
1

Using Perceptron Neural Network and Genetic Algorithm

for Image Compression and Decompression
Mohammed Mustafa Siddeq Dalya Abdullah Anwar

College of Technology /Kirkuk University of Salahhaden/ Erbil

Software Engineering Depart. College of Science Education/

Computer Depart.

e-mail: mamadmmx76@yahoo.com e-mail: dalea84@yahoo.com

Abstract
This paper introduces an idea for image compression by using

Genetic Algorithm and Arithmetic Coding. First stage is by using

perceptron neural network to compress each three-pixels into single

value, this value is called Compression value. In this paper the neural

network did not need weights for training at compression part, the

weights used in this paper are of one dimensional array containing

floating point values. The total of weights values equal one. In the

decompression part we use Genetic Algorithm for return the pixels, by

using Crossover operation and the Fitness Value. The fitness value

represented the error between Compression value and Desired output for

each generated string by GA to get approximately original three-pixels.

The second stage is Arithmetic coding algorithm uses to convert vector of

compression values into a single floating point number. Our approach

tested with color image, also in this paper the performance of the

algorithm is computed and compared wit PNG and TIFF algorithm.

1. Introduction

The transport of images across communication paths is an

expensive process. Image compression provides an option for reducing

the number of bits in transmission. This in turn helps increase the volume

mailto:mamadmmx76@yahoo.com
mailto:dalea84@yahoo.com


2

of data transferred in a space of time, along with reducing the cost

required. It has become increasingly important to most computer

networks[9,6], as the volume of data traffic has begun to exceed their

capacity for transmission. Traditional techniques that have already been

identified for data compression include: Predictive coding, Transform

coding and Vector Quantization. [9,6,10,8].In brief, predictive coding

refers to the decorrelation of similar neighboring pixels within an image

to remove redundancy. Following the removal of redundant data, a more

compressed image or signal may be transmitted [10,8]. The most

common general-purpose, lossless compression algorithm used with TIFF

is LZW, which is inferior to PNG [5]. There is a TIFF variant that uses

the same compression algorithm as PNG uses, but it is not supported by

many proprietary programs. TIFF also offers special-purpose lossless

compression algorithms like CCITT Group IV, which can compress bi-

level images (e.g., faxes or black-and-white text) better than PNG

compression algorithm [5]. Transform-based compression techniques

have also been commonly employed. These techniques execute

transformations on images to produce a set of coefficients. A subset of

coefficients is chosen that allows good data representation (minimum

distortion) while maintaining an adequate amount of compression for

transmission. The results achieved with a transform-based technique are

highly dependent on the choice of transformation used (cosine, wavelet,

Karhunen-Loeve etc.) [1,4]. Finally, vector quantization techniques

require the development of an appropriate codebook to compress data.

Usages of codebooks do not guarantee convergence and hence do not

necessarily deliver infallible decoding accuracy. Also the process may be

very slow for large codebooks as the process requires extensive searches

through the entire codebook [7,3]. Following the review of some of the

traditional techniques for image compression, it is possible to discuss

some of the more recent techniques that may be employed for data



3

compression. Artificial Neural Networks (ANNs) have been applied to

many

problems [3,5], and have demonstrated their superiority over traditional

methods when dealing with noisy or incomplete data. One such

application is for image compression. Neural networks seem to be well

suited to this particular function, as they have the ability to preprocess

input data to produce simpler data with fewer components [10,8,1]. This

compressed information (stored in a hidden layer) preserves the full

information obtained from the external environment. ANN based

techniques not only can provide sufficient compression rates of the data

in question, but security is easily maintained. This occurs because the

compressed data that is sent along a communication line is encoded and

does not resemble its original form. There have already been an

exhaustive number of papers published applying ANNs to image

compression [1-3]. Many different training algorithms and architectures

have been used [5].

2. Proposed Compression Algorithm

In this paper we introduce an idea for image compression by using

Perceptron Neural Network and decompression by Genetic algorithm and

Arithmetic coding. This approach reduces image size to half, reduce each

three  image pixels into integer number. The weights values are constant

for using them in compression and decompression; this leads the neural

network do not need to store information (i.e. Header file) about

compressed image.

2.1 Compression image by Linear Perceptron Neural Network

(LPNN)



4

This approach is faster for compression, because the number of

data are used in this neural network is few, also the neural network

consists of input layer and output layer as shown in Figure-1.

Figure – 1. Perceptron Neural network

The numbers of data are used for compression, three input data

(X1, X2, X3) and the final output of this neural is single value. This value

called Compression Value and represented as (8-Bit), as shown in the

following equation [1]:-

Compression Value=


n

i
XiWi

1

(1)

Where i =1,2,3

In equation (1), the weight values are constant for image

compression, this means that the weights do not need for learning. The

weights values can represent one-dimensional array containing floating

point numbers, and total of weights values equivalent to one. Assume

weights values W= [0.2 , 0.3 , 0.5]. The idea of weights values is similar

to (Mask Filter 3x3) used in image enhancement and image restoration,

and total of (Mask Filter 3x3) equivalent to one[1,4]. To explain image

compression by using neural network in detail, Figure – 2 shows pixels

compression by neural networks:

[50 , 50 , 30 , 12 , 6 ,129 ,41 , 0 ,255, 190]

Where\ W1= 0.2; W2= 0.3; W3 =0.5;

50 50 30 12 6 129 41 0 255 190

X1

X2

X3

W1

Output
W2 (Compressed Value)

W3



5

W1 W2 W3 W1 W2 W3
W1 W2 W3 W1 W2 W3

40 13 60 136

Figure – 2 neural network used for image compression

In Figure - 2 the input data {"50 , 50 , 30"} are compressed by

using neural networks to produce output value ("40"), and ("12 , 6")

shared with 3rd input data ("30") to produce 2nd output value ("13"). This

process continues until compress all data. The last input data ("190") will

be ignored, because cannot use ("190") just for compression, for this

reason the last element is ignored; this leads in decompression getting

nine data.

2.2. Decompression image by Genetic Algorithm (GA)

The genetic algorithm is a parallel search algorithm by using a

number of strings and computing fitness value for each string, these

strings are shared with each other by crossover function until reached to

the result [2]. The fitness function for each string could be computed as:

Desired Output=


n

i
PiWi

1

(2)

Where \ i =1,2,3

In equation (2) the vector P = [P1 , P2 , P3 ] represents the

estimated data generated by Genetic Algorithm, and the Wi represents

weights values (See Figure-2) the GA generates many strings randomly

then using the crossover function to find the suitable vector. The

crossover operation divides any two vectors randomly from selected

point, and then makes exchange between these strings to generate new

strings, as shown in the following representation:



6

S1: 255, 34, 67                                    S1: 12, 34, 67
S2: 12, 50, 100                                  S2: 255, 50, 100
Before Crossover                               After Crossover

After Generating new strings, the fitness function is used to

compute the fitness value for each string. The fitness function computed

by using; the difference between compressions value (See equation 1) and

desired output (See equation 2).  The vector P is selected according to

minimum fitness value:-

Fitness Value(k) = ( Compression Value - Desired Output) (3)

Where\ i =1,2,3.

k= number of string generated by GA.

Equation (3) is used to generate vector P, if the desired output is

equivalent to the compression value, this means Fitness Value(k)= 0, in

this case the GA stops from iterations, and vector P represents

approximately original data. Figure – 3 illustrates the decompression by

GA for the compression values { 40 , 13 }. The GA generates five pixels

from two compression values.

Strings Fitness Value =(40- D1) Strings Fitness Value =(13- D1)
S1: P1 P2 P3 S1: P3 P4 P5
S2: P1 P2 P3 S2: P3 P4 P5
S3: P1 P2 P3 S3: P3 P4 P5
..……. ……
Sn: P1 P2 P3 Sn: P3 P4 P5

Figure – 3 Decompressions by GA

3. Arithmetic Coding

The second part in this paper, by using the arithmetic coding we

have taken a stream of data (i.e. compressed data from neural network)

and convert it to a single floating point value. This output value in range

less than 1 and greater than 0, when decoded this single value getting

exact stream of data, see the reference[9]. The arithmetic coding needs to



7

compute the probability of all data and assign range for each data, the

range value consists of Low and High value.

4. Computer Test

The compression and decompression applied on the color "Cat"

image. The weights values: "W = [0.2 , 0.3 , 0.5]" are using for the image

and the number of strings generated by the GA is 256 strings. The

language used is (VISUAL C++.NET) on Dual-Core Pentium 1.8GHz.

The color image consists of three layers (i.e. Red, Green and Blue),

our approach compresses each layer independently, and the total time for

decompression by GA is 5 seconds and the average iterations taken for

decompression by GA are 126 iterations.

(a) Original Cat image 350 x 350                           (b) Decompressed Cat image

Figure – 4 Decompressed images by our approach.

To compute the efficiency of our approach we used Compression

Performance as shown in the following equation [6]:-

C.R.
ncompressiobeforeSize

ncompressioafterSize
 (4)

  %..1100 RCePerformancnCompressio  (5)



8

Our approach as compared with The TIFF and PNG, these

algorithms represented lossless data compression methods, which are

used in compression of library. Table 1 has shown the comparison

between our approach and both, PNG and TIFF.

Table 3 Comparison with PNG and TIFF

Algorithm
Before

Compression

After

Compression

Compression

Performance

GA with Arithmetic 358-KByte 120-KByte 66.4%

PNG 358-KByte 280-KByte 8%

TIFF 358-KByte 380-KByte NON

5. Conclusion

The advantage of this approach can be illustrated in the following

steps:-

1– Our algorithm gives better image compression ratio, than PNG and

TIFF. This because combine each three-bytes from an image to be

single byte by using LPNN.

2– The GA computes the fitness values by equation (3) for each P vector

(i.e. vector of pixels) after making crossover randomly between any

two vectors. All new vectors are transferred into next generation

without removing any string. Moreover, in this algorithm we did not

use the mutation. This operation makes our algorithm finding pixels

after a few iterations.

3– In our approach, the LPNN does not need to compute the probability

of image file; also the weights values used in the neural network are

constant at compression and decompression operations.

The disadvantage of our approach, that it needs more computations

(arithmetic coding) and recurrence calculating which may be leading to



9

increase time execution for compression and decompression. Also the

image quality for our approach is less than PNG and TIFF. This is

because the GA can not find exact original value for some compressed

data.

RERERENCES
[1] Abhijit S. Pandya and Robert B. Macy, "Pattern Recognition with

Neural Networks in C++", IEEE Press 1995.
[2] Dalya A. Anewar, "Qualified Genetic Algorithms for Image

Smoothing", M. Sc. – Thesis, University of Mousl, Collage of
Computer Sciences and Mathematics, Mathematic Dept. 2006.

[3] Dony, R. D., and Haykin, S., "Neural Network Approaches to Image
Compression", Proceedings of the IEEE, Vol. 23, No. 2, pp 289-303.,
1995.

[4] Hambaba, M., Coffey B., and Khemlani, N., "Image Coding
using a Knowledge based Recognition System", SPIE Vol. 1709.,
Application of Artificial Neural Networks, 1992.

[5] I. Kontoyainnis, "Pattern matching and lossy data compression on
random field", IEEE Trans. on Inform. Theory, 49, pp. 1047-105 1.
April, 2003.

[6] Mohammed M. Siddeq, "SEQUNCE DYNAMIC CODE FOR
STREAM TWO BYTE DATA (16-Bit) COMPRESSION", Al-Taqani
Journal, Vol. 19,No.2,pp 85-99, 2006.

[7] Oja, E., "Data Compression, Feature Extraction, and
Autoassociation in Feed forward Neural Networks in Artificial
Neural Networks", (Eds) Kohonen et al., Elsevier Science
Publishers, pp 737-745., 1991.

[8] Sarmad M. Al-Kaysi, "Image Restoration using Neural Networks",
M. Sc. – Thesis, University of Baghdad, Collage of Science,
Computer Science Dept. 2000.



10

[9] Witten, Ian H., Neal, Radford M., and Cleary, John G. "Arithmetic
Coding for Data Compression", Communications of the ACM, June,
pp 520-540, 1987.

[10] Z Xiong, X. Wu, S. Cheng, and J. Hua, Loss-to-lossless
compression of edical volumetric data using three-dimensional integer
wavelet transforms, IEEE Trans. on Medical Imaging, Vol. 22, No. 3,
March 2003.

P1

Desired
Output
P2

P3


