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Abstract

In this paper, the aim of control problem is to achieve required yaw rate and
reduce lateral velocity in a short period of time to prevent vehicle from sliding out the
curvature. The structure of the controller used consists of modified Elman recurrent
neural networks that learned on-line by using genetic algorithm teachings. Using of both |
front and rear wheels steering simultancously has automatically controlled the vehicle
lateral motion when the vehicle rotates the curvature. Therefore, it is used a feedback
neural controller that is learned on-line in order to control the transient state output of
the system by minimizing the error between the actual output of the system and the
| model reference output. The evolutionary techniques based on this algorithm are
employed for the model-reference adaptive control scheme for this system.
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1-Introduction engineering. The practical example for

The application of the intelligent automotive motion are transportation
control schemes has attracted the vehicles inside factories, ship ports, and
attention of researchers in the field of in the future as pat of an integrated
control engineering. Practical system of automated high way traffic.
characteristics of neural networks, fuzzy Major research activities in automatic
and knowledge-based systems applicable vehicle control are devoted to
in control include the representation of longitudinal control, which keeps the
arbitrary, multi-dimensional problem, interval between vehicles by controlling
nonlinear mapping function, learning vehicle speed, and lateral control, which
and adaptation through example and the maintains the lateral position of the
ability to combine large amount of data vehicle in the lane by controlling
to form decisions or pattern recognition steering angles [2]. To improve the
[1]. So many researchers are fond of lateral velocity, and yaw rate time
field that deals with automotive motion response [3], adaptive fuzzy technique
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used when the parameters of vehicle
velocity, mass, and tires state are
variable and change the gains of the
controller are change automatically.

2- Mathematical Model of the Vehicle
The dynamics of wvehicle lateral

motion depends on many parameters
such as vehicle speed, vehicle mass and
tires state on road. The independent
control of lateral and yaw motion
requires at least one additional control
input, which is independent of the front
steering angle. There are three possible
solutions for these inputs:

1- A four-wheel steering system whose
control inputs are front and rear
steering independently, (Lee, 1989:
Karnopp and Wuh, 1989).

2- Using braking forces with different
distributively on wheels ( Xia and
Law, 1989; Abe ,1989).

3- Control of torque driving wheels
either they are front or rear,
(Matsumoto and Tomizuuka, 1992).

Vehicle lateral and yaw motion occurs at

the vehicle horizontal plane (x-y plane)

with coordinates fixed to vehicle body as
shows in the figure (1) and related

symbols shows in appendix (1).

The considerations of deriving lateral

motion equations at the plane (x-y) [4]

are:

1- Steering angles (6,,6,) are small

values (0.01 to 0.1) degree.
2- Wheel slip angle (@) is small
degree.
3- Yaw rate (r) is small rad/sec.
Front vehicle speed is constant U=C;
that is to mean vehicle acceleration
towards x-axis equal zero. There is no
motion towards z-axis. The linear
dynamical model of wvehicle lateral
motion [3] with interaction in multiple-
input-multiple-output system are
expressed as the state space equations as
follows:
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Front cornering stiffness
C,=C +C,and rear cornering
stiffness C, =C, +C,are used for

convenience [5].
& ,,8, represent front steering angle and

rear steering angle respectively and they
are both system inputs.

3- Recurrent Neural Networks
[Genetic __ Algorithm Learning
Recurrent neural networks

(RNN) have one or more feedback
connections, where each artificial neuron
is connected to the others [6]. The RNN
structures are suitable to channel
equalization and multi-user detection
applications, since they are able to cope
with channel transfer functions that
exhibit deep spectral nulls, forming
optimal decision boundaries and are less
computationally demanding than MLP
networks for these applications [7].
Among the available recurrent networks,
modified E7lman networks as shown in
figure (2) is one of the simplest types
that can be trained using genetic
algorithm and it used to minimize the
oscillation or even instabilities to the
training controller. The output of the jth
context unit in the modified Elman
network is given by:
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ho(k)=ahl(k=1)+h (k-1) )

where 4] (k) and /i, (k) are respectively

the output of the jth context unit and jth
hidden unit and a is the feedback gain
of the self-connections. The value of «
adopted is the same for all self-
connections and is not modified by the
training algorithm. The value of «is
between 0 and 1. A value of a nearer to
1 enables the context unit to aggregate
more pattern outputs. The input and
output units interact with the outside
environment. While the hidden and
context units do not. The input units are
only buffer units “ Scales”. The output
units are linear units, which sum the
signals fed to them. The hidden units can
have nonlinear activation functions such
as sigmoidal activation functions. The
context units are used only to memorize
the previous activation’s of the hidden
units and can be considered to function
as one-step time delays. From the figure
(2) it can be seen that the following
equations:

h(k) = F/1LX (k), V 2h° (5} 3)

O(k) =Wh(k) (4)
where V1,V2 and W are weight matrices
and F is a non-linear vector function.
The multi-layered modified Elman
neural networks shown in figure (2) that
is composed of many interconnected
processing units called neurons or nodes.
where:

¥ 1: Weight matrix of the input units.

V 2: Weight matrix of the context units.
W : Weight matrix.

L : Denotes linear node.
H: Denotes nonlinear
sigmoidal function.

As can be seen the net consists of three
layers: An input layer (buffer layer as
scales), a single hidden layer and a linear

node with

nh
- neto, —Z W, xh,
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output layer. The neurons in the input
layer simply store the scaled input
values. The hidden layer neurons
perform two calculations. To explain
these calculations, consider the general
i’th neuron in the hidden layer shown in
figure (3). The inputs Xi and A’ to this
neuron consist of an ni — dimensional
vector and (ni is the number of the input
nodes). Each of the inputs has a weight
V1 and V2 associated with it. The first
calculation within the neuron consists of
calculating the weighted sum net  of
the inputs as:

ni

net, =Y V1, xX, +V2, xh
i=1
(3)

Next the output of the neuron #,is

calculated as the continuous sigmoid
function of the net ; as:

h,=H(net ;) (6)

=1

)

—net
, /

2
H(net i ¥ {Te

Once the outputs of the hidden layer are
calculated, they are passed to the output
layer. In the output layer, a single linear
neuron is used to calculate the weighted
sum (neto) of its inputs (the output of the
hidden layer as in equation (8)).

&

j=l

where nh is the number of the hidden
neuro (nodes) and W, j 1s the weight
between the hidden neuron /4, and the
output neuron. The single linear neuron,
then, passes the sum (neto, ) through a

linear function of slope 1 (another slope
can be used to scale the output) as:
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)

Thus the outputs at the output layer are
&,,8, which are denoted by O1, 02

respectively.

In this work, the GA with real coding
rather than binary is used as follows:
Each chromosome is considered as a list
(or *vector”) of the total weights of
neural networks. The encoding is shown
in figure (4) and the weights are read off
the network in a fixed pre-defined order
and placed in a vector. Each “gene” in
the chromosome is a real number. To
calculate the fitness of a given
chromosome, the weights in the
chromosome are assigned to the links in
the comresponding modified Elman
networks, the network is run on the
training set, and an objective function is
returned. An initial population of weight
vectors was chosen to be 60 individuals,
with each weight being between —1 and
+1. The mutation operator adds a
random value between —0.5 and +0.5 to
the selected weight on the link. The
crossover operator two mating vectors
and exchanges the information by
exchanging a subset their components.
The result is a new pair of vectors, each
of which carries components from both
of the parent vectors. The mean square
of error (MSE) for multi-input multi-
output (MIMO) is used as an objective
function to be minimized with the GA:

O, = L(neto, ) where L(x)=X

s 0B =307 + 00030

kel Np
10)
where: (
Ypl(k) is the first output of the plant at
sample k.

Ymrl(k) is the first output of the linear
model reference at sample k.

Yp2(k) is the second output of the plant
at sample k.
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Ymr2(k) is the second output of the
linear model reference at sample k.

Np is the number of the training patterns.
Since the GA maximizes its fitness
function, it is necessary therefore to map
the objective function (MSE) to a fitness
function. It is used objective —to- fitness
transformation is of the form [8, 9, and
10].

1

objectivefunction + p

fitness =

(11)

Where uis a constant chosen to avid
division by zero.

4-Neural Networks Controller

The control of the multi-variable
linear system is considered in this
section. The approaches used to control
the system undepend on the information
available about the system “does not use
identification to the system”. The
feedback neural controller is very
important because it is necessary to
stabilize the tracking error dynamics of
the system when the output of the system
is drifted from the input reference. The
feedback neural controller is used based
on the minimization of the error between
the model reference & the actual output
system in order to achieve good tracking
of the reference signal with minimum
time and to use minimum effort. In
direct model reference  adaptive
controller (MRAC) with parallel model
reference used here for the feedback
neural  controller, the adjustable
parameters of neural network controller
are adapted by genetic algorithm
technique [11]. The integrated control
structure that consists of the model
reference and neural controller type
modified Elman recurrent neural
networks thus brings together the
advantages of the neural model with the
robustness of feedback. The general
structure of the neural controller can be
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given in the form of the block diagram
shown in figure (5).

S-The Proposed Algorithm For The
Neuro-Controller Type  Modified
Elman Recurrent Neural Networks
The following genetic procedure
is introduced for training the modified
Elman  recurrent  neural  network
controller for the (MIMO) plant to track
the reference model trajectory:
Step 1: Initialize the genetic operators:
the crossover probability Pc, the
mutation probability Pm, the population

size, and the maximum number of
generations.
Step 2: Generate the initial population
randomly.
Step 3: For each individual in the
population, compute the objective

function MSE, and then calculate the
fitness function as in equation (25),
where g will be chosen as an input
coefficient equal to 1.

Step 4: Put in descending orders all the
chromosomes in the current population.
Step 5: Select individuals using hybrid
selection method (Roulette Wheel plus
deterministic selection). The real coded
genetic operators of mutation and
crossover (single point) is applied. '
Step 6: Stop if a maximum number of
generations of genetic algorithms are

achieved, otherwise increment the
generations by one and go to Step 3.
S- Case Study

In this section, the wvehicle

parameters as appendix (2) is taken to
clarify the features of the neural
controller explained in section three and
applied the algorithm in section four.
And convert the state space equation (2)
that is described the system to the linear
discrete-time invariant systems [12] in
order to easy solves the algorithm in
section four.
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x(k +1) = Gx(k) + Hu(k) (12)
where x(k) is the state vector, u(k) is the
input vector, and T is the sampling period
The matrices G and H depend on the
sampling period T “once this period is
fixed, G and H are constant matrices”.

G(T)=e" (13)

H(I)=([e""dr)x B (14)

After substitution the parameters of the
vehicle in appendix (2), in the equation
(2) and then convert to the linear
discrete-time  equation  when  the
sampling period T is equal to 0.1sec by
using equations (14 & 15). The system
has three cases because the vehicle
velocity U is changed to (10, 20 & 30)
m/sec.

In order to overcome a numerical
problem that is involved within real
values. Scaling function has to be added
at the neural network terminals to
convert the scaled values to actual values
and vice versa. Therefore the signals
entering to or emitted from the network
have been normalized to lie within (-1 &
+1).

In this simulation, the proposed control
scheme is applied to the vehicle model
and the real-coded genetic algorithm is
set to the following parameters:
Population size (N, ) is equal to 60.

Crossover Probability (Pc) is equal to
0.8.

Mutation Probability (Pm) is equal to
0.05.

Maximum number of generations is
1500.

The training pattern (Np) used was taken
as 250 as the desired trajectory. The
modified Elman recurrent neural
networks are used to minimize the
performance error between the model
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reference and the actual output. The
equation of the model reference for the
two outputs is taken from [13] for more
stability and without any oscillation in
the response:
Ve (k+1)=0.1y, (k) + 0.9y, (k +1)
(15)
Convergence is achieved when the
performance error falls below a pre-
specified value.
enrr(k+1)=yn:r(k+l)hyp(k'*'l)

(16)
where e, (k) is the model reference

error output.
The performance of the proposed
controller is evaluated using the closed-
loop step lateral velocity and yaw rate
responses for linear discrete-time model
as equations (14 & 15). The desired
lateral velocity must be zero to over
come the vehicle may rotate around
itself at high vehicle velocity. And
desired yaw rate must be verified:
U
(ry 2 ) (17)
where R is curvature radius.
After training it can be observed that the
actual output of the system is following
the desired trajectory (model reference)
can be shown as the figure (6 & 7).
Where the figure (6) is the yaw rate
response and its fast response with no
overshoot and steady-state error is zero
and the transient time is approximately
equal to 0.1 sec when the vehicle
velocity is change as (10, 20, & 30)
m/sec with fixed curvature radius equal
to 100m.
Figure (7) is the lateral velocity response
that has fast response with very small
magnitude  oscillation  range  of
(£1.35x107") approximately equal to
zero as the desired lateral velocity to
over come the vehicle may rotate around

itself when the vehicle velocity is change
(10, 20, & 30) m/sec with fixed
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curvature radius equal 100m. The
robustness of feedback neural control
action will be kept the maximum
magnitude of the lateral velocity in the
transient  response is equal to

(£1.35x107") m/sec when the velocity
of the wvehicle is changed and
achievement the desired lateral velocity
and yaw rate.

The yaw rate control and the lateral
velocity can be achieved by two
feedback control action “the front
steering angle and rear steering angle” as
shown in figures (8 & 9). The error
between the two desired outputs and the
two actual outputs of the system is very
small as shown in figure (10 & 11)).
Figure (12) is described the best
objective function MSE for the MIMO

system.

6-Conclusions

The structure of the modified
Elman recurrent neural network as an
adaptive  controller with  geneitic
algorithm learned as the ' proposed
structure of controller and successfully
simulated to multi-input multi-output
linear system as the example. Using
feedback neural controller to control the
front and rear wheels steering, So that,
the output of the system lateral velocity
and yaw rate follows the output of the
predefined desired inputs “model
reference” and genetic algorithm is used
to learn the controller with minimum
time and more stability of the controller,
The proposed control structure has
shown the ability to minimize the error
between the desired output model
reference and the actual output of the
system as well as the control action,
excellent set point tracking, as it was
clear when applied to the example.

Appendix (1)

Nomenclature
a= distance from the center of mass to




HCCCE, VOL.6, NO.1, 2006

front axle

b= distance from the center of mass to
rear axle

C,= tire cornering stiffness
g= acceleration of gravity

I= vehicle moment of inertia
M= vehicle mass

I= yaw rate

r, = desired yaw rate

R= curvature radius

U= vehicle velocity

V= lateral velocity

Y = road-tire interaction force

«, =wheel slip angle
O, =steering angle

n, =wheel traveling direction

Appendix (2)
Vehicle nominal parameters
M=1000Kg
a=1m
b=1.5m
[=1500Kg m*
C',=55000 N/rad
C,=45000 N/rad
U= 10, 20 & 30 m/sec

R=100m
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Fig (1): Schematic of the mathematical vehicle model
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Fig (7): Lateral Velocity response (m/sec)
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Fig (12): The best mean square error for the system MIMO
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