Parallel Kalman Filtering for Real-Time Signal Identification

Dr. Walied A. Al-jouhar* & Dr. Assma’a K. Sharief**

Received on: 28 /4 / 2004
Accepted on: 7/10 /2004

Abstract

The applicability of Kalman filter (KF) to real-time signal processing problems is
limited by the relatively complex mathematical operations necessary in computing Kalman
filtering algorithms. However, with the rapid development of fast processing/memory
@cvices that has offered a new research direction in high-speed real-time, systematic
implementation on KF. Presently, the research trend is to achieve a major improvement in
computational speed that will come from the concurrent use of many processor
cells.Parallel processing usually makes a major impact in real-time signal identification.
These require high-speed computations, which must be performed on continuous data
streams. This result here in the stimulation of novel architectures for parallel Kalman filter
(PKF). The implementation of the PKF is achieved on a simulated radar signal that works
in real-time by using the simulink package.
Key words: Signal identification; Real-time signal processing; Parallel processing; Parallel
Kalman filter; Simulink package.
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Introduction

The Kalman filter is a linear
estimator, which is an optimal recursive
data processing algorithm. Tt is optimal
with respect to virtually any criterion that
makes sense. One aspect of this optimality
is that the KF incorporates all information
that can be provided to it. It processes all
ayailable measurements, regardless of
their precision, to estimate the current
value of the variables of interest, with use
of

a) Knowledge of the system and
measurement device dynamics.

b) The statistical description of
the system noises, measurement
errors, and uncertainty in the
dynamics models.

¢) Any available information
about initial conditions of the
variables of interest.

Conceptually, what any type of filter
tues to do is obtain an optimal estimate of
desired quantities from data provided by a
noisy environment. Here optimal meaning
that it minimizes errors in some respect.

The word recursive in the previous
description means that, the KF does not
require all previous data to be kept in
storage and reprocessed every time a new
measurement is taken. However, KF is a
set of mathematical cquations that
provides an efficient computational
(recursive) means to estimate the state of
a process, in a way that minimizes the
mean of the squared error. The filter is
very powerful in scveral aspects: it
supports estimations of past, present, and
even future states. It can do so even when
the precise nature of the modeled system
is unknown.
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This paper is organized as follows: the
basic concept of KF is presented in the next
scction. Hence an illustration to the
Estimated process is given in section 2.
Sections 3 give the computational and the
probabilistic origins. The algorithm that is
used to develop the PKF is given in section
4. The development of PKF is given in
section 5, which describes the decoupling
procedure to obtain the was implemented in
the simulink to identify the signal in real
time as described in section 7. Conclusions
are given in section 8.

In 1960, R.E. Kalman published his
famous paper describing a recursive
solution to the discrete data linear filtering
problem [1]. Since that time, due in large
part to advances in digital computing, the
KF has been the subject of extensive
research and application, particularly in
the area of autonomous or assisted
navigation. An introduction to the general
1dea of the KF can be found in Chapter 1
of [2], while amore complete introductory
discussion can be found in [3].
2-The Process to be Estimated

The KF addresses the general
problem of trying to estimate the state
xeR"of a discrete-time controlled
process that is governed by the linear
stochastic difference equation

Xpo = A x, +Bu, +w, (1)

with a measurement z € R” that is

z, =H x, +v, 2)
where z, is an observation at time &, x,
is the system state at time k.4, Band
H are linear scaling. The random variables
weand v,  represent the process and
measurement noise (respectively). They

are assumed to be independent (of each
other), white, and with normal probability
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The justification for €q.(9) is rooted
in the probability of the « priori
estimate x, (-) conditioned on all prior

measurements z, (Bayes® rule)[4]. For

now let it suffice to point out that the KF
maintains the first two moments of the
state distribution,

Elx, | =x, (11)

Ef(x, =& )0~ %) = £ (12)

The a posteriori state estimate €q.(9)
reflects the mean (the first moment) of the
state distribution it is normally distributed
if the conditions of ¢q.(3) and €q.(4) are
met. The a posteriori estimate error
covariance eq.(8) reflects the variance of
the state distribution (the second non-
central moment),

4- The Discrete Kalman Filter
Adgorithm

This section will be for a broad
overview, covering the “high-level”
operation of one form of the discrete KF,
After presenting this high-level view,
there will be a focus to the specific
equations and their use in this version of
the filter.

The KF estimates a process by
using a form of feedback control: the filter
estimates the process state at some time
and then obtains feedback in the form of
(noisy) measurements. As such, the
equations for the KF fall into two groups:
time update equations and measurement
update equations. The time update
cfuations are responsible for projecting
forward (in time) the current state and
error covariance estimates to obtain the g
priori estimates for the next time step.

The measurement update equations
are responsible for the feedback i.c. for
incorporaling a new measurement into the
a priori estimate to obtain an improved a
posteriori estimate.

The time update equations can also be
thought of as predictor equations, while

Parallel Kalman Filtering for Real-Time Signal

Identification

the measurement update equations can be
thought of as corrector equations. Indeed
the final estimation algorithm resembles
that of a predictor-corrector algorithm for
solving numerical problems,

The specific equations for the time and
measurement updates are presented below
in eq.(13 & 14) for discrete KF time
update, while eq.(15, 16 & 17) are for
discrete KF measurement update,

X = A X, + Bu, (13)

Pew()= 4P 4] +0, (149)

Again notice how the time update
cquations above project the state and
covariance estimates forward from time
stepk to stepk+1. A, and B are from
eq.(1), while Q, is from eq.(3).

The first task during the measurement
update is to compute the KF. Notice that
the equation given here as eq.( 15) is the
same as eq.(10).

K, = P.()H[(H,P,(-)H] +R,)"

(15)
JE&- :i\'k(__}“" K(Zk '_ij:& (=) (16)
P, =(1-K H)P,(= (17)

The next step is to actually measure
the process to obtainz,, and then to

generate an a posteriori state estimate by
incorporating the measurement as in
€q.(16). Again eq.(16) is simply eq.(9)
repeated here for completeness. The final
step is to obtain an a posteriori error
covariance estimate via eq.(17).

After each time and measurement
update pair, the process is repeated with
the previous a posteriori estimates used to
project or predict the new a priori
estimates. This recursive nature is one of
the very appealing features of the KF. It
makes practical implementations much
more feasible than an implementation of
another filter which may be designed to
operate on all of the data directly for each
estimate, The KF instead recursively
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distributions. Equations (1&2) can be
expressed diagrammatically as in Fig.(1).
In practice, the process noise
covariance Q and measurement noise
covariance matrices R are assumed to be
constant, and with normal probability
distributions
p(w) = N(0,Q), 3)
p(v)~ N(0,R) 4
The nxn matrix 4 in the difference
€q.(1) relates the state at & time step to
the state at step k+1, in the absence of
either a driving function or process noise.
Note that, in practice might change with
egch time step, but here it is assumed to
be constant.

The nx[! matrix B relates the
optional control input we®R'to the
statex. The mxwn matrix H in the
measurement eq.(2) relates the state to the
measurement z, .

3- The Computational Origins of the
Filter

Define x,(-)e®R"to be a priori
state estimate at stepk given knowledge
of the process prior to stepk, and
x, € R" to be a posteriori state estimate

at step k£ given measurement z,. Then

define a priori and a posteriori estimate
eITors as

e, (=) =x, —%,(-), (5)
and
e, =x, —X,. (6)

The a priori estimate error covariance is
then:

P (=) = Ele, (-)e; ], (7)
and the a posteriori estimate error
covariance is

P, = Ele,e] ). (8)

In deriving the equations for the KF,
the beginning will be with the goal of
finding an equation that computes an a
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posteriori state estimatex, as a linear
combination of an a priori estimate X, (—)
and a weighted difference between an
actual z, and a
H, x (-) as

measurement

measurement  prediction
shown below in eq.(9).

%, =5 () +K(z, - H %, (-) 9)

The difference (z, —H,%,(-) in
eq.(9) is called the measurement
innovation, or the residual. The residual
reflects the discrepancy between the
predicted measurement H,x,(-) and the

A residual of

zero means that the two are in complete
agreement.

The nxm matrix K in eq.(9) 1s
chosen to be the gain or blending factor
that minimizes the a posteriori  error
covariance eq.(8). This minimization can
be accomplished by first substituting
eq.(9) into the above definition for e,,

actual measurement z, .

substituting that into eq.(8), performing
the indicated expectations, taking the
derivative of the trace of the result with
respect to K, setting that result equal to
zero, and then solving for K. One form of
the resulting K that minimizes eq.(8) is
given by

K, = R()H; (H,B,()H, +R.)" (10)

Equation (8) represents the Kalman
gain. The weighting by K is that as the
measurement error covariance R,
approaches zero. The actual measurement
z, is “trusted” more and more, while the
predicted H,x%,(-) is
trusted less and less. On the other hand, as

the a priori estimate error covariance
P,(-) approaches =zero the actual

measurement z, is trusted less and less,

while the predicted measurement
H, x,(-) is trusted more and more.

measurement
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conditions the current estimate on all of
the past measurements. Fig.(2) below
offers a complete picture of the operation
of the filter.

S- Parallel Kalman Filter

In this section, the methodology of
systolic and pipelined implementation on
KF in real-time is presented. Also a
nrodel-based processor for the dynamic
estimation problem is also developed.

The state space representation is used
as the basic model. The operation of the
filter as a predictor-corrector algorithm is
followed by the derivation of the discrete
KF for estimating the discrete-time states
from discrete observations. In order to
speed up KF computations, parallel
processing is performed at two levels:

1) the predictor and corrector
cquations of the KF are decoupled
so that the predictor and corrector
can be computed on separate
Processors.

2) the measurement data are
pipelined into each processor.
Therefore, both multiprocessing
and pipelining are considered to
achieve large improvements in
computational speed.

The standard Kalman filtering

equations are given by the following:

(a)Predictor

{-’Ek(“) = q)k—l“%k—l (+)

Pk (=)= CDH Pff (+)(D:—1
(b)Corrector

{*‘?k (B =2+ K, [y, —H, %, (-)]

(18)

F,(+)=[I-K,H,P(-)
(19)

where the Kalman gain is given by:

K¢ =P ()H, [H P (DH, +R,]"
(20)
Note that the equations are inherently
sequential since the temporal update
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(predictor equations) must be evaluated
before the observation updates (corrector
equations). From a computational point
of view, this is not desirable since to
evaluate the corrector, a uniprocessor
must wait until the predictor has been
evaluated. To avoid this difficulty, the
predictor-corrector equations can be
decoupled to obtain a PKF.

The decoupling of the state predictor
and corrector is achieved by forcing the
predictor to lead the corrector by one time
step, as follows:

(a) The predictor:

Xn(=)= DD, %, ,(+) (21)
(b) The corrector:

() =%+ K, [y, -H,%,(-)

(22)

Let the covariance of the estimation error
before and after a measurement update be
denoted by:

P (5) = EX ()%, (5) (23)

P (+) = EX, (H)F, (+) (24)
where

FEIHJ(_ ::"EHI(")‘_XJHI (25)

SE,( (+) i 5%,c (+)-x, (26)

By direct computation, it can be shown
that the covariance of the estimation error
before the update is given by:
Py(®)=0,@, (NP, @, (27
Because the form of eq.(22) is the
same as the 1% equation of eq.(19), the
covariance of the estimation error after a
measurement update in the PKF is given
by
F(H)=(UI-K.H)P(-) (28)
K;; = Pk (__)H:[Hkpk (_)H;: + R, .]_I
(29)
6- Summary of the decoupled PKF

equations
Once the decoupling has been

performed, 1e. the predictor and
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corrector equations in KF have been
decoupled, then computations can be
performed simultaneously on separate
processors. One processor will be
selected for predictor equations and one
processor for the corrector equations.
The algorithm of PKF, whose equations
are given below, is shown in Fig.(3)
(a) The predictor is expressed as
X (=)= @,Q, X, (+)
[Pim (=)= (DA_(I)&_IP"_[({-)Q):_{[D:
(30)
(b) The corrector is expressed as
[F® =2+ K, [y, - H 3]
\L(+)=l~K,H]P (=)
(31)
( ¢) The Kalman gain is expressed as
K, =P (-)H[HP(H, +R,]"
(32)

7- Real-time signal identification
The PKF in Fig(4) represents the
simulink implementation to identify the
signal in real-time. The signals to be
identified are sinusoidal signal and a
simulated radar signal[5].
Figure (5) illustrious the signal
identification (sinusoidal signal) that
results from applying the PKF algorithm.
This has been done, by using the Matlab
together with the simulink package.
Now, the next example is to replace
the sinusoidal signal in Fig.(4) with a
simulated radar signal, Fig.(6) shows the
actual signal together with the identified
one by using the PKF.
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8- Conclusions

The effort of this work is to develop
the identification capabilities of signals
and particularly the radar signal. Also a
treatment to signals in real-time was

designed and implemented on the
simulink, this was carried out by
introducing the parallel Kalman filter.

The advantages of the approach is
assessed, hence 1is provided with
motivation for producing estimator that is

robust to noisy and incomplete date.
The Implementation of the parallel
Kalman filter is to reduce Kalman filter
computational time in sequal makes
tracking to the signal in real-time.
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Fig.(4) Simulink realization to the PKF to identify the sinusoidal signal.

Fig.(6) The actual and the identified sample of radar signal using PKF in real-time
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Fig.(4) Simulink realization to the PKF to identify the sinusoidal signal.
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