)  ∑   
 <  

 𝑛

 (  : )
                      s  ℂ. 

3. Laplace Transform [34], [35] 

Let   ℂ. Typically, Laplace transform (LT) is 

described as 𝐹( )   * (𝑝)+  ∫  
 

 
 ; 𝑝 (𝑝) 𝑝. 

Theorem 3.1. Multiplication Theorem (Convolution) 

[34], [35].
 

The convolution product of functions  (𝑡) and  (𝑡) is 

designated by the symbol *. We have 

 ( ∗  )(𝑡)  ∫  
 

 
  (𝜏) (𝑡  𝜏) 𝜏  𝑌(𝑠)𝐺(𝑠), 

where 𝑌(𝑠)   , (𝑡)-  𝐺(𝑠)   , (𝑡)-. 
Property 3.1.Differentiationand Integration 

Theorems [34] 

i. LT of the derivative of order 𝑘 from   (𝑡) yields 

   [ (𝑘)(𝑡)]  𝑠𝑘𝐹(𝑠)  [𝑠𝑘;  ( )  𝑠𝑘;   ( )  ⋯ 

 (𝑘; )( )]  𝑠𝑘𝐹(𝑠)  ∑ 𝑠𝑘;𝑖;  𝑖( )𝑘; 
𝑖< . 

 

ii. (Integration of an Original)  

We obtain   0∫  
 

 
 (𝜏) 𝜏1  

𝐹( )

 
. 

3.1 Laplace Transform of the Fractional Integrals 

and Derivatives [7], [22], [32], [34] 

1. Fractional Integrals (FIs) 

If   ,𝑛    𝑛), the Riemann–Liouville and Caputo 

FIs are the same for both cases. 

𝑄     (𝑡)  
 

Γ( )
∫  

 

 

(𝑡   ) ;  ( )   

Using the LT of the convolution product formula, we 

derive  ,𝑄-  
 

 ( )
 ,𝑡 ; - , (𝑡)-  

𝐹( )

 𝛼 . 

2. Fractional Derivatives (FDs) 

i. LT of Riemann–Liouville FD yields 

 [   
 𝑅

 
𝑘 (𝑡)]  𝑠 𝐹(𝑠)  ∑   ; 

𝑘< 𝑠𝑘  ;𝑘;  ( ). 

ii. LT of Caputo FD produces  

 [   
  

 
𝑘 (𝑡)]  𝑠 𝐹(𝑠)  ∑   ; 

𝑘< 𝑠 ;𝑘;  (𝑘)( ). 

3.2. Inverse of Laplace Transform [22], [35] 

The equivalent opposite LT is                

  (𝑡)  
 

 𝜋𝑖
𝑙𝑖𝑚
 → 

 ∫  
𝛾:𝑖 

𝛾;𝑖 
𝐹(𝑠)    𝑡   ; ,𝐹(𝑠)-   

𝛾     𝑖  √  . 

3.3. Some Properties of Inverse Laplace Transform 

[22] [36] 

1.  ; 0
 ;(𝛼;𝜌)

 𝜌; 
1  𝑡 ; 𝐸𝜌  ( 𝑡𝜌)           

  𝑠  | |   

2.  ; 0
 ;(𝛼; )

 ; 
1  𝑡 ; 𝐸   ( 𝑡)  𝐸(𝑡      ) , 

3.  ; 0
 ;𝛼

( ; )2
1  𝑡𝐸(𝑡    )   𝐸(𝑡      ) , 

4.  ; 0
 ;𝜌

( ; )3
1  

 

 
𝑡 𝐸(𝑡    )   𝑡𝐸(𝑡   

   )  
𝜌(𝜌: )

 
𝐸(𝑡      ), 

5.  ; 0
 

( 𝛼:  𝜌)𝑛: 1  

𝑡 ( : ); ∑   
𝑘< 

(; )𝑘. :𝑘
𝑘

/

 ,𝑘( ;𝜌):( : ) -
𝑡𝑘( ;𝜌) where 

      , 

6. L; 2
 𝛼

𝜆: 2𝛼3  
 

  ;𝛼 𝐸    (  𝑡  ) , 

7. L; 2
 

𝜆: 𝛼3  𝑡 ; 𝐸   (  𝑡 ) , 

8.  ; 0
 𝛾

 𝛼: 𝜌: 
1  

𝑡 ;𝛾; ∑   
 < ∑   

𝑝< 

(; )𝑛(; )𝑝.
 :𝑝
𝑝 /

 ,𝑝( ;𝜌):( : ) ;𝛾-
𝑡𝑝( ;𝜌):  , 

Where     𝛾      ℝ or | |  𝑠 ;𝜌 | |  
|𝑠   𝑠𝜌|.  

4. Main Object 

Lemma 4.1 [37]. Given 𝜀    and 𝑛  ,𝜀-   , the 

equation‟s solution,   
𝜀

  
𝑘  (𝑠)   , is given by   (𝑠)  

𝑘  𝑘 𝑠  𝑘 𝑠
  ⋯ 𝑘 ; 𝑠

 ; , where 𝑘     𝑖  
      …  𝑛    are some constants. If    𝑘 ,   - is 

assumed, then  

  𝜀    
𝜀

  
𝑘  (𝑠)   (𝑠)  𝑘  𝑘 𝑠  𝑘 𝑠

  ⋯ 
𝑘 ; 𝑠

 ;    

for some constants 𝑘𝑖     𝑖        …  𝑛   . 

4.1 Solution of the Fractional-order Boundary Value 

Problem by Laplace Transform 

In this section, we use LT to find the solution to our 

problem in the following cases. The fractional order is 

defined as  

   
 

 
  ( )  𝑞( ) ( )    𝑝( ) ( )    ,   -   

     
 ( )    ( )                      ( )    ( )  
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We solve the fractional-order problem in this section via 

LT if it exists and if the conditions of the original 

function hold. 

Case 1: Constant Coefficients 

In this case, we suppose that 𝑞( )  𝑀  𝑝( ). 

The fractional differential equation is 

    
 

 
  ( )  𝑀 ( )    𝑀 ( )  

→   
 

 
  ( )  𝑀(    ) ( )   . 

By applying LT to both sides, we have 

  {   
 

 
  ( )}   *𝑀(    ) ( )+   * +. 

Let  * ( )+  ∫  
 

 
 ;   (𝑡) 𝑡  𝑌(𝑠) and  * +   . 

On the basis of Proposition 5 and the properties of LT, 

the LT of Caputo FD is  

  ,   (𝑡)-  𝑠 𝐹(𝑠)  ∑   ; 
𝑘< 𝑠 ;𝑘;  (𝑘)( ). 

We have   (   -   so 

 ,   ( )-  𝑠 𝑌(𝑠)  ∑   
𝑘< 𝑠 ;𝑘;  (𝑘)( )  

𝑠 𝑌(𝑠)  𝑠 ;  ( )  𝑠 ;   ( )  𝑠 ;3   ( ). 

The initial condition is  ( )    ( )   , so  
 ,   ( )-  𝑠 𝑌(𝑠)  𝑠 ;3   ( ).  

Then,  

 {   
 

 
  ( )}   *𝑀(    ) ( )+   * +, 

𝑠 𝑌(𝑠)  𝑠 ;3   ( )  𝑀(    )𝑌(𝑠)   , 

𝑠 𝑌(𝑠)  𝑀(    )𝑌(𝑠)  𝑠 ;3   ( ), 

 𝑌(𝑠)(𝑠  𝑀(    ))  𝐴𝑠 ;3,  

where 𝐴     ( ). Thus,  𝑌(𝑠)  
𝐴 𝛼;3

 𝛼;𝑀( ;𝜆2)
 .  

 The equivalent inverse LT is 

 ( )  
 

 𝜋𝑖
𝑙𝑖𝑚
 → 

 ∫  
𝛾:𝑖 

𝛾;𝑖 

𝐹(𝑠)       ; ,𝐹(𝑠)-       

𝛾     𝑖  √  . 

If it exists, we can use inverse LT to obtain the two 

sides. 

  ; *𝑌(𝑠)+   ; 2
𝐴  𝛼;2

 𝛼;𝑀( ;𝜆2)
3. Given that  * ( )+  

𝑌(𝑠) →  ( )   ; *𝑌(𝑠)+, the other side is related to 

the Mittag–Leffler function.   

Two-parameter Mittag–Leffler functions are defined as 

 𝐸   (𝑠)  ∑   
 <  

 𝑛

 (  : )
                         s  ∁ . 

On the basis of Section 3.3, we derive   

 ; 0
 ;(𝛽;𝛼)

 𝛼; 
1  𝑡𝛽; 𝐸  𝛽( 𝑡 )             𝛽    𝑠  

| |. 
Hence, we have 

 ( )  
𝐴  𝐸  3(𝑀(  

  )  )  where  𝐴  𝑟   𝑟𝑠 𝑡𝑜 𝑐𝑜𝑛𝑠𝑡 𝑛𝑡   
(   -  and     𝑖𝑠 a 𝑐𝑜𝑚𝑝𝑙   𝑛𝑢𝑚  𝑟    
It exists if   𝛽    𝑠  | |  but in our case, 

 𝛽       𝑛    (   -  Thus,    . The only 

condition for inverse LT to exist is 𝑠  𝑀|(    )|. 

The solution to the initial fractional value problem 

provided by 1.1 and 1.2 is   

 ( )  𝐴  𝐸  3(𝑀(    )  )  
  ,   -           (   -, 

such that 𝐴     ( ) is any nonzero constant. 

If    ,  ( )     𝐸  3(𝑀(    )  )  

𝐴  ∑
(𝑀( ;𝜆2) 2)

𝑛

 (  :3)
 
 <  

𝐴

𝑀( ;𝜆2)
∑

.√𝑀( ;𝜆2)  /
2𝑛:2

(  : )!
 
 <  

𝐴

𝑀( ;𝜆2)
.𝑐𝑜𝑠 .√𝑀(    )  /   /. 

 If    ,  ( )  𝐴  𝐸3 3(𝑀(    ) 3)  

𝐴  ∑
(𝑀( ;𝜆2) 3)

𝑛

 (3 :3)
 
 <  

𝐴

(𝑀( ;𝜆2))
2
3

∑
. √𝑀( ;𝜆2)
3

 /
3𝑛:2

(3 : )!
 
 <  . 

 

Case 2: Variable Coefficients 

In this case, we assume that weight function 𝑝( )    

and that 𝑞( ) is any continuous function 

and let 𝑞( ) ( )   ( ). 

The fractional differential equation becomes  

    
 

 
  ( )   ( )     ( )   

 →   
 

 
  ( )     ( )   ( ). 

By applying LT to both sides, we derive 

 {   
 

 
  ( )}   *   ( )+   * ( )+. 

Let  * ( )+  ∫  
 

 
 ;   (𝑡) 𝑡  𝑌(𝑠) and  * ( )+  

∫  
 

 
 ;   (𝑡) 𝑡  𝐹(𝑠). 

From the properties of LT for   (   -, we have  

 ,   ( )-  𝑠 𝑌(𝑠)  ∑  

 

𝑘< 

𝑠 ;𝑘;  (𝑘)( ) 

 𝑠 𝑌(𝑠)  𝑠 ;  ( )  𝑠 ;   ( )  𝑠 ;3   ( ). 

The initial condition is  ( )    ( )   , so  
 ,   ( )-  𝑠 𝑌(𝑠)  𝑠 ;3   ( ). 

Then,   {   
 

 
  ( )}   *   ( )+   * ( )+ and 

𝑠 𝑌(𝑠)  𝑠 ;3   ( )    𝑌(𝑠)  𝐹(𝑠), where 

 * ( )+  𝐹(𝑠) → 𝑌(𝑠)(𝑠    )  𝑐 𝑠
 ;3  𝐹(𝑠) 

and 𝑐     ( ) → 𝑌(𝑠)  
   𝛼;3

( 𝛼:𝜆2)
 

𝐹( )

( 𝛼:𝜆2)
 .  

If it exists, we apply LT to both sides and obtain 

 * ( )+  𝑌(𝑠) →  ( )   ; *𝑌(𝑠)+ and  * ( )+  
𝐹(𝑠) →  ( )   ; *𝐹(𝑠)+, 

 ; *𝑌(𝑠)+   ; 2
   𝛼;3

( 𝛼:𝜆2)
3   ; 2

𝐹( )

( 𝛼:𝜆2)
3.  

On the basis of Section 3.3, we derive  

 ; 0
 𝛼;3

 𝛼:𝜆21    𝐸   (     ) 𝑠  |  |, and  

 ; 0
 

 𝛼:𝜆21    ; 𝐸    (     ).  
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This condition implies that   ( )  𝑐  𝐸  3(     )  

  ; 𝐸    (     ) ∗  ( ). 

From the properties of the Mittag–Leffler function, we 

have 𝐸   (𝑠)  
 

 
𝐸   (𝑠). 

Hence, 

  ; 𝐸    (     )    ;  

;𝜆2 𝛼 𝐸   (     )  
; 

𝜆2 
𝐸   (     ). 

Now,  ( )  𝑐  
 𝐸  3(     )  

 

𝜆2 
𝐸   (     ) ∗

 ( ). 

Using the convolution property, we can write the general 

solution in the form 

 ( )  𝑐  
 𝐸  3(     )  ∫

𝐸𝛼 0(;𝜆2( ; )𝛼)

𝜆2( ; )

 

 
∗  (𝑠) 𝑠, 

 ( )  𝑐  
 𝐸  3(     )  ∫

𝐸𝛼 0(;𝜆2( ; )𝛼)

𝜆2( ; )

 

 
∗

𝑞(𝑠) (𝑠) 𝑠.                                

The symbol ∗ refers to the Volterra integral equation 

equivalent of     and    . 

Remark 4.1. If  →  , the integral equation ∗ becomes  

 ( )  𝑐  
 𝐸  3(     )  ∫

𝐸2 0(;𝜆2( ; )2)

𝜆2( ; )

 

 
∗

𝑞(𝑠) (𝑠) 𝑠.  

Then,  ( )  
  

𝑖|𝜆|
𝑐𝑜𝑠  (𝑖| | )  ∫

 𝑖 (𝑖|𝜆|( ; ))

𝑖|𝜆|

 

 
∗

𝑞(𝑠) (𝑠) 𝑠. 

Note [35], [38]: In Case 2 (variable coefficients), the 

only difficulty that we have is LT of two multiplication 

functions. We can use the following theorems and 

properties. 

We can classify LT for the two multiplication functions 

through the following cases ( * ( ) ∗  ( )+). 

9. If  ( )      from the shifting theorem, LT is  

 *    ( )+  𝐹(𝑠   ). 

10. If  ( ) trigonometric or hyperbolic functions 

exist, we can represent these functions by using the 

exponential function and the note above. 

 2𝑠𝑖𝑛  
𝑒𝑖𝑥;𝑒;𝑖𝑥

 𝑖
  𝑐𝑜𝑠  

𝑒𝑖𝑥:𝑒;𝑖𝑥

 
 𝑠𝑖𝑛   

𝑒𝑥;𝑒;𝑥

 
  𝑐𝑜𝑠   

𝑒𝑥:𝑒;𝑥

 
3 

11. If  ( ) polynomial functions exist, we can use 

the property  *  ∗  ( )+  (  ) 
 

  
𝐹(𝑠). 

12. If  * ( ) ∗  ( )+ is of the time delay type, we 

can use the property  * (   ) (   )+   ;  𝐹(𝑠). 

13. If  *𝑘( ) ∗  ( )+ is of the convolution type, we 

can use the convolution theorem 

 * (𝑡) ∗  (𝑡)+  𝐺(𝑠)𝑌(𝑠) , where 𝐺(𝑠)   * (𝑡)+ and 

𝑌(𝑠)   * ( )+. 
14. If  ( ) is a differentiable function, we can use 

the Taylor series and reduce it to a polynomial function; 

then, we can employ Note 3. The Taylor series for a 

differentiable function is 

  ( )  ∑
 𝑛( )

 !
 
 < (   ) . 

5. Illustrative Examples 

This section contains four analytical problems that show 

how to derive the precise (analytic) solution to high-

order linear fractional differential equations of the 

Liouville–Caputo function by using LT. 

Example 5.1 Consider the fractional boundary value 

problem 

   

7

3
 
  ( )  

 

  
 ( )     

  
 ( )                 ,   -, 

 ( )    ( )                ( )    ( ). 

Solution: We have 𝑀  
 

  
. 

Now    

7

3
 
  ( )  

 

  
 ( )  

 

  
   ( ) 

→   

7

3
 
  ( )  

 

  
(    ) ( ).   

We demonstrate the use of LT to obtain Laplace 

properties on both sides.   {   

7

3
 
  ( )}   *

 

  
(  

  ) ( )+ .  
By using the properties of LT, we have 

 {   

7

3
 
  ( )}  2𝑠

7

3𝑌(𝑠)  𝑠
4

3 ( )  𝑠
 

3  ( )  

𝑠
;2

3    ( )3. 

Now, 𝑠
7

3𝑌(𝑠)  𝑠
4

3 ( )  𝑠
 

3  ( )  𝑠
;2

3    ( )  
 

  
(    )𝑌(𝑠). 

From the boundary conditions, we have   ( )  
  ( )    

→ 𝑠
7

3𝑌(𝑠)  𝑠
;2

3    ( )  
 

  
(    )𝑌(𝑠) 

 → 𝑠
7

3𝑌(𝑠)  
 

  
(    )𝑌(𝑠)  𝑠

;2

3    ( ) 

4𝑠
7

3  
 

  
(    )5𝑌(𝑠)  𝑠

;2

3    ( ) ,  

such that    ( ) ≠  , 

 𝑌(𝑠)  
𝑦′′( ) 

;2
3

 
7
3:

 

 0
(𝜆2; )

 →  𝑌(𝑠)  
𝐴 

7
3
;3

 
7
3:

 

 0
(𝜆2; )

 , where 

𝐴     ( ). 

For both sides, we take the Laplace inverse and derive  

 ; (𝑌(𝑠))   ; (
𝐴 

7
3
;3

 
7
3:

 

 0
(𝜆2; )

). 

For the inverse, readers may refer to [29]. With LT and 

the Mittag–Leffler derivative, we obtain  ( )  

𝐴  𝐸7

3
 3

.
 

  
(    ) 

7

3/  𝑤  𝑟  𝐴     ( ) and g is a 
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constant. In accordance with the second condition  

 ( )    ( )     the solution is derived as 

  ( )     ( )  𝐸7

3
 3

.
 

  
(    ) 

7

3/  

 Now,   ( )      ( )𝐸7

3
 3

.
 

  
(    )/  and from the 

properties of the Mittag–Leffler derivative, we have 

   ( )     ( )𝐸7

3
  

.
 

  
(    )/.  

Hence,  ( )    ( ) →     ( )𝐸7

3
 3

.
 

  
(    )/  

    ( )𝐸7

3
  

.
 

  
(    )/. 

    ( ) ≠   because when    ( )   , the solution is 

trivial. Thus, 

𝐸7
3
 3

(
 

  
(    ))   𝐸7

3
  

4
 

  
(    )5     

  can be obtained using certain Mittag–Leffler 

properties. 

A solution to the fractional boundary value problem 

above is  

 ( )     ( )  𝐸7

3
 3

.
 

  
(    ) 

7

3/. 

Example 5.2 Examine the fractional boundary value 

problem 

   

5
 

 
  (𝑡)   (𝑡)     (𝑡)     𝑡  ,   -    (   - 

  ( )    ( )                 ( )   ( ). 

Solution: If   𝑖, for any 𝑀, we have  

   

5

2
 
  (𝑡)   (𝑡)    (𝑡) →   

5

2
 
  (𝑡)    (𝑡).  

Given that 2    , by using T, we have 

 ,   (𝑡-)    , (𝑡)- → 𝑠 𝑌  𝑠 ;  ( )  
𝑠 ;   ( )  𝑠 ;3   ( )   𝑌, 

𝑌(𝑠   )  𝑐𝑠 ;3 → 𝑌  
  𝛼;3

 𝛼; 
, 

 𝑌  
 

 𝛼

 

 ;
2

𝑠𝛼

   

where 𝑐     ( )  
Using the identity  

  
 

 ; 
   𝑢  𝑢  𝑢3  ⋯           |𝑢|   , 

we derive  𝑌  
 

 𝛼 .  
 

 𝛼  
4

 2𝛼  ⋯/ , |
 

 𝛼 |   . 

Then, 𝑌  𝑐 .
 

 𝛼  
 

 2𝛼  
4

 3𝛼  ⋯/. 

The solution is  (𝑡)  𝑐 .
 𝛼; 

 ( )
 

 2𝛼; 

 (  )
 

 3𝛼; 

 (3 )
 ⋯/. 

We note that 𝑙𝑖𝑚
 → 

  (𝑡)  𝑐 .
 

 !
 

 3

3!
 

 5

5!
…/  𝑐 𝑠𝑖𝑛 (𝑡) 

and 𝑙𝑖𝑚
 →3

  (𝑡)  𝑐 .
 2

 !
 

 5

5!
 

 8

8!
……/. 

Example 5.3 Consider the fractional boundary value 

problem 

   
  3

 
  ( )    4 ( )    4   ( )                 ,   -  

  ( )    ( )                 ( )   ( ). 

Solution: We have 𝑀    4. 

Now,    
  3

 
  ( )    4 ( )    4   ( ) 

→   
  3

 
  ( )    4(    ) ( ).   

We demonstrate the use of LT to obtain Laplace 

properties on both sides.  {   
  3

 
  ( )}   *  4(  

  ) ( )+. By employing Laplace characteristics, we 

obtain  {   
  3

 
  ( )}  *𝑠  3𝑌(𝑠)  𝑠  3 ( )  

𝑠  3  ( )  𝑠;  7   ( )+. 
Now, 𝑠  3𝑌(𝑠)  𝑠  3 ( )  𝑠  3  ( )  𝑠;  7   ( )  
  4(    )𝑌(𝑠).From the boundary conditions,  

we have  ( )    ( )    

→ 𝑠  3𝑌(𝑠)  𝑠;  7   ( )    4(    )𝑌(𝑠)  

→ 𝑠  3𝑌(𝑠)    4(    )𝑌(𝑠)  𝑠;  7   ( ) 

(𝑠  3    4(    ))𝑌(𝑠)  𝑠;  7   ( ),  

such that    ( ) ≠   and 

 𝑌(𝑠)  
𝑦′′( ) ;0 7

 2 3:  4(𝜆2; )
 →  𝑌(𝑠)  

𝐴 2 3;3

 2 3:  4(𝜆2; )
 , where 

𝐴     ( ). 

For both sides, we take the Laplace inverse and obtain  

 ; (𝑌(𝑠))   ; .
𝐴 2 3;3

 2 3:  4(𝜆2; )
/  

For the inverse, from related inverse LT to the Mittag–

Leffler function in [36], we derive   

 ( )  𝐴  𝐸  3 3(  4(    )   3)  
where   is a constant and 𝐴     ( ). 

We obtain  ( )    ( ) from the second condition. 

The solution is  ( )  𝐴  𝐸  3 3(  4(    )   3). 

Now,  ( )      ( )𝐸  3 3(  4(    ))  and from the 

Mittag–Leffler derivative‟s attributes, we have 

   ( )     ( )𝐸  3  (  4(    )).  

Thus,  ( )    ( ) 

→    ( )𝐸  3 3(  4(    ))      ( )𝐸  3  (  4(  

  )). 

    ( ) ≠   because when    ( )   , the solution is 

trivial. Hence, 𝐸  3 3(  4(    ))   𝐸  3  (  4(    ))  

 . 

  can be obtained using certain Mittag–Leffler 

properties. 

A solution to the fractional boundary value problem 

above is  

 ( )     ( )  𝐸  3 3(  4(    )   3). 

Example 5.4 Consider the fractional boundary value 

problem 

     
  9

 
  ( )      ( )     ( )                 ,   -  

  ( )    ( )                 ( )   ( ). 

Solution: We have 𝑞( )      , 𝑝( )   . 

Now,    
  9

 
  ( )      ( )     ( )  

→   
  3

 
  ( )      ( )     ( ).    

We demonstrate the use of LT to obtain Laplace 

properties on both sides.   
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 {   
  9

 
  ( )}   *    ( )     ( )+. By using 

Laplace properties and Proposition 5 in Section 3.1, we 

have  {   
  9

 
  ( )}  *𝑠  9𝑌(𝑠)  𝑠  9 ( )  

𝑠  9  ( )  𝑠;      ( )+  
Now, 𝑠  9𝑌(𝑠)  𝑠  9 ( )  𝑠  9  ( )  𝑠;      ( )  
(      )𝑌(𝑠). 

From the boundary conditions, we have   ( )  
  ( )    

→ 𝑠  9𝑌(𝑠)  𝑠;      ( )  (      )𝑌(𝑠) 

 → 𝑠  9𝑌(𝑠)  (      )𝑌(𝑠)  𝑠;      ( ) 

→ (𝑠  3    4(    ))𝑌(𝑠)  𝑠;  7   ( ) ,  

such that    ( ) ≠  . 

 𝑌(𝑠)  
𝑦′′( ) ;0  

 2 9:(𝜆2;  3)
 →  𝑌(𝑠)  

𝐴 2 9;3

 2 9:(𝜆2;  3)
 , where 

 𝐴     ( ). 

For both sides, we take the Laplace inverse and obtain  

 ; (𝑌(𝑠))   ; .
𝐴 2 9;3

 2 9:(𝜆2;  3)
/. 

For the inverse, readers may refer to [29]. From Section 

3.3 and the Mittag–Leffler derivative, we obtain 

 ( )  𝐴  𝐸  9 3((      )   3)   
where g is a constant and 𝐴     ( )  
From the second condition, we have  ( )    ( ). 

The solution is  ( )  𝐴  𝐸  9 3((      )   9)  

Now,  ( )   ( )  9   ( )𝐸  9 3((      )( )  9)  and 

from the Mittag–Leffler derivative‟s attributes, we 

derive   ( )  ( )  9   ( )𝐸  9  ((      )( )  9).  

Thus,  ( )    ( ) →     ( )𝐸  9 3((    

  )( )  9)      ( )𝐸  9  ((      )( )  9). 

    ( ) ≠   because when    ( )   , the solution is 

trivial. Hence, 

𝐸  9 3((    )( )  9)   𝐸  9  ((      ))      

  can be obtained using certain Mittag–Leffler 

properties. 

A solution to the fractional boundary value problem 

above is   ( )     ( )  𝐸  9 3((      )   3). 

 

6. Results and Discussion  

       In this study, the Schrodinger equation for a 

fractional order with special condition boundaries was 

solved by LT, and the exact solution was obtained 

accurately and technically. 
 

7. Conclusions 

       In summary, the Schrödinger fractional-order 

boundary value problem can be effectively solved in the 

field of mathematical physics by using the LT method. 

The fractional-order differential equation can be 

transformed effectively into a straightforward algebraic 

form via LT, which accelerates the analytical solution 

procedure. The effective use of the LT approach in this 

study emphasizes the approach‟s usefulness in solving 

challenging mathematical issues in physics and shows 

promise for future developments in fractional-order 

differential equation research. The findings show that 

the solution to the fractional boundary value problem in 

Equations (1.1) and (1.2) is connected to the Mittag–

Leffler function. The condition is attained using the 

operator we established for the problem. Examples are 

also provided to highlight the key findings. 
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