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Abstract

A neural network-based feedforward controller and self-tuning PID controller
with optimization algorithm is presented. The scheme of the controller is based on two
unknown models that describe the system and optimization algorithm. These models are
modified Elman recurrent neural network and NARMA-L2. The modified Elman
recurrent neural network (MERNN) model and NARMA-L2 model are learned with
two stages off-line and on-line, in order to guarantee that the output of the model
accurately represents the actual output of the system. The aim from the NARMA-L2
model is to find the Inverse Feedforward Controller (IFC) which controls the steady-
state output of the system. The MERNN model after being learned is called the
identifier. The feedback PID self tuning control signal for N-step ahead can be
calculated the PID parameters by using the optimization algorithm with the quadratic
performance index which is quadratic in the error between the desired set point and the
model output, as well as quadratic of the control action. The paper explains the
algorithm for a general case, and then a specific application on non-linear dynamical
plant is presented.
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1- Introduction

The application of intelligent
techniques to control systems has been a
matter of wide study in recent years.
These methods are used to solve
complex problems that, in many cases,
do not have an analytical solution.
Neural networks (NNs), due to their
ability to learn, have become a powerful
tool in the development of the control
systems. In fact nowadays, a new branch
in control theory has arisen: Neuro
control. This discipline studies the
design of control systems aided by NN.
Although in the process industry simple
conventional controllers such as the PID
have largely been extended, and show
good performance for many tasks, when
the plant or the process under control is
complex or has high non-linearities.
The control performance degrades
notably [1]. This section gives a general
overview of using neural networks in
control systems and describes briefly a
number of applications in this field. The
neural network model can be used in
control strategies that require a global
model of the system forward or inverse
dynamics, and these models are
available in the form of neural networks,
which have been trained using neural
based system identification techniques.
Papers by: Narandra andParthasarathy
[2,3], Levin and Narandra [4] are some
of those that can be referred to as the
application of neural networks for
system identification. Also Noriega &
Wang [5] for general unknown nonlinear
systems present a neural-network-based
direct adaptive control strategy in the
paper where a simplified formulation of
the control signals is obtained of a
feedforward neural network and an
optimization scheme. The reason of
study by the researchers is motivated by
simplicity to implement the PID control
in the industrial environment, by
easiness of utilization by engineers and
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process operators, and by acceptance in
the industrial sector [6]. Some
approaches proposed in the literature for
deriving PID controllers are using self-
tuning control techniques based on
recursive parameter estimation, others
are using automatic control techniques,
and others are using intelligent control
techniques. Despite the huge
development in control theory, the
majority of industrial processes are
controlled by the well-established
proportional-integral-derivative ~ (PID)
control. The popularity of PID control
can be attributed to its simplicity and to
its good performance in a wide range of
operating conditions. In the last decade
years, significant development has been
established in the process control area to
adjust the PID controller parameters
automatically, in order to ensure
adequate servo and regulatory behavior
for a closed-loop plant [7,8,9]

The organization of the paper is as
follows: Section two describes the use of
feedforward neural networks to learn to
act as input-output model. Two models
(modified  Elman  recurrent  and
NARMA-L2) for system identification is
examined with the corresponding neural
nets and learning mechanism used for
this purpose. Section three represents the
core of the present paper, and it is
suggested using a feedforward neural
controller and a feedback self tuning PID
controller with optimization algorithm
that will attain specific benefits towards
a  systematic  engineering  design
procedure for neural control system.
[llustrative example, that clarify the
features of the proposed strategy are
given in section four, where an example
is discussed in detail. Finally, section
five contains the conclusions of the
entire work.

2- Identification of Dynamical Systems
Using Neural Network Modeling
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This section focuses on nonlinear
system identification using two models
of multi-layered feedforward neural
network, the first one 1s modified Elman
recurrent model and the second is
NARMA-L2 model. The neural network
is trained wusing Dynamic Back-
Propagation Algorithm. A feedforward
neural network can be seen as a system
transforming a set of input patterns into a
set of output patterns, and such a
network can be trained to provide a
desired response to a given input. The
network achieves such a behavior by
adapting its weights during the learning
phase on the basis of some learning
rules.

2-1 Recurrent Neural Networks

The Recurrent neural networks
RNN structures are suitable to channel
equalization and multi-user detection
applications, since they are able to cope
with channel transfer functions that
exhibit deep spectral nulls, forming
optimal decision boundaries and are less
computationally demanding than MLP
networks for these applications [10].
Among the available recurrent networks,
modified Elman networks as shown in
Fig (1) 1s one of the simplest types that
can be trained using dynamic BP
algorithm and it used to minimize the
oscillation or even instabilities to the
training controller. The output of the
context unit in the modified Elman
network is given by:

he(k)=ah(k—=1)+ Bh, (k-1)

(D
where h](k) and h, (k)are respectively
the output of the context unit and hidden
unit and o 1s the feedback gain of the
self-connections and fis the connection
weight from the hidden units (c’th)to the
context units (c’th) at the context layer.
The value of a and [ are selected
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randomly between (0 and 1). From the
figure (1) it can be seen that the
following equations:

h(k)= F{V1U(k),V2h° (k)} )
O(k) = Wh(k) (3)

where V1,V2 and W are weight matrices
and F is a non-linear vector function.
The multi-layered modified Elman
neural networks shown in figure (1) that
is composed of many interconnected
processing units called neurons or nodes.
where:

V' 1: Weight matrix of the hidden layers.

V' 2: Weight matrix of the context layers.
W : Weight matrix of the output layer.

L : Denotes linear node.

H: Denotes nonlinear node with
sigmoidal function.

To explain these calculations, consider
the general j’th neuron in the hidden
layer shown in figure (2). The inputs to
this neuron consist of an ni -
dimensional vector and (ni is the number
of the input nodes). Each of the mputs
has a weight V1 and V2 associated with
it. The first calculation within the neuron
consists of calculating the weighted sum
net ; of the inputs as [11]:

nh C
net, =Y V1, xU,+>.V2, xh
i=1 c=1

4)
Where
J=c.
nh=C number of the hidden nodes and
context nodes.

Next the output of the neuron #7;is

calculated as the continuous sigmoid
function of the nef; as:

h;=H(net;) (5)

—net j

2
H(net; ):? -1 (0)
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Once the outputs of the hidden layer are
calculated, they are passed to the output
layer. In the output layer, a single linear
neuron is used to calculate the weighted
sum (neto) of its inputs (the output of the
hidden layer as in equation (7)).

nh
neto, = Zij xh, (7
=1

Where W, is the weight between the
hidden neuron #; and the output neuron.
The single linear neuron, then, passes the
sum (neto , ) through a linear function of

slope 1 (another slope can be used to
scale the output) as:

O, = L(neto, ), Where L (x)=x

(®)
The learning (training) algorithm is
usually based on the minimization (with
respect to the network weights) of the
following objective cost function as
equation (9).

Ez%Z(é(kH))z :%Z()é(k+1)—yl;(k+l))2
©))

where np is number of patterns, e'is the
error of each step, y ; is the actual output

of the plant of each step and yl’ is the
model output of the plant of each step.

2-2 NARMA-L.2 Model Identification

Narendra and Mukhopadhyay in
their ~paper [12] proposed two
approximation  input-output  models
(referred to by Narendra as NARMA-L1
and NARMA-L2) derived from the
NARMA model, in which the control
input appears linearly. The NARMA-L2
model requires only two neural networks
to approximate the function f and g.

(k1) =y, (), ..y, (k—n-+ Du(k—1),...u(k—n-+1)]
-l-g[Yp(k)"'Yp(k_n+l)au(k_l)a-- .u(k-l’l+1)]XU(k)
(10)
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The identification model of NARMA-L2
model can be better illustrated as Fig (3),
where X is represents the input vector of
the networks N1 and N2 (the argument

of ?[—] and g[—]). The same cost

function in equation (9), is used for the
learning algorithm that is usually based
on the minimizing (with respect to the
network weights) of the objective
function.

Ez%Z(é(kH))z =%Z(){,(k+1)— y2 (k+1)y

(11)
From Fig (3), it is important to note that
the error between the desired output and
the estimated neural network output
needed to apply a supervised learning
algorithm which is not available at the
output N1 and N2. Hence, a Iittle
modification must be done to fit the
algorithm to our case. This can be
simply done by back-propagating the
error at the output of the NARMA-L2
model (between y , (k+1) and y2 , (k+1))

to the output of N2 after multiplying it
by u(k) and to the output of N1 directly.
Figure (4) illustrates the error back-
propagation and one can think of u(k) as
a weight at link2.

3- The Controller Design

The control of nonlinear plants is
considered in this section. The approach
used to control the plant depends on the
information available about the plant and
the control objectives. The information
of the unknown nonlinear plant can be
known by the input-output data only and
the plant is considered as (modified
Elman networks model and NARMA-
L2). The first step in the procedure of the
control structure is the identification of
the plant from the input-output data, and
then a feedforward neural controller is
used as the inverse of the plant. Also a
feedback PID self tuning controller is
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used based on the minimization of a
quadratic performance index function of
the error between the desired input and
the actual output plant and of the
feedback PID controller itself. An
optimization algorithm is used to
determine the control signal for N-steps
ahead which will minimize the cost
function in order to achieve good
tracking of the reference signal and to
use minimum effort. The integrated
control structure that consists of the
inverse of the plant, feedback self-tuning
PID controller with an optimization
algorithm and the series model
reference, thus brings together the
advantages of the inverse method with
the robustness of feedback. The general
structure of the neural controller can be
given in the form of the block diagram
shown in Fig (5).

In the following sections, each part of
the proposed controller will be explained
in detail.

3-1 Feedforward Neural Controller
FENC

The feedforward neural
controller is very important in the
structure of the controller, because of its
necessity to keep the steady-state
tracking error to zero. This means that
the action of the (FFNC) u (k) is to put
the output of the plant as the reference
input in steady state. Hence the (FFNC)
is supposed to learn the nverse dynamic
of the plant and so it is called inverse
feedforward controller (IFC). To achieve
this a neural using NARMA-L2 model
equation (10) as explained in section two
uses network for identification of the
plant. When identification of the plant is
comglete then g[-] can be approximated
by g-] and f-] by f[-] and the
NARMA-L2 model of the plant can be
described by equation (12) below:
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Yok +D) = Ty ()~ 4, (k.o (k]

+g[yp(k),...,yp(k—n +1),up(k—0),...u5(k—n+1)]xug k)

(12)
Likewise if g[—] is sign definite in the
operating region then the network can be

used as the inverse of the plant as given
by equation (13).

YeerKAD 1, (9, .3, -0+ D, ugr (k1) (k- +)]

ugk) =
oy K,y (k=0 ), (1), . 1 (k—n-+1)]
(13)
The sign definiteness of ;-3 1in the

operating region (the region of interest)
ensures the uniqueness of the plant
inverse at that operating region [12].
Now by using equation (12) as the model
of the plant identifier and equation (13)
as the inverse mapping of the model,
then these form the feedforward neural
controller. The training of the inverse
dynamic is done off-line and on-line.
After the neural network has learned the
inverse dynamic then u (k) is the control

action required to keep the output of the
plant at the reference value at steady
state, hence it will be called equivalently
as U .

3-2 Feedback Self-Tuning Controller
(PID)

The feedback self-tuning PID
controller is also important because it is
necessary to stabilize the tracking error
dynamics of the system when the output
of the plant is drifted from the input
reference. The feedback PID controller
consists of an on-line neural identifier
and an optimization algorithm. The goal
is to find the feedback control action that
minimizes the cumulative error between
the reference input and the output of the
plant as well as a weighted sum of the
control signal. This can be achieved by
minimizing the following quadratic
performance index [13].
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1N

J= X QWrer(k +D =y, (k-4 D) + R(uey(k) —u())’
(14)

u,.¢(k) is the reference control action and

it is equivalent to ug (k).

uk)is the total

=ug (k) Tug (k)

ug (k) 1s the feedback control action.

control  signal

Yo (k+1) 1s the reference mput.

(Q, R) are positive weighting factors
N is number of steps ahead

Hence:
Uper (k) = ugr (k) (15)
u(k) = ug (k) tug (k) (16)

Substituting equation (15) and (16) in
(14) then J will be given:

J:% é(Iyref(kH) —y(k+DY +Rug (k) —(ugr(R)+ug (k)
(17)

Qe (k+ 1) =y, (k +1)* + R(ug (k)

(18)
This quadratic cost function will not
only force the output to follow the
reference mput by minimizing the
cumulative error N steps ahead but also
forces the control action in the transient
period to be as close as possible to the
reference control signal. Also J depends
on (Q and R) which are positive
weighting factors. Hence the control
action found will be optimal with respect
to the given set of wvalues of the
weighting factors Q and R [13 &14].
The on-line identifier of the plant is to be
used to obtain the predicted values of the
output of the plant N steps ahead instead
of running the plant itself N steps. These
values are needed to calculate the
feedback PID control action from the
parameters Kp, Ki and Kd by the
optimization algorithm such that the
quadratic performance index J will be
minimized. Also on line identification is
required to make yl, (k) the output of

J:

N | =
gz
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the identifier as close as possible to the
plant output y, (k). A feedforward neural

network will be used as an identifier and
two stages of learning of this neural
network will be performed. The first
stage is an off-line identification and the
second stage is an on-line modification
of the weights of the obtained identifier
to keep track of any possible variation of
the plant parameters. Therefore it can be

said W, (k)y=y, k), and the

performance index of equation (18) can
be put as:

/= ; ZQ(yref/'(k + 1) _ylm (k + 1))2 + R(u_/b (k))z

(19)
I N 2 2
I=7 ZQek+ D) +Riup(k))
(20)
e(k+1) =y, (k+1)=yl, (k+1)
2D

In this work a one hidden layer
feedforward neural network is used for
the 1dentifier, hence

nh

v, (k+1)=LO W, h, + W, xbias) = L(neto)
j=1

(22)
The single linear neuron, then, passes the
sum (neto) through a linear function of
slope (1). Where the activation function
of the hidden layer is a sigmoidal
function and the output layer is a linear
function [15]. Dynamic back
propagation algorithm (BPA) is used to
adjust the weights of the MERNN to
learn the dynamics of the plant, and a
simple gradient decent rule is used. After
the identifier learns the dynamics of the
system then the whole structure of the
controller as shown in Fig (5) will be
implemented.

nh+1

3-3 The Series Model Reference

The model reference is used to
overcome the harmonics of the step
change in the set point desired and to
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reduce the spikes of the control action of
the feedforward neural controller [13 and
16]. Therefore the transient time of the
plant is reduced and the overshoot is
decreased. The model reference in the
structure of the controller may be chosen
as the difference equation (23):

Vg (k+D)=(1=0)y 4 (k +D) + 0%y, (k)

(23)
And o 1s the tuning parameter. To
ensure that the model reference is stable
and to avoid ringing, the tuning
parameter should be chosen as
0<o<I1[l6and 17].

Algorithm description of one step
ahead control action
In this section, the feedback PID

control signal u , (k +1) will be derived

for one-step ahead depended on the
parameters of the PID controller, that is
when N=1.

Where:
u, (k+1)=ug (k)+Kp(k+1)[e(k+1)-e(k)
+Ki(k +1)e(k +1)
+Kd(k + D[e(k+1)-2e(k) +e(k -1)]

(24)
Where Kp, Ki, and Kd denote the PID
gains.

Kp(k +1) = Kp(k) + AKp(k) (25)

Ki(k +1) = Ki(k) + AKi(k) (26)

Kd(k +1)= Kd(k) + AKd (k) 27)

oJ

AKp (k) = — 28
p(k)=-n oKp () (28)

But:

W [;Qa(e(k 1)y ;Ra(u;,,,(k))zl

Tokptey - ™ ko) oKp(k)
(29)
Where:
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ek +1)=y, (k+1)—yl, (k+]1)

(30)
By the chain rule of differentiation we
have

ek +1)* _ae(k+1)" oyl (k+1)

oKp(k) oyl (k+1)  oKp(k)
= 2e(k +1) x %
(31)
And
O(u 4, (k))’
LA -
Koot e(k +1) — e(k)
(32)

Hence equation (29) becomes

s o (k+1)
P S P ons

+ R(e(k+1)—e(k)]

(33)
For the two-layer modified Elman on-
line neural network identifier shown in
Fig (1) we have:

oyl, (k+1) 0OL(neto) 8 Oneto

OKp (k) Oneto OKp (k)
(34)
For linear activation function output
OL(neto) 1
Oneto
L, (k+1) _ dneto Oh;
OKp(k) oh,  OKp(k)
(35)
oyl, (k+1) _ lxiW Oh, y Onet

OKp(k) ="/ onet, 0oKp(k)
(36)
oh; 1 ,
Where 6netj» =5[1—(hj)2]=H(netj)

]
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nh 6]/1 ‘
Ol | Sy g 21 )
OKp(k) = 7 ou(k) oKp(k)
(37)
Pt =1xfW x H'(net))xV, g B+, ()
OKplk) = o Kp(k)

(3%)

5)’611,21(9121:)1) =1 xiW/ x H'(net,)xV, x[e(k +1)—e(k)]

(39)

Where the V', ’s are the weights of the

u(k) only [17].

Hence: -
nh

AR =[Ok +1)Y W, x H (nep) <V, x(elk+1) ~(k)]

J=

—[nxRx(e(k+1)—e(k)]

(40)
AKi(k) = [nOe(k + 1)5}1“(W/. x H'(net;) <V, x (e(k +1)]
—[nxRx(e(k+1)]
(41)

AKd (k) =[nQOe(k + 1)§(Wj x H'(net,)x V,

x (e(k +1) = 2e(k) + e(k —1)]
—[x Rx(e(k +1)—2e(k) +e(k—1)]

(42)
For N steps-ahead algorithm of the
feedback PID control action can be
descripted in appendix.

4- Case Study
In this section, an example is

taken to clarify the features of the neural
controller explained in section three and
applied the algorithm for One-step ahead
and five-steps ahead.

The plant to be controlled is described
by the difference equation:

- 0.9y, (k) +u(k)
1+ y;(k)

This plant has been adopted from [13
and 18]. For the open loop response of

y,(k+1)= (43)
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the plant y (k) to the input signal u(k)

is shown in Fig (6-a and b) respectively.
The plant response is very oscillatory for
the low amplitude input and shows limit

cycle oscillation for ‘u(k)|> 0.6 [13 and

18]. To use the proposed controller first
a neural network is trained for the
feedforward  controller, then the
feedback controller is established.

The Feedforward Controller

To identify the plant dynamics, series-
parallel identification structure as that in
Fig (3). The model is described by:

y2,(k+D)=Nly,(k)]+ N2y, (k)] xu(k)

(44)
Where N1[-] and N2[-] are multi-layered
neural networks which approximate f;-;
and 4;-; of the (10)
respectively. Since each of NI[-] and
N2[-] has one inputs (see equation
(44)), the initial guess of the number of
hidden nodes was three for each
network. An input-output training
pattern is needed to provide enough
information about the plant to be
modeled. This can be achieved by
injecting a sufficiently rich input signal
to excite all process modes of interest
while also ensuring that the training
patterns adequately covers the specified
operating region. A hybrid excitation
signal has been used for the plant that
the input signal consisted of random
amplitude signal with range (-1 to +1).
After identification series-parallel
configuration for many times a neural
network with three hidden nodes gives
fairly good generalization capabilities as
shown in Fig (7-a and b). When the
training is continued up to 4000 epochs
ASE equals 3.1x10°°. The plant

Jacobian N2[-] =g[-] is sign definite in
the region of interest. And then applied

parallel configuration identification with
initial the same finishing weights in a

equation
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neural network with three hidden nodes
in the series-parallel configuration gives
fairly  very good  generalization
capabilities when the training is
continued up to 3000 epochs ASE equals
1.1x10°°. An on-line updating of the
weights of the neural network will be
carried out to ensure the output of the
model will be equal to that of the plant,
so that calculation of u, will be fairly

accurate. This means that the plant is
invertable and a controller of the form of
equation (45) can be implemented.

Vo (k+1) = N1[y2, (k)]
N2y2,(K)]

u, (k)=

(45)
Where y, . (k+1) is the output of the

model reference.

Feedback Self-Tuning PID Controller

For off-line identification with series-
parallel configuration a model described
by modified Elman neural networks as
shown in Fig (1). BPA with learning rate
n=0.2for N[-] and the input-output

patterns as a learning set, then after 5000
epochs the ASE is equal to 3.5x10°.
Figure (8-a and b) compares the time
response of the model with the actual
plant output for the u(k) as learning set
and testing set respectively. And then
applied parallel configuration
identification with initial the same
finishing weights in a neural network
series-parallel configuration gives fairly
very good generalization capabilities
when the training is continued up to
4000 epochs ASE equals 1.1x10°°. An
on-line updating of the weights of the
neural network will be carried out to
ensure the output of the model will be
equal to that of the plant, so that
calculation of u, by the optimization

algorithm will be fairly accurate.

100

Neural Networks for Optimal Selection of The PID
Parameters and Designing Feedforward Controller

Simulation Results
In this simulation, the proposed control
scheme is applied to the plant model.

For one step ahead N=1
The equation of the model reference is
taken from [13 and 17] is:

yref (k + 1) = 03yref (k) + 0'7ydes (k + 1)
(46)

When the tuning parameter of the model
reference is equal to (0.3). The response
of the plant model is fast without
overshoot and steady-state error is zero
as shown in Fig (9). The response of the
NARMA-L2 model and modified Elman
model as shown in Fig (10). The
feedforward control action is reach to 0.6
amplitude valve as shown in Fig (11)
that without the output plant model
became oscillatory. The feedback PID
control action has small value with
respect to the feedforward control action
but it has small spikes when the output
desired is step change as shown in Fig
(12). The total control action as shown in
Fig (13). Figures (14-a, b, and c) the
values of the PID controller parameters
Kp, Ki, and Kd respectively. That
calculated from the optimization
algorithm for one-step ahead and there
are depended on the parameter of the
quadratic performance index (Q=1 and
R=1) and the error between the reference
output and the modified Elman model
output. To study the effect of the
parameters (Q and R) on the calculation
the PID parameters Kp, Ki, and Kd as
equations (40, 41, and 42). Then find the
response of the feedback PID control
action. The parameter of the quadratic
performance index (Q=1 and R=0) the
response of the plant model is fast with
small overshoot for ten samples. And
steady-state error is zero as shown in Fig
(15). The feedback PID control action
has small value but it has small spikes as
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shown in Fig (16). The total control
action as shown in Fig (17). The PID
controller parameters Kp, Ki, and Kd as
shown in Figures (18-a, b, c). When the
parameter of the quadratic performance
index (Q=0 and R=1) the response of the
plant model is fast with small overshoot
for fourteen samples. And has steady-
state error as shown in Fig (19). The
feedback PID control action has small
negative value with very small spikes as
shown in Fig (20). The total control
action as shown in Fig (21).The PID
parameters Kp, Ki, and Kd as shown in
Figures (22-a, b, ¢).

For Five step ahead N=5
The response of the plant model is fast
without overshoot and steady-state error
is zero when the optimization algorithm
is generate five steps ahead with
parameter of the quadratic performance
index (Q=1 and R=1) as shown in Fig
(23). The feedforward control action as
shown in Fig (24). The feedback PID
control action as shown in Fig (25) with
very small spikes. The PID controller
parameters Kp, Ki, and Kd as shown in
Fig (26-a, b, c). After each sampling
time the weights of the on-line identifier
“modified Elman Neural networks” and
NARMA-L2 model are updated in order

to minimize the error between y,,

yl,and y2 = by using Back Propagation
Algorithm.

5- Conclusion

The structure of the neural
controller ~ with an  optimization
algorithm based on modified Elman and
NARMA-L2 neural models as well as
the calculation of feedforward and
feedback PID control action has been
designed and successfully simulated to
the nonlinear system. The calculation of
feedback PID control action for N steps
ahead is based on the minimization of a
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quadratic performance index of the error
between the desired output and the
model output (modified Elman neural
network) as well as the control action.
The on-line identifier modified Elman
neural neural network model of the plant
is used to generate the parameters of the
PID controller (Kp, Ki, and Kd) control
action with on-line updating of the
weights of the identifier by using (BPA)
in order to guarantee that model output
approaches the actual output. Using
neural NARMA-L2 model as a nonlinear
model of the plant provides a simple
check on the model invertability, which
appears to be of critical importance as it
is used for the inverse feedforward
controller. On-line updating of the
weights of the NARMA-L2 model using
dynamic (BPA) guarantees that model
output approaches the actual output.

Appendix

N Steps Ahead Optimization

Algorithm
The N steps estimation of u, will be

calculated for each sample. Since the
modified Elman neural network model
as given by equations (2 and 3)
represents the plant to be controlled
asymptotically, it can be used to predict
future values of the model output for the
next N steps, and can be used to find the
optimal value of u, using an

optimization algorithm that calculated
the parameters of the PID feedback
controller Kp, Ki, and Kd. For this
purpose, let N be a pre-specified positive
integer and denote:

Yreft,N - [yref(t + 1)’yref(t + 2)"'-9yref(t + N]
(46)

as the future values of set point and (t)
represents the time instant, and

Ylmt,N :[ylm(t +l)’ylm(t +2)”ylm(t +N]
(47)
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as the predicted outputs of the model of
the plant using the modified Elman
neural network model. Then define the

following error vector:

E, y =[e(t +1),e(t +2),...,e(t + N]

(48)
where:
e(t+i)=y,,(t+0)—yl,(t+1)
i=12,....N

(49)

Defining the feedback control signals to
be determined as:

U}bt,N =[u'y (),uy (¢ + 1), (t+ N = 1)]
(50)
Kp'y, . =[KD'(©),Kp'(t+1),...Kp'(t+ N =1)]

(51)
Kiy,  =[Ki'(t),K'i(t+1),....Ki'(t+ N -1)]
(52)
Kd,,  =[Kd'(t),Kd'(t+1),....Kd'(t+ N ~1)]

(33)
And assuming the following objective
function:
1 1 , ,
J1 :EQE,’NEI’NT +RU ’

Sor N oy N

(54)
Then our purpose is to find Kp', Ki', Kd'
such that JI is minimized using the
gradient descent rule, so that the new
parameters of the PID control action will
be given by:

Kpt,,NK+l = Kpt,,NK + AKP;,NK (55)
Kil )" =Ki * +AKi! " (56)
Kd, "' =Kd|," +AKd]," (57)

where k here indicates that calculations
are done at the kth sample; and

’ < 6J1 ’ ’ ’
AKp! [ =-n =[AKp'(t),AKp'(t +1),..AKp'(t + N —1)]

oKp! [~ -
(58)

’
t,N
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AKi' S =—n ol — =[AK7'(¢), AK'i(t +1),.. AKi'(t + N = 1)]
’ Ki!
(59)
AKd,,* = fnaa]% =[AKd'(), AKd'(t +1),.. AKd'(t + N —1)]
(60)
oJ1 6Y1mw 6Uﬂ,th
_n r K :nQEtﬂN r K _nR r K
OKp; x OKp, OKp,
(61)
Where:
(oL, (t+) O, +2) a1, @+3) o, +N) |
O O O T O
9L,t+2) o, (+3) L, +N)
orl,, , A+ AP+ T A+
an s 0 o LD ALEN
: ohp'(t+2) Ap(t+2)
0 0 0 0 _L+N)
L Op'(t+N-1) |
(62)
[ (t+) A t+2) an,@+3) e+ |
ape o o T o
alﬁ?(t +2) al,fb (t+3) alﬁ;(t +]V)
Uy, Ap+) e+ T dple)
- L . 0 Ay (t+3) aut+N)
1N ago'(t +2) e 8@'@ +2)
. N N N al t
0 0 0 o 2N
L dpt+N-1) |
(63)

It can be seen that each element in the

above matrix can be found by
differentiating (2 and 3) with respect to
each element in (51) as a result, it can be

obtained that:

M (+n) _ oF(p) +Z] oF(p) { o, (+i) }
aKp(t+j-1) akpe+j-1) o1, +i) |akp@+j-1)
n=123..N
j=123..N

(64)
where P is the input pattern
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P=[u(t),u(t-1),,u(t-n+1), ylm(t), ylm(t1),
Lylm(t-nt1)]

aJl

To calculate the —p
oKi! *

as the same equations (61, 62, 63 and 64).
Equation (62) must be calculated using
equation (64) every time a new control
signal has to be determined. This could
result in a large computation for a large
N.

Therefore a recursive method for
calculating the gain matrix is developed
in the following, so that the algorithm
can be applied to real-time systems.
After completing the procedure from
n=1 to N and from j=1 to N the new
control action for the next sample will be

up (t+ N)=ul“(t+ N-1)+Kp/ (e -ety)
1k k
+ K1;’N €N

+Kdi\ (el -2¢ey +ern (65)

u(k+1)=u,(k+1)+u," (t+N)
(66)

Where u"fbk(t+N) is the last value of

the feedback PID controlling signal
calculated by the optimization algorithm,
that is N-step ahead of control signal is
calculated. This is calculated at each
sample time k so that u(k+1) is applied
to that plant and the model at the next
sampling time. Then we continue to
apply this procedure at the next sampling
time (k+1) until the error between the
desired mput and the actual output
becomes lower than a specified value.
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Fig (1): The Modified Elman Recurrent Neural Networks
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Fig (2): Neuron j in the hidden layer.
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Fig (5): General structure of neural controller
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Fig (6-b): The corresponding input signal
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Fig (7-a): The response of the plant and of the
series-parallel NARMA-L2 identification model for
learning patterns and the estimated plant Jacobain
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Fig (7-b): The response of the plant and of the
series-parallel NARMA-L?2 identification model for
testing patterns and the estimated plant Jacobain
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Fig (14-b): Ki gain of the PID Controller for
Q=1 & R=1

Neural Networks for Optimal Selection of The PID
Parameters and Designing Feedforward Controller

0.01
0.005
x
) 0
=]
-0.005
0.01
0 50 100 150 200 250 300 350 400 450 500
K
Fig (12): The feedback control signal for
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Fig (14-a): Kp gain of the PID Controller for
0=1 & R=1
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Fig (14-¢): Kd gain of the PID Controller for
Q=1 & R=1

108



IJCCCE, Vol.6, No.2, 2006 Neural Networks for Optimal Selection of The PID
Parameters and Designing Feedforward Controller

05 0.01
0.3 -
—_ 0.005 1
=
£ 01 =
o3 =
= g 0
? 01 3
T
> 0.005 |
0.3 | ’
05 0.01
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
—————— Desired output g K
Plant response
Fig (15): Desired output tracking for Fig (16): The feedback control signal for
one-step ahead with Q=1 & R=0 Q=1 & R=0
1.005
0.7
0.5 - [_
0.3 -
x
= 01 £ —_
= ¥
0.1 1
0.3 |
0.5 |
W
0.7
0 50 100 150 200 250 300 350 400 450 500
Fig (17): The total control signal for Fig (18-a): Kp gain of the PID Controller for
Q=1 & R=0 Q=1 & R=0
0125 01005
0.1004 |
0115 | 01003
= =
g s
X 0.1002 |
0.105 -
0.1001 |
0.095 041
0 50 100 150 200 250 300 350 400 450 500 0 50 100 130 200 250 300 350 400 450 500
K
K
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Fig (19): Desired output tracking for
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Fig (22-b): Ki gain of the PID Controller for
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Fig (20): The feedback control signal for
Q=1 & R=0
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Fig (22-a): Kp gain of the PID Controller for
Q=0 & R=1
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Fig (22-¢): Kd gain of the PID Controller for
Q=0 & R=1
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Fig (23): Desired output tracking for five-step
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Fig (25): The feedback control signal for
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Fig (26-b): Ki gain of the PID Controller for
five-step ahead with Q=1 & R=1
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Fig (24): The feedforward control signal for
five-step ahead with Q=1 & R=1
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Fig (26-a): Kp gain of the PID Controller for
five-step ahead with Q=1 & R=1
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Fig (26-c): Kd gain of the PID Controller for
five-step ahead with Q=1 & R=1
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