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Abétract

In this paper, an application of the neural network predictive controller for stepping
motor will be presented. This approach has been considered in order to assure high control
performance of the system. The advantage of this type of control with respect to the
classical PID controller will be illustrated. In the neural network predictive control
approach the model of the system to be controlled is first determined in a system
identification phase. The system model is used to predict future behavior of the system, and
an optimization algorithm is used to sclect the control input that optimizes future
performance.
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Nomenclature

N, : number of rotor teeth.

A : tooth piich (rad).

J : moment of rotor inertia
(Kg. m*).

7 : rotor angular position
(rad).

D : viscous damping
coefficient (N.m.s.7ad ™).

n®,,  :flux linkage.

i,,i, :currentsin windings A and
B (amper).

C : coulomb friction
coefficient.

I, : load torque.

r. : stator resistance (ohm).

Vv : d.c. terminal voltage

supplied to the stator
windings (volt).

L. : self inductance of each
stator phase (mH).

M : matual inductance
between phases (mH).

o : deviation of rotor angle

from the equilbrium
position (rad).

15 : stationary current (amper).
i, o, : deviation of currents in

windings A and B (amper).
0, : actual rotor position (rad).
o, - demended position (rad).
Y. : the desired response.

: the network model

response.

u' : the tentative control
signal.

u . the optimal plant input.
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1. Introduction
The control system is one of the

most important elements in stepping
motor applications. The control systems
of stepping motors are classified into
open loop and closed loop schemes. In
the open loop control scheme there is no
feedback information of position to the
controller and therefore it is imperative
that the motor must respond correctly to
each excitation change. [f the excitation
changes are made too quickly, the motor
is unable to move to the new demanded
position and consequently there is a
permanent error in the actual position
compared to the position expected by the
controller. The timing of phase control
for open-loop

signals optimum

performance is reasonably
straightforward, if the load parameters
However, in the

load

remain constant.

applications where the varies
significantly, the timing must be set for
the worst conditions (largest load) and
the control scheme is then non optimal
loads [1, 2].

In° more sophisticated methods

for all other

of the open loop control, the variations

of load and friction torques with speed
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can also be taken into account.
Moreover, if higher resolution is needed
the microstepping drive method can be
used, but then the inaccuracy of the
system increases due to the nonlinearity
of microstepping. If high accuracy is
needed, the closed loop control scheme
is recommended. In closed loop stepping
motor systems the instantaneous rotor
position is detected via a feedback
sensor and sent to the control unit. The
general block diagram of the closed loop
scheme is presented in figure (1).
Essentially, there are several approaches
how to design the closed loop control
system. Most used method is based on a
switching angle (lead angle) and it is
used in applications with rotary stepping
motors coupled with rotary encoders,
where the information about position of
the rotor against the stator is measured.
However, the linear motor drive uses the
rotary stepping motor with a lead screw.
In this application, it s
impossible to measure the displacement
of the rotor due to the motor structure.
The linear optical encoder is used to
measure the linear displacement. This
gives a better precision of the linear

drive, because the control variable is
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directly measured by a sensor [1]. It is

essentially true that for many
applications the open loop control is
entirely adequate and choosing a closed
loop system would be an expensive
luxury. Nowadays, the use of
microprocessors can decrease the price
and if the high accuracy and high
reliability of the positioning system is
required, the closed loop control looks
very attractive [1].

In this paper a neural network
predictive controller is to be designed.
The neural networks have been applied
very successfully in the control of
The  universal

dynamic  systems.

approximation  capabilities of the
multilayer perceptron make it a popular
choice for modeling systems and for
implementing general purpose
controllers. There are typically two steps
involved when using neural networks for
the

which

control, the first is system

identification where in you
develop a neural network model of the
plant that you want to control. The
second is the control design where in
which the neural network plant model is

used to design the controller [3].
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2. System modeling
This

deal

building a mathematical model of the

section will with
linear motor drive. Physical modeling
approach is used for constructing the
system model. The principle of physical
modeling is to divide the properties of
the system to subsystems whose
behaviors are known. For a technical
system, this means that the laws of
nature describing the subsystems are
used in general [4].

of the

Basically, the model

permanent magnet stepping motor

consists of two parts, an electrical and a
[5].

magnet stepper motor dynamical model

mechanical part The permanent

includes nonlinearities and contains
some physical parameters. The values of
physical parameters are not exactly
known and can be subjected to some
variations, so the model is not very easy
to handle for control synthesis. Figure
(2) shows the model for a permanent
magnet stepping motor. The model has
two phases denoted by 4 and B. The
rotor has (2Nr; magnetic poles, while the
stator has a set of identical poles and
windings equally arranged at intervals of

(4 )2]
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The dynamic equations for the
motion of the rotor are developed. Let T
be the developed torque by motor
windings, J the inertia of the rotor, D the
coefficient of viscous friction, 7
represents the detent and the coulomb
frictional torque, and @ is the rotor
angular position. Then, the dynamics of

the rotor can be expressed by the

following equation:
7= J£?+Dﬂ9~+ﬂ,
dt” dt

(h

The torques produced by windings A
and B
T, =-Nn®,,i,sin(N,69)

are given by:

T, ==N.n®,,i,sin(N,(0 - 1))
(3)
Where i ,i, are the currents in windings
A and B, N, is the number of the rotor
teeth, n®,, is the flux linkage, & is the
rotational angle of the rotor and A4 is the
tooth pitch in radians.
The mechanical part of the
permanent magnet stepper motor model

can be expressed by an equation derived

from equations (1),(2) and (3) :
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d’o
di?

dae

J + DE + N, n®,,i,sin(N,0)

+ N n®,,i,sin(N, (6—21)+ Csz'gn((';—g)
i1
+T, =0
(4)

Where J denotes the moment of rotor

inertia (Kg.m?), D denotes the viscous

damping coefficient ( N.msrad™), C

represents  the  coulomb  friction
coefficient, and 7% is the load torque
[2:3]).

The electrical part of a permanent
magnet stepper motor model is described
by voltage equations for the stator
windings [2].

V~ri, —L%’-—M—%

+ % (n®d,, cos(N,8))=0

)
V-ri, - 1% s
di dt
+ {;_t (n®,, cos(N,(@—-4))=0
(6)

Where V is the DC terminal voltage
supplied to the stator windings (volt), L
denotes the self inductance of each stator
phase (mH), M represents the mutual
inductance between phases (mH) and 7 is

stator circuit resistance (ohm). Thus, the
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complete model of the permanent

magnet stepping motor consists of the
4

current

rotor dynamic  equation and

differential  equations  for
equation (5) and (6). Those equations are
nonlinear differential equations. Since it
is very difficult to deal with nonlinear
differential  equations  analytically,
linearization is needed. Linearization is
made with aid of a new variabled¢ .
which represents the deviation of the
angle from the equilibrium position. The
deviation is a function of time f and very
small in magnitude. Figure (3) shows
two stator phases, which carry the
stationary current fo in a direction to
The equilibrium

create south pole.

. . A
position of the stator is then at € = =

[2].

When the rotor oscillates about
its equilibrium position, the currents in
both motor windings will deviate from

the stationary value / by & ,andédi, and

the angular rotor position can be
expressed by:
9=-’21+59
2
(7)
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The current in both windings are
expressed as follows:
iy =1 +6i,
(8)
iy=1,+0di,
)
Then the nonlinearities expressed
by sin and cosine functions in equations
(4), (5) and (6) will be approximated
with

knowledge of trigonometric

identities and when N, 60 is small angle:
cos(N,80) =1 andsin(N 68) = N 66 .

After substituting those

approximations into the motor equations,
the linearized model is obtained in the
following  form  (more  detailed
description is given in [2]):

2. ot

N.A_.
+2N%n®,, 1, cos(—-;’—)a‘?ﬂ
+N,nd,, sin(%&)(&'A —diy)
+ C.S'ign(iq) =0

dt

(10)

d(di,) Al d(di,)
di di

N,.A)d(c?a} N
2 d

réi, +L

= N,nCDM Sin( 0

(1)
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5i o
}-5}‘3 i L.dL“ﬁ_)_ +Md_(_1_d

di dt

+ N, n®,, sin{&-ré @?—) = (8)
' 2 drt

(12)

'N,A N A

Where: sin[ r;] and cos;(i—’—]

2 L 2

are constants.

The permanent magnet stepping
motor transfer function is derived from
equations (10), (11) and (12) with the aid
of Laplace transform. The coulomb
friction coefficient C is considered to be
zero. The resulting form of the transfer
function in two phase excitation in the

voltage source drive is:

W np

L

.S'J 4—( 4 {—D i + e +'W2:n;r“+k',‘,)1§'+ 'r 2up
WL, J LJ ) \L

Where

3 N,A
2N @, 1, co{---z’i—]
P ZL"‘M_,“"lnp - 'j—[

J
nd,, sinz[N—,;%]

L1, co{ :

3

., © is the Laplace transform of the

actual rotor position, ©, represents the
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laplace transform of the demanded
position and s is the Laplace operator.
The actual parameters for the linear
stepper motor are given in table (1) [6].
Figure (4) shows a linear analysis of the
system where the open loop bode plot is
plotted. From the bode plot it is clear

that the system is relatively stable.

3. Controller Design

The neural network predictive
controller uses a neural network model
of the plant to predict future plant
performance. The controller then
calculates the control input that will
optimize plant performance over a
specified future time horizon. The first
step in model predictive control is to
determine the neural network plant
model. Next the plant model is used by
the controller to predict future
performance.

The first stage is to train a neural
network to represent the forward
dynamics of the plant. The prediction
error between the plant output and the
neural network output is used as the

neural network training signal. Figure
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(5) shows the block diagram of system
identification. The neural network plant
model uses previous inputs and previous
outputs to predict future values of the
plant output. Figure (6) shows the
structure of the neural network plant
model. This network was trained offline
using data collected from the operation
of the plant. The backpropagation
training algorithm was used for network
training [7).

The model predictive control is
based on the receding horizon technique
[8]. The neural network model predicts
the plant response over a specified time
horizon. The predictions arc used by a
optimization

numerical program lo

determine the control signal that
minimizes the following performance

criterion over the specified horizon.
X 3 a 2
I S ACE) R Gk S G
N A

(14)

Where N, ,N, and N, define the
horizon over which the tracking error
and the control increments are evaluated.
The u' variable is the tentative control
signal, y, is the desired response and
y,, is the network model response. The

p value determines the contribution that
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the sum of the squares of the control
increments has on

Figure (7)

the performance

index. shows the block
diagram of the model predictive control.
The optimization part of the predictive
the

u' that minimize J and then the optimal

controller determines values of
u is input to the plant [8].

The response of using PID
controller is shown in figure (8). From
this figure it is clear that the response is
not smooth and any other improvements
can not be obtained because the large
change in PID controller parameters
leads to unstable system. The optimum
parameters of PID controller have been
determined using the nonlinear control
design (NCD) blockset in Matlab [9].
The NCD blockset provides a graphical
user interface (GUI) to assist in time
domain based control design. With this
blockset, we can tune parameters within
nonlinear simulink model to meet time
domain performance requirements by
graphicallyplacing constraints within a
time domain window.

Figure (9) shows the response of
the system using the neural network
An  overall

predictive  controller.

improvement with respect to the PID
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can be observed. The

N.,N,, N

controller

parameters and p are

usually chosen empirically. For our
system, the parameters were chosen
according to the bandwidth of the
system. The following set of parameters
for J were chosen: N, =1N, =20,

N, =2 and p=0.005.

4. Conclusion
An application of the neural
network predictive controller to a

stepping motor system has  been
presented. This paper compared the
performance of the neural network
predictive controller with the classical
is clear that the

PID

PID controller. It

performance of the classical
controller was poor. A neural network
predictive controller approach was found
improved

to provide significantly

transient performance.
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Figure (1): Block diagram of closed loop stepping motor.

Figure (3): Two stator phases of motor.
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Figure (5): Block diagram of system identification.
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Figure (9): Step response of the system with neural network predictive
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