Open Access

n-Refined Neutrosophic Fine Module and Some Applications

Muntaha Jaafer Ali^{*,1}, Majid Mohammed Abed¹

Department of mathematics, College of Education for pure Sciences, University Of Anbar, Iraq; <u>mun22u2002@uoanbar.edu.iq</u>

ARTICLE INFO

Received: 30 / 03 /2024 Accepted: 14/ 05 /2024 Available online: 31/ 12 /2024

10.37652/juaps.2024.147949.1222

Keywords:

Fine ring, Fine module, Neutrosophic set, Neutrosophic module, Flat module, Injective module.

Copyright©Authors, 2024, College of Sciences, University of Anbar. This is an open-access article under the CC BY 4.0 license (<u>http://creativecommons.org/licens</u> <u>es/by/4.0/</u>).

ABSTRACT

We study and present an important concept in module theory, namely, neutrosophic fine module. Fine property for modules and rings. We denote the F module as a fine module. We investigate several facts about the relationships between a fine module and P.P.F ring. Projective and injective modules have a direct relationship with the Fmodule. We prove that every continuous module is an F module, and the discrete module is an F module. When $R_n(I)$ has a perfect property, then every guasi-projective over $R_n(I)$ has a fine property. We show that every divisible module $M_n(I)$ over the field $F_n(I)$ is a fine module. We study a famous property of a submodule $N_n(I)$ of $M_n(I)$, and we present some concepts that have a direct relationship with a fine module, namely, finitely generated submodule and flat modules. We also prove that every cyclic module $M_n(I)$ in every submodule $N_n(I)$ of $M_n(I)$ is isomorphic to the summand of $M_n(I)$. Then, $M_n(I)$ is a fine module if it has a projective cover. We demonstrate that a fine finitely generated faithful multiplication module, $M_n(I)$, over ring $R_n(I)$ is a C-F-fine module if and only if $R_n(I)$ is a P-F-fine ring. We prove that fine ring $R_n(I)$ is called a P-F-fine ring if and only if every faithful multiplication fine module is a P-F-fine ring.

1. Introduction

In this work, we denote a neutrosophic fine ring as (FR(I)). All rings $R_n(I)$ are associative with unity. $U(R_n(I))$ is a symbol of all unities, and $id(R_n(I))$ is a symbol of all idempotent elements. Fine elements are defined in [1]. An element $(rI) \in R_n(I)$ is said to be a fine element if rI = uI + iI, $(uI) \in U(R_n(I))$, and $(iI) \in id(R_n(I))$. Nicholson [1] showed that any ring $R_n(I)$ is said to be fine if every element $(rI) \in R_n(I)$) is a fine element. Thus, $R_n(I)$ is called a neutrosophic fine ring if $\forall (rI) \in R_n(I)$, (rI) is a fine element.

Email: <u>mun22u2002@uoanbar.edu.iq</u>

In 1936, Von Neumann reported that any element $(aI), (bI) \in R_n(I)$, such that aI = (aI)(bI)(aI) is a regular element, so $R_n(I)$ is a regular ring if $\forall (aI) \in R_n(I)$ and (aI) is a regular element. Hence, neutrosophic regular ring $R_n(I)$ means that every element in $R_n(I)$ is a neutrosophic regular element. A definition of a fine ring that has some properties similar to those of every regular ring was provided by $\begin{bmatrix} 3 \end{bmatrix}$. The relation between a fine ring with projective and flat modules was examined by ^[6]. Some information on Nil-fine rings was given by [9]. If an element xI in $R_n(I)$ exhibits xI = uI + iIthe relation $(uI) \in U(R_n(I))$ $(iI) \in id(R_n(I))$ and if and

^{*}Corresponding author at : Department of mathematics, College of Education for pure Sciences, University Of Anbar, Iraq ORCID:https://<u>https://orcid.org/0009_0009_9287_9887</u>, Tel: +964 7831173607

(uI)(iI) = (iI)(uI), then xI is called a strongly neutrosophic fine element ^[7]. To obtain additional information on the dual nil-q-fine ring, we must study quasi-idempotent elements ^[10]. Additional details on quasi-fine rings and strongly quasi-fine rings are available in [11]. An element $(qI) \in R_n(I)$ is said to be quasi-idempotent if $qI^2 = (uI)(qI)$, and unit $(uI) \in R_n(I)$. $QI(R_n(I))$ denotes the set of quasiidempotent elements. Nil-fine rings were studied by [8]. The multiplicative dual of nil-fine rings was investigated in [10]. An element $(aI)_{\text{of ring}} R_n(I)$ is dual nil-fine if (aI) = (bI)(eI), where (bI) is a nilpotent element and (eI) is an idempotent element. A ring is called dual nil-fine if every non-unit element is dual a nil-fine element. In this study, we present new results on fine modules and provide a generalization of some fine module results in [14,15]. We study a fine module and related it to other concepts, such as C-F-fine C-P-fine modules. Some applications are also and presented. Further information about modules are available in [20, 21, 22, 23], and some properties of neutrosophic concepts are given in [24, 25, 26].

2. Preliminaries

Definition 2.1: Let *R* be any ring. Neutrosophic ring $R_n(I)$ is a ring generated by *R* and *I* under the operations of *R* [17].

Definition 2.2: A proper subset $K_n(I)$ of neutrosophic ring $R_n(I)$ is said to be a neutrosophic subring if $K_n(I)$ is a neutrosophic ring under the same operations of $R_n(I)$. If $K_n(I) = S_n(I)$ and *n* is positive, then $S_n(I)$ is a subring of $R_n(I)$ [17].

Definition 2.3 [18]: Let $R_n(I)$ be any neutrosophic ring. A nonempty subset $P_n(I) \subseteq R_n(I)$ is an ideal of $R_n(I)$ if

- 1) $P_n(I)$ is a neutrosophic subring of $R_n(I)$,
- $\forall pI \in P_n(I) \text{ and } rI \in R_n(I), (rI)(pI) \in P_n(I) \land$ 2) $(pI)(rI) \in P_n(I)$.

Definition 2.4 [19]: Let $(M +, \cdot)$ be any R module over a commutative ring R, and let $M_n(I)$ be a neutrosophic set generated by M and I. The triple $(M_n(I), +, \cdot)$ is called a weak neutrosophic R module over ring R. If $M_n(I)$ is a neutrosophic R module over neutrosophic ring $R_n(I)$, then $M_n(I)$ is called a strong neutrosophic R module. The elements of $M_n(I)$ are called neutrosophic elements, and the elements of $R_n(I)$ are called neutrosophic scalars. If $m_1 = x + yI, m_2 = z + wI \in M_n(I)$, where x, y, z, w are elements in M and $\alpha = u + vI \in R_n(I)$. u, v are scalars in R and defined as follows:

 $m_1 + m_2 = (x + yI) + (z + wI) = (x + z) + (y + w)I,$ $\alpha m = (u + vI) \cdot (x + yI) = ux + (uy + vx + vy)I.$

Definition 2.5 [20]: Let $M_n(I)$ be a strong neutrosophic R module over neutrosophic ring $R_n(I)$, and let $K_n(I)$ be a nonempty subset of $M_n(I)$. $K_n(I)$ is called a strong neutrosophic submodule of $M_n(I)$ if $K_n(I)$ is a strong neutrosophic R module over $R_n(I)$. $K_n(I)$ must contain a proper subset that is an R module.

Definition 2.6 [20]: Let $M_n(I)$ be a weak neutrosophic R module over ring R, and let $K_n(I)$ be a nonempty subset of $M_n(I)$. $K_n(I)$ is called a weak neutrosophic submodule of $M_n(I)$ if $K_n(I)$ is a weak neutrosophic R module over $R \cdot K_n(I)$ must contain a proper subset that is an R module.

3. n-Refined Neutrosophic Fine Modules

In this part, we present neutrosophic fine module $M_n(I)$ with some results to explain the relationships between $M_n(I)$ and other concepts, such as C1 and C2, and to simplify the exposition.

Definition 3.1: Let $M_n(I)$ be a neutrosophic $R_n(I)$ module. $M_n(I)$ is called a neutrosophic continuous

module $\prod_{n=1}^{n} (C^{2})$ is called a neutrosophic continuous module if it satisfies C1 and C2, and it is called neutrosophic quasi-continuous if it satisfies C2 and C3. C1, C2, and C3 can presented by the following:

(C1) Every neutrosophic submodule $N_n(I)$ of $M_n(I)$ is essential to the direct summand of $M_n(I)$. (C2) Every neutrosophic submodule $N_n(I)$ of $M_n(I)$

is isomorphic to the summand of $M_n(I)$.

(C3) If $N_n(I)$ and $K_n(I)$ are the summand of $M_n(I)$, then $N_n(I) \cap K_n(I) = 0I$, $N_n(I) \oplus K_n(I)$ is a

summand of $M_n(I)$.

Lemma 3.2: ^[24] Let $M_n(I)$ be an extending neutrosophic $R_n(I)$ module. If $M_n(I)$ satisfies C2, then $M_n(I)$ is a continuous module.

Lemma 3.3 : [12] Every continuous module is a fine module.

Example 3.4:

(1) Neutrosophic discrete modules (neutrosophic semiperfect modules) are fine modules.

(2) Neutrosophic projective $M_n(I)$ over perfect ring $R_n(I)$ is a fine module.

Remark 3.5: The following implications of the modules are true.

- 1- Injective module \Rightarrow quasi injective module \Rightarrow continuous module \Rightarrow quasi continuous module \Rightarrow extending module (C1 module).
- 2- Projective module \Rightarrow injective module \Rightarrow continuous module \Rightarrow extending module.
- 3- $M_n(I)$ projective + factor module of $M_n(I)$ that has a projective cover $\Rightarrow M_n(I)$ lifting module \Rightarrow extending module (C1).

Proposition 3.6: Let $M_n(I)$ be a divisible module over the field $F_n(I)$. Then, $M_n(I)$ is a fine module.

Proof: Let $J_n(I)$ be an ideal in $F_n(I)$ and $gI \in J_n(I)$. For any $fI \in F_n(I)$, we obtain $fI = (fIgI^{-1})gI \in J_n(I)$. Therefore, $J_n(I) = F_n(I)$. Only (01) and (11) ideals exist in $F_n(I)$. In this case, $F_n(I)$ is a principle ideal domain, and $M_n(I)$ is a divisible module. If $0I \neq mI$ is a divisor in the ring

such that $M_n(I) = mIM_n(I)$, then $M_n(I)$ is an injective module and continuous. Thus, $M_n(I)$ is a fine module.

Corollary 3.7: Suppose that $M_n(I)$ is a C2 projective module. If every factor module has a projective cover, then $M_n(I)$ is a fine module.

Proof: Suppose that $N_n(I) \le M_n(I)$ and that $g: M_n(I) \to \frac{M_n(I)}{N_n(I)}$ is an epimorphism. Then, $M_n(I) = M'_n(I) \oplus M''_n(I)$, such that $M'_n(I) \subset N_n(I)$ and $g: M''_n(I) \to \frac{M_n(I)}{N(I)}$ is a

projective cover. However, $N_n(I) \cap M''_n(I) Ker(g)/M''_n(I)$, and it is small in $M''_n(I)$. Hence, $M_n(I)$ is a lifting module (C1 module). With the C2 property, we determine that $M_n(I)$ is a fine module.

Corollary 3.8: Every C2–cyclic module with a projective cover is a fine module.

Proof : The proof is trivial because cyclic with a protective cover provides lifting (C1 module).

4. Finitely Generated Flat – Fine Modules

In this section, we study a famous property of a submodule $N_n(I)$ of $M_n(I)$. We present some concepts that have a direct relationship with a fine module, namely, finitely (f.) generated submodule and flat modules.

Definition 4.1: If $ann(mI) = \{(rI)(mI) = 0I, \text{ then } (rI) \in R_n(I), (mI) \in M_n(I) \}$ is a fine ideal of $R_n(I)$. $M_n(I)$ is called an f. generated fine module.

Definition 4.2: Let $M_n(I)$ be a module. $M_n(I)$ is an f. generated fine module if every f. generated fine submodule is a flat fine submodule.

Definition 4.3: A ring $R_n(I)$ is called a P-F-fine ring if every flat fine module is an f. generated fine module. In the next theorem, we present the equivalent meaning of a P-F-fine ring.

Theorem 4.4: Fine ring $R_n(I)$ is a P-F-fine ring if and only if every faithful multiplication fine module $R_n(I)$ is a P-F-fine ring.

Proof: Let $M_n(I)$ be a faithful multiplication $R_n(I)$ fine module. $M_n(I)$ is a flat fine module, so it is an f. generated fine module. Meanwhile, because $R_n(I)$ is a faithful multiplication fine module, then a fine ring is an f. generated fine module. Thus, $R_n(I)$ is a P-F-fine ring. **Definition 4.5:** Let $M_n(I)$ be a fine module. Then, $M_n(I)$ is called torsion-free fine if $(rI)(mI) = 0I, (rI) \in R_n(I), (mI) \in M_n(I)$, Then, $mI \neq 0I(rI = 0I)$.

Remark 4.6: If $ann(mI) = 0I, 0I \neq mI$, then a torsion-free fine ring is an integral domain.

Proposition 4.7: Let $M_n(I)$ be any f. generated fine module over $R_n(I)$. For each prime fine ideal of $R_n(I)$, $M_n(I)$ is a torsion-free fine module over $R_n(I)$.

Proof: Take $0I \neq m_1I \in M_n(I)$. Then, $ann(m_1I) = ann(m_2I), 0I \neq m_2I \in M_n(I)$. Hence, $ann(m_1I)$ is a pure fine ideal in $R_n(I)$. Given that $R_n(I)$ is a ring that has a local property, $ann(m_1I) = R_n(I)$. However, $ann(m_1I) = 0I$, so $M_n(I)$ is a torsion-free fine module.

Definition 4.8: Let $M_n(I)$ be a fine module. $M_n(I)$ is called an f. generated projective fine module if every f. generated submodule of $M_n(I)$ is projective.

Remark 4.9: $Ann(mI) = eI, eI = eI^2$ with $(mI) \in M_n(I)$. We know that every projective module is a fine flat module. Therefore, every f. generated projective fine module is an f. generated flat fine module.

Definition 4.10: Let $R_n(I)$ be a fine ring. If every principal ideal of $R_n(I)$ is projective, then $R_n(I)$ is called a P.P. fine ring. If every projective fine module is an f. generated projective fine module, then $R_n(I)$ is called a P.P. fine ring.

Definition 4.11: A non-unit element αI in $R_n(I)$ is called dual nil-q-fine if $\alpha I = (bI)(qI)$, where $(bI) \in N(R_n(I))$ and $(qI) \in QE(R_n(I))$. Ring $R_n(I)$ is called dual nil-q-fine if every non-unit αI in $R_n(I)$ is dual nil-q-fine.

Remark 4.12: Given that every idempotent is quasiidempotent, dual nil-fine rings are dual nil q - F -fine.

Lemma 4.13: If $R_n(I)$ is either a local ring with $J(R_n(I))$ nil or a 2×2 matrix ring over a division ring, then $R_n(I)$ is dual nil-q-fine.

Proof: By [13, Theorem 2.3] and Remark 4.12.

Theorem 4.14: Let $R_n(I)$ be a ring. Every quasiidempotent that is central in $R_n(I)$ is a dual nil-q-fine ring if and only if $R_n(I)$ is a local ring with nil $J(R_n(I))$.

Proof: Every quasi-idempotent is central in $R_n(I)$. Suppose that αI is a non-unit. If $(xI) \in \alpha IR_n(I)$ with every quasi-idempotent being central, then xI is a nonunit. Take $xI = (bI)(qI), (bI) \in N(R_n(I))$ and $(qI) \in QE(R_n(I))$, such that $qI^2 = (uI)(qI)$ and $(uI) \in UC(R_n(I))$. Hence, $xI^n = bI^n uI^{n-1}qI$, $n \ge 1$. If bI is nilpotent, then so is $xI \cdot \alpha IR_n(I)$ is nil, and $(\alpha I) \in J(R_n(I)) \cdot R_n(I)$ is local, and the Jacobson radical is nil. Conversely, it is fine in accordance with Lemma (4.13).

Proposition 4.15: Let $R_n(I)$ be a Noetherian $R_n(I)$, which is an abelian minimal prime with a unit number. If $R_n(I)$ is a unit direct product of a local ring, then $R_n(I)$ is a fine ring.

Proof: Every local is a fine ring, and the fineness is close to that of the unit direct product. Thus, $R_n(I)$ is fine.

Corollary 4.16: Let $R_n(I)$ be a ring. If $R_n(I)$ is semiperfect, then it is fine and I-finite. **Proof:** Suppose that $R_n(I)$ is a semi-perfect ring. $R_n(I)$ is I-finite with $1 = eI_1 + eI_2 + ... + eI_n$, where eI_n is a local idempotent for each n. However, local rings $eI_nR_n(I)eI_n$ are fine when $(R_n(I)$ is fine.

5. Some Applications

5.1. C-F-Neutrosophic Fine ModuleDefinition 5.1.1: Let $M_n(I)$ be an $R_n(I)$ module. We say that $M_n(I)$ is a C-F-fine module if every cyclic fine submodule is a flat fine submodule.

*) $M_n(I)$ is a C-F-fine module if ann(xI) is a fine pure ideal, such that $xI \in M_n(I)$.

*) Ring $R_n(I)$ is a P-F-fine ring if every fine flat $R_n(I)$ module is a C-F-fine module.

Theorem 5.1.2: Fine ring $R_n(I)$ is a P-F-fine ring if and only if every fine faithful multiplication $R_n(I)$ – module is a C-F-fine module.

Proof: Let $M_n(I)$ be a fine faithful multiplication $R_n(I)$ module. $M_n(I)$ is a fine flat module, so $M_n(I)$ is a C-F-fine module. Given that $R_n(I)$ is a fine faithful multiplication $R_n(I)$ module, then $R_n(I)$ is a C-F-fine module. Thus, $R_n(I)$ is a P-F-fine ring.

Theorem 5.1.3: Let $M_n(I)$ be a fine f. generated faithful multiplication $R_n(I)$ module. $M_n(I)$ is a C-F-fine module if and only if $R_n(I)$ is a P-F-fine ring.

Proof: Let $R_n(I)$ be a P-F-fine module and $P_n(I)$ be any fine prime ideal in $R_n(I)$. Through [16], $R_n(I)$ is C-F module and C-P module, а and $Ann(M_p(I)) = (annM_n(I))_p = 0$. Then, $M_n(I)_p$ is fine faithful, so $M_{\mu}(I)$ is fine cyclic. Moreover, for $xI \in M_n(I), \exists (yI) \in M_n(I),$ such each that $(yI)_p = (xI)$ and $ann(yI)_p = (ann(yI))_p = ann(yI)$. However, ann(yI) is a fine pure ideal in $R_n(I)$. Hence, ann(xI) is a fine pure ideal in $R_p(I)$. $M_p(I)$ is a C-F- R_p -fine module. Thus, $R_p(I)$ is a P-F-fine ring. However, $R_n(I)$ is a local fine ring. Thus,

 $R_p(I)$ is an integral domain. From [14], we find that $R_n(I)$ is a P-F-fine ring.

Definition 5.1.4: Let $M_n(I)$ be a fine module. Then, $M_n(I)$ is fine torsion free if (rI)(mI) = 0I, $(rI) \in R_n(I)$, $(mI) \in M_n(I) \rightarrow mI \neq 0I \rightarrow rI = 0I$ (ann(mI) = 0I for an integral domain).

Theorem 5.1.5: Let $M_n(I)$ be any C-F-fine module over $R_n(I)$. For each fine prime ideal of $R_n(I)$, $M_p(I)$ is a fine torsion-free module over $R_p(I)$.

Proof: Take $0I \neq xI \in M_p(I)$. Then, $ann(xI) = ann(yI) \forall 0I \neq (yI) \in M_p(I) \rightarrow ann(xI)$ is a fine pure ideal in $R_n(I)$, but $R_n(I)$ is a fine local ring. Then, $ann(xI) = R_p(I)$. $0I \neq xI \rightarrow ann(xI) = 0I$, and $M_p(I)$ is fine torsionfree.

Note: The opposite of the theorem above is true if $M_n(I)$ is a fine faithful multiplication module.

Lemma 5.1.6: Let $P_n(I)$ be any fine flat $R_n(I)$ module, and let $A_n(I)$ be a fine ideal in $ann_R(p_n(I))$. Then, $P_n(I)$ is a fine flat $\frac{R_n(I)}{A_n(I)}$ module.

Theorem 5.1.7: Let $M_n(I)$ be a C-F-fine $R_n(I)$ module. Then, $\frac{R_n(I)}{ann(xI)}$ is a P-F-fine ring, that is, $xI \neq 0I$ in $M_n(I)$.

Proof: Let
$$\overline{R_n(I)} = \frac{R_n(I)}{ann(xI)}$$
 and $0I \neq (xI) \in M_n(I)$

. We can easily map $\Phi: R_n(I) \to (xI): \Phi(\overline{rI}) = (rI)(xI)$ as $R_n(I)$ isomorphism. However, $M_n(I)$ is a C-F-fine $\overline{R_n(I)}$ - module $\to \overline{R_n(I)}$ is a C-F-fine $R_n(I)$ module. Let $\overline{\alpha I}$ element in $\overline{R_n(I)}$ be easily obtainable from $ann_R(xI) \subseteq ann_R(\overline{\alpha I})$. However, $(\overline{\alpha I})$ is a fine flat $R_n(I)$ module because $\overline{R_n(I)}$ is a C-

F-fine $R_n(I)$ module \rightarrow by the above lemma, $(\overline{\alpha I})$ is a flat fine $\overline{R_n(I)}$ – module \rightarrow and $\overline{R_n(I)}$ is a P-F-fine ring.

5.2. C-P-Fine Module

Definition 5.2.1: Any module $M_n(I)$ is called a cyclic projective fine module if every cyclic fine submodule of $M_n(I)$ is fine projective or if ann(xI) is generated by an ideal for each $xI \in M_n(I)$ [7].

Remark 5.2.2: Every fine projective is fine flat. Thus, every cyclic projective fine module is a cyclic flat fine module. Any ring $R_n(I)$ is a P.P. fine ring if $R_n(I)$ is a cyclic projective fine module, or $R_n(I)$ is a P-P-fine ring if and only if every fine projective $R_n(I)$ module is a cyclic projective fine module.

Theorem 5.2.3: Ring $R_n(I)$ is a P-P-fine ring if and only if every faithful multiplication fine $R_n(I)$ module is a cyclic projective fine module.

Theorem 5.2.4: Let $M_n(I)$ be a faithful multiplication fine $R_n(I)$ module. If $R_n(I)$ is a P-P-fine ring, then $M_n(I)$ is a cyclic projective fine $R_n(I)$ module, and $M_s(I)$ is fine f. generated. Then, $R_n(I)$ is a P-P-fine ring.

Proof: If $R_n(I)$ is a P-P-fine ring \Rightarrow Theorem (5.2.3), $M_n(I)$ is a cyclic projective fine $R_n(I)$ module by [5]. $R_s(I)$ is a F-fine regular ring. Hence, $M_s(I)$ is an F-fine regular $R_s(I)$ module. Conversely, assume that $M_n(I)$ is a cyclic projective fine $R_s(I)$ module. Therefore, $M_n(I)$ is a cyclic flat fine $R_n(I)$ module. In accordance with Theorem (5.1.3), $R_n(I)$ is a P-F-fine ring, and $R_n(I)$ is an integral domain. $M_s(I)$ is an f. generated fine $R_s(I)$ module then fine faithful. Therefore, if $M_s(I)$ is F-fine regular, then by [17], we determine that $R_s(I)$ a fine regular ring, and by [5], we find that $R_n(I)$ is a P-P-fine ring.

Corollary 5.2.5: Let $M_n(I)$ be a fine f. generated faithful multi $R_n(I)$ module. The following statements are equivalent.

- 1- $R_n(I)$ is a P-P-fine ring.
- 2- $M_n(I)$ is a cyclic projective fine $R_n(I)$ module.
- 3- $M_p(I)$ is a torsion fine $R_n(I)$ module $\ni P(I)$ ideal of $R_n(I)$, and $M_s(I)$ is F-regular fine.
- 4- $M_p(I)$ is a torsion-free fine $R_p(I)$ module, and $P_n(I)$ ideal of $R_n(I)$ and $M_s(I)$ is a Z-fine module. It is Z-fine regular if each fine cyclic (fine f. generated) submodule is fine projective and a direct summand of $M_n(I)$.

Conclusion

In this paper, we studied the concept of fine modules through a continuous module in neutrosophic theory. We proved that if $M_n(I)$ is a divisible module over field F, then $M_n(I)$ is a fine module. Moreover, every C₂cyclic module that has a projective cover is a fine module. We showed that fine f. generated faithful multiplication module $M_n(I)$ over ring $R_n(I)$ is a C-F-fine module if and only if $R_n(I)$ is a P-F-fine ring. Fine ring $R_n(I)$ is called a P-F-fine ring if and only if every faithful multiplication fine module is a P-F-fine ring.

References

- Weixing chen. (2016). Notes on Clean Ring and Clean Elements; *Southest Asian Bulletin of Mathematics*, (2998) 32: 0 – 6.
- [2] W.K. (1977). Nicholson, Living Idempotents and Exchange Rings, *Trans. Amer. Math. Soc.* Vol. 229, 269-278.
- [3] K.R. Goodearl. (1991). Von Neumann Regular Rings. Second Edition, Robert E.Krieger puplishing co.inc.malabar,FL.
- [4] V.P. Camillo and H.-P.Yu. (1994). Exchange Rings, Unit and Idempotent. *Comm. Algebra* 22(12),4737-4749.
- [5] Nahid Ashrafi and Ebrahim Nasibi. (2013). r-clean Rings, *math. Reports*, 15(65),2, 125-132.

- [6] Naoum A.G. and Alwan F.H.one. (1986). Projective and Flat Module. *Arab Journal of mathematics*, vol.7, no.1, no.2.
- [7] Anderson, F.W., Fuller, K.R., (1992). Rings and Categories of Modules. New York: Springer -Verlag.
- [8] Diesl A.J., (2013) Nil clean rings, J. Algebra, 383, 197-211. Doi:10.1016/j.j algebra. 2013. 02.020.
- [9] Matczuk J., (2017) Conjugate (nil) Clean Rings and Köthe's problem, J. Algebra Appl., 16(4), Article 1750073. doi:10.1142/S021949881750073689.
- [10] Sahinkaya S., Tang G., Zhou Y., (2017). Nil- Clean
 Group Rings, J. Algebra Appl., 16(7), Article 1750135.
 doi:10.1142/S0219498817501353.
- [11] Tufan Özdin. (2022). A Multiplicative Dual Nil Q-Clean Rings, *Journal of Science and Technology*, 15(2), 471 – 474 2022, 15(2), 471 - 474.
- [12] Tank G., Su H., Yuan P., (2021). Quasi- Clean Rings and Strongly Quasi – Clean Rings, *Commun. Contemp. Math.*. doi:10.1142/S0219199721500796.
- [13] V.P. Camillo a, D. Khurana b, T.Y. Lamc, W.K. Nicholsond, *, Y.Zhou. (2006). Continuous Modules are Clean, *Journal of Algebra*, 304 94 - 111.
- [14] Zhou Y., (2021). A Multiplicative Dual of nil-Clean Rings. *Canadian Mathematical Bulletin*, 1- 5. Doi:10.4153/ S0008439521000059.
- [15] W. K. Nicholson. (1999), Strongly Clean Rings and Fitting's lemma, *Comm. Algebra*, 27(8), 3583-3592
- [16] Atiya. M.F. and mau Donald 1.G-(1969), Introduction to comm. *Algebra. Reading, Mass achu sets.*
- [17] Agboola, A.A.A., Akinola., and Oyebola, O.Y.,(2011). " Neutrosophic Rings I", *International J.Mathcobin*, Vol 4, .PP 1-14.

- [18] Vasantha Kandasamy W.B. and Smarandache, F., (2006). Some Neutrosophic Algabra Structures and Neutrosophic N- Algebraic Structures, Hexis, Church Rock.
- [19] Veliyeva, K., Bayramov,S. (2018). Inverse system of Neutrosophic Modules, Lankaran State University, *Scientific News Journal, Department of Natural Science*, 1, 18-32.
- [20] Abed, M. M. (2020). A new view of closed CSmodule. *Italian Journal of pure and Applied Mathematics*, 43, 65-72.
- [21] F. Kach, (1982). "Modules and Rings", Acad, Press., London.
- [22] Abed, M., Al-Jumaili, A. F., Al-Sharqi, F.G., (2018). Some Mathematical Structures in Topological Group. J. Algab. Appl.Math., 99-117.
- [23] Majid Mohammed Abed, Faisal AL-Sharqi and Saad H. Zail, (2021). A certain Conditions On some Ringes Give P.P.Ring, *Journal Physics: Conference Series*, 1818, 012068.
- [24] S. H. Zail, M.M. Abed and F. AL-Sharqi, 2022). Neutrosophic BCK-algebra and Ω-BCK-algebra. *International Journal of Neutrosophic Science*, vol. 19, no. 3, PP. 08-15.
- [25] F. Al-Sharqi, A. G. Ahmed, A. Al Quran, (2022). Mapping on interval complex Neutrosophic soft sets, *International Journal of Neutrosophic Science*, vol.19(4), pp.77-85.
- [26] Fawzi N. Hammad, Majid Mohammed Abed, (2021). A New Results of Injective Module with Divisible Proprety, *Journal Physics: Conference Series*, 1818,012168, IOP.

الموديول النتروسوفي النظيف المشتق مع بعض التطبيقات

منتهى جعفر علي سالم ، ماجد محمد عبد

قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة الأنبار، الأنبار، العراق <u>mun22u2002@uoanbar.edu.iq</u>, <u>Majid_math@uoanbar.edu.iq</u>

الخلاصة

في هذا البحث، ندرس ونقدم مفهوما مهما في نظرية الموديول والذي يسمى بالموديول النتروسوفي النظيف، مع الخصائص الجيدة للموديولات والحلقة والحلقة والحلقة. سوف نستخدم الرمز (F-module) للتعبير عن الموديول النظيف. كذلك قمنا بتحقيق بعض الخصائص حول العلاقة بين الموديول النظيف والحلقة والحلقة والحلقة والحلقة من النوع (P.P.F) والموديولات من النوع (injective) و (injective) التي لها علاقة مباشرة مع الموديول النظيف. لغد اثبتنا أن كل موديول مستمر (P.P.F) والموديولات من النوع(في منافع (injective) و (projective)) والموديولات من النوع(evec منقطع(injective)) و (projective) التي لها علاقة مباشرة مع الموديول النظيف. لغد اثبتنا أن كل موديول مستمر (continuous) هو موديول نظيف، كذلك اذا كانت (I)_nRحلقة نتروسوفية لها خصائص (perfect) فون كل موديول نظيف و الخوف (injective) و ولاين النوع (injective) و (perfect) هو موديول نظيف، كذلك اذا كانت (I)_nRحلقة نتروسوفية لها خصائص (perfect) فون كل موديول نظيف. كذلك اذا كانت (I)_nRحلقة نتروسوفية لها خصائص (perfect) فون كل موديول نظيف. كذلك اذا كانت (I)_nRحلقة نتروسوفية لها خصائص (perfect) فون كل موديول نظيف و موديول نظيف، كذلك اذا كانت (I)_nRحلقة نتروسوفي (injective) و (perfect) موديول زلار) موديول نظيف و موديول نظيف و موديول نظيف و موديول نظيف و الموديول (injective) هو موديول الموديول النتروسوفي (motinuous) موديول (injective) على الحقة النتروسوفي (injective) موديول (I)_nM_n القاسمة (injective) على الحقل النتروسوفي (I)_nM₁ القاسمة (injective) معى الحقل النتروسوفي (I)_nM₁ الموديول (I)_nM₁ الموديول دائري (I)_nM₁ موديول دائري (I)_nM₁ موديول الموديول الموديول الموديول الموديول الموديول الموديول الموديول دائري (I)_nM₁ موديول دائري ما الموديول دائري (I)_nM₁ موديول دائري الموديول دائري (I)_nM₁ موديول دائري ما الموديول دائري الموديول دائري ما الموديول دائري موديول دائري ما مرديول.

الكلمات المفتاحية :الحلقة النظيفة، المجموعة النتروسوفية، الموديول النتروسوفي، الموديول المسطح، الموديول المتباين.