* - Connectedness in Intuitionistic Fuzzy Ideal Bitopological spaces Alaa saleh Abed University of kufa Faculty of Education for Girls, Department of Mathematics Alaas.abed@uokufa.edu.iq

Abstract:

In This paper we introduce the nation of *- Connectedness in Intuitionistic Fuzzy Ideal Bitopological Space . we obtain several properties of *- Connectedness in Intuitionistic Fuzzy Ideal Bitopological spaces and the relationship between this notion and other related notions.

Keywords:

Intuitionistic Fuzzy Ideal Bitopological Spaces,

Pairwise *- Connected intuitionistic fuzzy sets,

Pairwise *- Separated intuitionistic fuzzy sets,

Pairwise *- Connected intuitionistic fuzzy Ideal Bitopological Space

* – الأتصال في الفضاءات التوبولوجية الثنائيه الحدسية الضبابية ذات المثاليات الحدسية الضبابية الاء صالح عبد جامعه الكوفة - كليه التربيه للبنات قسم الرياضيات

Alaas.abed @uokufa.edu.iq

الملخص :

قدمنا في هذا البحث مفهوم * – الاتصال في الفضاءات التوبولوجية الثنائية الحدسية الضبابية ذات المثاليات الحدسية الضبابية . وقد حصلنا على بعض الخواص حول * – الاتصال في الفضاءات التوبولوجية الثنائية الحدسية الضبابية وبعض العلاقات حول هذا المفهوم وارتباطه مع المفاهيم الاخرى ذات العلاقة .

1. Introduction

The concept of "fuzzy sets "interdused by Zadeh [7] in 1965. The idea of "intuitionistic fuzzy sets "was firt published by Atanassove [5., 6] in 1986, 1988.

Then Coker [2, 3] introduced " intuitionistic fuzzy topological space " using intuitionistic fuzzy set in 1996, 1997. The notion of " ideal in intuitionistic fuzzy topological space " was introduced by A.Asalam and S.A. Alblowi [1] in 2012.

Kelly introduced the concept of "bitopological space" as extension of topological space [4] in 1963

Mohammed (2015) introduced the notion of " intuitionistic fuzzy ideal bitopological space" [9].

The purpose of this paper is to introduce and study the notion of " * – connectedness in intuitionistic fuzzy ideal bitopological space ".

We study the notion of " pairwise * – connected intuitionistic fuzzy ideal bitopological space".

2. Preliminaries :

Definition 2.1. [7] :-

Let X be a non – empty set and I = [0,1] be the closed interval of the real numbers . A fuzzy subset μ of X is defined to be membership function $\mu : X \to I$, such that $\mu(X) \in I$ for every $x \in X$ The set of all fuzzy subsets of X denoted by I^X .

Definition 2.2 [5] :-

An intuitionistic fuzzy set (IFs, for short) A is an object have the form : $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle; x \in X \}, \text{ where the functions } \mu_A : X \to I, \\ \nu_A : X \to I \text{ denote the degree of membership and the degree of non } - \\ \text{membership of each element } x \in X \text{ to the set A respectively ,and} \\ 0 \leq \mu_A(x) + \nu_A(x) \leq 1, \text{ for each } x \in X. \text{ The set of all intuitionistic} \\ \text{fuzzy sets in X denoted by IFS (x).}$

Definition 2.3. [3]:-

 $0_{\sim} = < x, 0, 1 > , 1_{\sim} = < x, 1, 0 >$ are the intuitionistic sets corresponding to empty set and the entire universe respectively.

Definition 2.4. [2]:-

Let X be a non – empty set . An intuitionistic fuzzy point (IFP, for short) denoted by $x_{(\alpha,\beta)}$ is an intuitionistic fuzzy set have the form

 $x_{(\alpha,\beta)}(y) = \begin{cases} < x , \alpha , \beta > ; & x = y \\ < x . 0 . 1 > ; & x \neq y \end{cases}, where \ x \in X \text{ is a fixed point },$ and $\alpha, \beta \in [0, 1]$ satisfy $\alpha + \beta \leq 1$. The set of all IFPs denoted by *IFP* (x). *If* \in *IFs* (x). *We say the* $x_{(\alpha,\beta)} \in A$ *if and only if* $\alpha \leq \mu_A(x)$ and $\beta \geq v_A(x)$, for each $x \in X$.

Definition 2.5. [2] :-

Let $= \langle x, \mu_A(x), \nu_A(x) \rangle$, $B = \langle X, \mu_B(x), \nu_B(x) \rangle$ be two intuitionistic fuzzy sets in X. A is said to be quasi – coincident with B (written AqB) if and only if , there exists an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$, otherwise A is not quasi – coincident with B and denoted by AqB.

Definition 2.6. [2] :-

Let $x_{(\alpha,\beta)} \in IFP(X)$ and $\in IFS(X)$. We say that $x_{(\alpha,\beta)}$ quasi – coincident with A denoted $x_{(\alpha,\beta)}q$ A if and only if , $\alpha > \nu_A(x)$ or $\beta < \mu_A(x)$, otherwise $x_{(\alpha,\beta)}$ is not quasi – coincident with A and denoted by $x_{(\alpha,\beta)}\tilde{q}$ Α.

Definition 2.7.[2] :-

Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point Х in and A = { < x , μ_A (x) , ν_A (x) > , x \in X } an IFS in X . Suppose further α and β are real numbers between 0 and 1. The intuitionistic fuzzy point $x_{(\alpha,\beta)}$ is said to be properly contained in A if and only if , $\alpha < \mu_A(x)$ and $\beta > \nu_A(x)$.

Definition 2.8.[2] :-

An intuitionistic fuzzy point $x_{(\alpha,\beta)}$ is said to be belong to an intuitionistic

fuzzy set A in X , denoted by $x_{(\alpha,\beta)} \in A$ if $\alpha \leq \mu_A(x)$ and $\beta \geq \nu_A(x)$.

Proposition 2.9. [3] :-

Let A , B be IFSs and x (α , β) an IFP in X . Then

- 1- $A\tilde{q}B \Leftrightarrow A \leq B$
- 2- AqB \Leftrightarrow A \leq B^C,
- 3- $x_{(\alpha,\beta)} \in A \iff x_{(\alpha,\beta)}\tilde{q}A^C$,
- 4- $x_{(\alpha,\beta)} q A \Leftrightarrow x_{(\alpha,\beta)} \notin A^C$.

Proposition 2.10. [8] :-

For A, B \in IFS and $x_{(\alpha,\beta)} \in$ IFP (X), we have :

 $A \leq B \text{ if and only if }$, for $\, x_{(\alpha,\beta)} \in A \text{ then } \, x_{(\alpha,\beta)} \in B \, -\!i \,$

ii - A \leq B if and only if, for $x_{(\alpha,\beta)} q$ A then $x_{(\alpha,\beta)} q$ B.

Lemma 2.11. [10] :-

Let A , B and C be intuitionistic fuzzy sets . If $q(A\cup B)$, then CqA or CqB .

Definition 2.12. [3] :-

An intuitionistic fuzzy topology (IFT , for short) on a non empty set X

is a family τ of an intuitionistic fuzzy set in X such that

(i) 0_{\sim} , $1_{\sim}\in\tau$,

(ii) $G_1 \cap G_2 \in \tau$, for any G_1 , $G_2 \in \tau$,

(iii) \cup $G_i \in \tau$, for any arbitrary family { $G_i: i \in J$ } $\subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS, in short).

Definition 2.13. [3] :-

Let (X , $\boldsymbol{\tau}$) be an intuitionistic fuzzy topological space and

 $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle, x \in X \}$ be an intuitionistic fuzzy set in X then , an intuitionistic fuzzy interior and intuitionistic fuzzy closure of A are respectively defined by

int (A) = $A^{\circ} = \bigcup \{G : G \text{ is an IFOS in } X \text{ and } G \subseteq A\}$

 $cl(A) = \overline{A} = \cap \{K : K \text{ is an IFCS in } X \text{ and } A \subseteq K \}.$

Definition 2.14. [3] :-

A non – empty collection of intuitionistic fuzzy sets L of a set X is called intuitionistic fuzzy ideal on X (IFI, for short) such that :

(i) If A \in L and B \leq A \Longrightarrow B \in L (heredity)

(ii) If $A \in L$ and $B \in L \Longrightarrow A \lor B \in L$ (finite additivity). If (X, τ) be an IFTS, then the triple (X, τ, L) is called an intuitionistic fuzzy ideal topological space (IFITS, for short).

Definition 2.15. [1] :-

Let (X, τ, L) be an IFITS. If \in IFS (X). Then the intuitionistic fuzzy local function A^{*}(L, τ) (A^{*}, for short) of A in (X, τ, L) is the union of all intuitionistic fuzzy points $x_{(\alpha,\beta)}$ such that :

A^{*}(L, τ) =V { $x_{(\alpha,\beta)}$: A \land U \notin L , for every \in N ($x_{(\alpha,\beta)}$, τ) } , where N ($x_{(\alpha,\beta)}$, τ) is the set of all quasi – neighborhoods of an IFP $x_{(\alpha,\beta)}$ in τ . The intuitionistic fuzzy closure operator of an IFS A is defined by

 $cl^*(A)=A \lor A^*$, and $\tau^*(L)$ is an IFT finer than τ generated $cl^*(\cdot)$ and defined as

 $\tau^*(L) = \{A : cl^*(A^C) = A^C\}.$

Lemma 2.16. [8] :-

Let (X , τ , L) be an IFITS and B⊂ A ⊂ X . Then $B^*(\tau_A, L_A) = B^*(\tau, L) \cap A \, .$

Lemma 2.17. [8] :-

Let (X , τ , L) be an IFITS and B \subset A \subset X . Then $cl^*_A(B)=cl^*(B)\cap A\,.$

Definition 2.18. [8] :-

An intuitionistic fuzzy set (IFS) A of intuitionistic fuzzy ideal topological space(X, τ ,L) is said to be *-dense if cl*(A) = X.

An intuitionistic fuzzy ideal topological space (X, τ ,L) is said to be *-hyperconnected if IFS A is *-dense for every IF open subset $A \neq \emptyset$ of X.

Lemma 2.19. [8] :-

Let (X , τ , L) be an IFITS for each $v\in\tau^*,\tau^*_v=(\tau_v)^*$.

Lemma 2.20. [8] :-

Let (X,\tau,L) be an IFITS , $A \subset Y \subset X$ and $Y \in \tau$. The following are equivalent

(1) A is *-IF open in Y, (2) A is *-IF open in X.

Proof :- (1) \Rightarrow (2) let A be *-IF open in Y .Since $Y \in \tau \subset \tau^*$, by lemma (2.19), A is *-IF open in X.

Let A be *-IF open in X. By lemma (2.19), $A = A \cap Y$ is *-IF open in X.(2) \Rightarrow (1).

Definition 2.21. [8] :-

Two non empty intuitionistic fuzzy sets A and B of an intuitionistic fuzzy ideal topological space (X, τ ,L) are said to be intuitionistic fuzzy

24

*- separated sets (IF *- separated sets , for short) if cl*(A)q̃B and Aq̃cl (B).

Definition 2.22. [8] :-

An intuitionistic fuzzy set E in intuitionistic fuzzy ideal topological space (X, τ , L) is said to be intuitionistic fuzzy * – connected if it can not be expressed as the Union of two intuitionistic fuzzy * – separated sets . otherwise, E is said to be intuitionistic fuzzy * – disconnected .

If = X, then X is said to be intuitionistic fuzzy * – connected space.

Definition 2.23. [8] :-

Let τ_1 and τ_2 be two intuitionistic fuzzy topologies on a non – empty set X. The Triple (X, τ_1, τ_2) is called an intuitionistic fuzzy bitopological space (IFBTS, for short), every member of τ_i is called τ_i – intuitionistic fuzzy open set (τ_i – IFOS), $i \in \{1, 2\}$ and the complement of τ_i – IFOS is τ_i – intuitionistic fuzzy closed set (τ_i – IFCS), $i \in \{1, 2\}$.

Example 2.24.[8] :-

Let $X = \{e, d\}$ and $A, B \in IFS(X)$ such that =< x, (0.3, 0.1), (0.5, 0.6) >, B = < x, (0.2, 0.4), (0.7, 0.3) >. Let $t_1 = \{0_{\sim}, 1_{\sim}, A\}$ and $\tau_2 = \{0_{\sim}, 1_{\sim}, B\}$ be two IFTS on X. Then (X, τ_1, τ_2) is IFBTS.

Definition 2.25.[8] :-

Let (X, τ_1, τ_2) be an IFBTS, $A \in IFS(X)$ and $x_{(\alpha,\beta)} \in IFP(X)$. Then A is said to be quasi – neighborhood of $x_{(\alpha,\beta)}$ if there exists a τ_i – IFOS B, $i \in \{1,2\}$ such that $x_{(\alpha,\beta)}qB \leq A$. The set of all quasi –

25

neighborhoods of $x_{(\alpha,\beta)}$ in (X, τ_1, τ_2) is denoted by : $N(x_{(\alpha,\beta)}, \tau_i), i \in \{1,2\}.$

Definition 2.26.[8] :-

An intuitionistic fuzzy bitopological space (X, τ_1, τ_2) with an intuitionistic fuzzy ideal L on X is called intuitionistic fuzzy ideal bitopological space (X, τ_1, τ_2, L) and denoted by IFLBTS

Example 2.27. [8] :-

Let $X = \{e\}$ and $A, B \in IFS(X)$ such that $= \langle X, 0.3, 0.5 \rangle$, $B = \langle X, 0.2, 0.4 \rangle$. Let (X, τ_1, τ_2) be an IFLBTS, where $\tau_1 = \{0_{\sim}, 1_{\sim}, A\}$ and $\tau_2 = \{0_{\sim}, 1_{\sim}, B\}$. If $L = \{0_{\sim}, A, C : C \in IFS(X)$ and $C \leq A\}$ be an IFL on X. Then (X, τ_1, τ_2) is IFLBTS.

Definition 2.28. [8] :-

Let (X, τ_1, τ_2, L) be an IFLBTS and \in IFS (X). Then the intuitionistic fuzzy local function of A in (x, τ_1, τ_2, L) denoted by $A^*(L, \tau_i), i \in \{1, 2\}$ and defined by as follows :

 $A^*(L, \tau_i) = V \{ x_{(\alpha, \beta)} : A \land U \notin L , \text{ for every } \in N(x_{(\alpha, \beta)}, \tau_i) \}, i \in \{1, 2\}.$

Definition 2.29. [8]:-

Let (X, τ_1, τ_2) be an IFBTS and \in IFS (X). Then intuitionistic fuzzy interior and intuitionistic fuzzy cloure of A with respect to τ_i , $i \in \{1, 2\}$ are defined by :

 $\tau_i - \operatorname{int} (A) = \mathsf{v} \left\{ \mathsf{G} : \mathsf{G} \text{ is a } \tau_i - \mathsf{IFOS} \text{ , } \mathsf{G} \leq \mathsf{A} \right\}.$

 $\tau_i - cl \; (A) = \wedge \left\{ K: K \text{ is a } \tau_i - IFCS \text{ , } A \leq K \right\}.$

Proposition 2.30.[8] :-

Let (X, τ_1 , τ_2) be an IFBTS and \in IFS (X). Then we have :

www.Jutq.utq.edu.iq Web Site of the Journal

26

(i)
$$\tau_i - int (A) \le A, i \in \{1, 2\}$$

(ii) $\tau_i - int (A)$ is a largest $\tau_i - IFOS$ contains in A
(iii) A is a $\tau_i - IFOS$ if and only if $\tau_i - int (A) = A$
(iv) $\tau_i - int (\tau_i - int (A)) = \tau_i - int (A)$.
(v) $A \le \tau_i - cl (A), i \in \{1, 2\}$.
(vi) $\tau_i - cl (A)$ is smallest $\tau_i - IFCS$ contains A.
(vii) A is a $\tau_i - IFCS$ if and only if $\tau_i - cl (A) = A$.
(viii) $\tau_i - cl (\tau_i - cl (A)) = \tau_i - cl (A)$
(ix) $[\tau_i - int (A)]^c = \tau_i = cl (A^c), i \in \{1, 2\}$.
(x) $[\tau_i - cl (A)]^c = \tau_i = int (A^c), i \in \{1, 2\}$.

Definition 2.31. [8] :-

We define * – intuitionistic fuzzy closure operator for intuitionistic fuzzy bitopology $\tau_i^*(L)$ as follows :

$$\begin{split} \tau_i - cl^*(A) &= A \lor A^*(L\,,\tau_i) \text{ for every } A \in \tau_i - IFS \ (X) \ .Also \ , \ \tau_i^*(L) \text{ is } \\ \text{called an intuitionistic fuzzy bitopology generated by } \tau_i - cl^* \ (A) \text{ and } \\ \text{defined as :} \end{split}$$

 $\tau^*_i(L) = \{A: \; \tau_i - cl^*(A^c) = A^c \text{ , } i \in \{1 \text{ , }2\}\,\}\,.$

Note : $\tau_i^*(L)$ finer than intuitionistic fuzzy bitopology τ_i , (i . e $\tau_i \le \tau_i^*(L)$).

Remark 2.32. [8] :-

$$\begin{array}{l} (i) \mbox{ If } L = \{0_{\sim}\} \Longrightarrow \ A^* (L, \tau_i) = \tau_i - cl \ (A) \ , \mbox{ for any } A \in \mbox{ IFS } (X) \\ \Rightarrow \tau_i - cl^*(A) = A \lor A^*(L, \tau_i) = A \lor \tau_i - cl \ (A) = \tau_i - cl \ (A) \\ \Rightarrow \tau_i^* \ (\{0_{\sim}\}) = \tau_i \ , \ i \in \{1, 2\} \ . \\ (ii) \ \mbox{ If } L = \mbox{ IFS } (X) \Longrightarrow A^*(L, \tau_i) = 0_{\sim} \ , \ \mbox{ for any } A \in \mbox{ IFS } (X) \\ \Rightarrow \tau_i - cl^*(A) = A \lor A^*(L, \tau_i) = A \lor 0_{\sim} = A \\ \Rightarrow \tau_i^*(L) \ \mbox{ is the intuitionistic fuzzy discrete bitopology on } X \ . \end{array}$$

27

3. Main Results

3.1 * - Connectedness in Intuitionistic fuzzy Ideal

Bitopological Spaces

Definition 3.1.1 :-

Two non empty τ_i – intuitionistic fuzzy sets A and B of an intuitionistic fuzzy ideal bitopological space (X, τ_1 , τ_2 , L), i \in {1,2}, are said to be intuitionistic fuzzy * - separated sets (τ_i - IF * - separated sets , for short), $i \in \{1,2\}$ if

 $\tau_i - cl^*$ (A) $\tilde{q}B$ and A $\tilde{q} \tau_i - cl$ (B)

Propoition 3.1.2 :-

Let A and B be an τ_i – intuitionistic fuzzy *-separated sets in IFLBT (X, τ_1 , τ_2 , L) , A , B are two non empty τ_i – intuitionistic fuzzy \ast -separated sets such that $A_1 \leq A$ and $B_1 \leq B$ then A_1 and B_1 are τ_i –intuitionistic fuzzy * –separated sets in X, $i \in \{1,2\}$.

Proof :-

Since $A_1 \leq A$ and $B_1 \leq B$, we have $\tau_i - cl^*(A_1) \le \tau_i - cl^*(A)$ and $\tau_i - cl(B_1) \le \tau_i - cl(B)$, Since A ,B are $\tau_i - \text{intuitionistic fuzzy} \ast - \text{separated then}$, $\tau_i - cl^*(A)\tilde{q}B$ and $\tilde{q}\tau_i - cl(B)$, $i \in \{1,2\}$ Therefore $\tau_i - cl^*(A)\tilde{q}B$ we get $\tau_i - cl^*(A_1)\tilde{q}B_1$ And $\tilde{q}\tau_i - cl(B)$, and also we get $A_1\tilde{q}\tau_i - cl(B_1)$, $i \in \{1,2\}$ Then A_1 and B_1 are $\tau_i - IF * -separated$.

Theorem 3.1.3 :-

Let A be τ_i –intuitionistic fuzzy open set (τ_i –IFOS) , $i \in \{1,2\}$ and B be $*-\tau_i$ – intuitionistic fuzzy open set in intuitionistic fuzzy ideal

www.Jutq.utq.edu.iq Web Site of the Journal

28

bitopological space (X, τ_1, τ_2, L) . Then A and B are $\tau_i - IF * -$ separated sets in X if and only if $A\tilde{q}B$.

Proof :-

 (\Rightarrow) suppose that AqB, then exists an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$, and since $A \subseteq \tau_i - cl^*(A)$ and $\subseteq \tau_i - cl(B)$, $i = \{1, 2\}$ This implies $\mu_{\tau_{i}-cl^{*}(A)}(x) > \nu_{B}(x)$ or $\nu_{\tau_{i}-cl^{*}(A)}(x) < \mu_{B}(x)$ And $\mu_A(x) > \nu_{\tau_i - cl(B)}(x)$ or $\nu_A(x) < \mu_{\tau_i - cl(B)}(x)$, $i \in \{1, 2\}$ Then $\tau_i - cl^*(A)qB$ and $Aq\tau_i - cl(B)$, $i \in \{1,2\}$ This is contradiction . Hence qB. (\Leftarrow) Suppose that $\tilde{q}B$. By proposition (2.9), we have $A \le B^{c}$ Since B^c is τ_i – intuitionistic fuzzy closed set, $i \in \{1,2\}$ Therefore , $\tau_i-cl^*(A)\leq \tau_i-cl^*(B^c)=B^c$, $i\in\{1,2\}\rightarrow \tau_i-cl^*(A)\leq$ Bc Hence by proposition (2.9), we get $\tau_i - cl^*(A)\tilde{q}(B^c)^c$. Then $\tau_i - cl^*(A)\tilde{q}B \dots (1)$ Let $\leq B^c$, since B^c is $* -\tau_i$ –IFCS in X. Therefore, $\tau_i - cl(A) \leq \tau_i - cl(B^c) = B^c$, $i \in \{1,2\}$ Hence by proposition (2.9), we have $\tau_i - cl(A)\tilde{q}(B^c)^c$, then $\tau_i - cl(A)\tilde{q}(B^c)^c$ cl(A)qB Since $A \subseteq \tau_i - cl(A)$ and $\subseteq \tau_i - cl(B)$, $i \in \{1,2\}$ Thus $A\tilde{q}\tau_i - cl(B) \dots (2)$ From (1) and (2) we get A and B are $\tau_i - IF * -$ separated sets in X .

Proposition 3.1.4 :-

Let A be an $* -\tau_i$ –IFCS and B is an τ_i –IFCS, $i \in \{1,2\}$ in intuitionistic fuzzy ideal bitopological space (X, τ_1 , τ_2 , L).

Then A and B are τ_i –IF * – Separted sets in X if and only if $\tilde{q}B$.

Proof :-

 (\Longrightarrow) suppose that A , B are τ_i –IF * – separated sets in X .

 $\Rightarrow \tau_i - cl^*(A) \tilde{q} B$ and $\tilde{q} \tau_i - cl(B)$, $i \in \{1,2\}$

Since A is $*-\tau_i$ –IFCS , then τ_i – $cl^*(A)$ = A , $i\in\{1,2\},$ we get Aq̃B

(⇐) Suppose that Aq̃B

Since A is $*-\tau_i$ –IFCS and B is τ_i –IFCS , $i \in \{1,2\}$

Therefore , $\tau_i - cl^*(A) = A$ and $\tau_i - cl(B) = B$, $i \in \{1,2\}$

We get $\tau_i - cl^*(A)\tilde{q}B$ and $A\tilde{q}\tau_i - cl(B)$

Hence A , B are τ_i –IF \ast –separated sets in X .

Definition 3.1.5 :-

An τ_i -intuitionistic fuzzy set (τ_i -IFS) A of intuitionistic fuzzy ideal bitopological space (X, τ_1 , τ_2 , L) is said to be $*-\tau_i$ - dense if τ_i cl^{*}(A) = X, i \in \{1,2\}

An IF ideal bitopological space (X, τ_1, τ_2, L) is said to be *-hyperconnected if τ_i -IFS A is $*-\tau_i$ -dense for every τ_i -IF open subset A $\neq \emptyset$ of X, i $\in \{1,2\}$.

Theorem 3.1.6 :-

Let (X, τ_1 , τ_2 , L) be an intuitionistic fuzzy ideal bitopological space and A, B are τ_i –intuitionistic fuzzy sets such that A, B \subset Y \subset X. Then A and B are τ_i -IF *-separated in Y if and only if A, B are τ_i -IF *-separated in X.

Proof :- It follows from lemma (2.17) that $\tau_i - cl^*(A)\tilde{q}B$ and $A\tilde{q}\tau_i - cl(B)$, $i \in \{1,2\}$.

Proposition 3.1.7 :-

Let A be an τ_i -intuitionistic fuzzy open set (τ_i -IFOS) and B is an $* - \tau_i$ -intuitionistic fuzzy open set ($* - \tau_i$ -IFOS) in IFLBTS (X, τ_1 , τ_2 ,L). Then the sets $C_AB = A \wedge B^c$ and $C_BA = B \wedge A^c$ are τ_i -IF *-separated in X.

Proof :-

Since $C_AB = A \wedge B^c$, $C_AB \le B^c$ $\tau_i - cl^*(C_AB) \le \tau_i - cl^*(B^c) = B^c$ because B^c is $* - \tau_i - IFCS$, By proposition (2.9) we get $\tau_i - cl^*(C_AB)\tilde{q}(B^c)^c \Rightarrow \tau_i - cl^*(C_AB)\tilde{q}B$, $i \in \{1,2\}$ Since $C_BA \le B$ Therefore $\tau_i - cl^*(C_AB)\tilde{q}C_BA \dots (1)$ $C_BA \le A^c$ $\tau_i - cl(C_BA) \le \tau_i - cl(A^c) = A^c$, $i \in \{1,2\}$ $\tau_i - cl(C_BA) \le A^c$ $\Rightarrow \tau_i - cl(C_BA)\tilde{q}(A^c)^c$, $i \in \{1,2\} \Rightarrow \tau_i - cl(C_BA)\tilde{q}A$, $i \in \{1,2\}$ Since $C_AB \le A$ Then $\tau_i - cl(C_BA)\tilde{q}C_AB \dots (2)$ From (1) and (2) we get, C_AB , C_BA are $\tau_i - IF *$ -eparated set in X.

Proposition 3.1.8 :-

Let A be an $*-\tau_i$ –intuitionistic fuzzy closed set (* – τ_i –IFCS) and B be τ_i –intuitionistic fuzzy closed set (τ_i –IFCS) in IFLBTS

 $\begin{array}{l} (X,\tau_1\,,\tau_2\,,L) \ . \ Then \ the \ \ \tau_i - IFS \ C_AB = A \wedge B^c \ and \ C_BA = B \wedge A^c \ are \\ \tau_i - IF * -separated \ sets \ in \ X \ , \ i \in \{1,2\} \ . \end{array} \\ Proof:- \\ Since \ A \ is * - \tau_i - IFCS \ and \ B \ is \ an \ \ \tau_i - IFCS \ , \ i \in \{1,2\} \\ So \ A = \tau_i - cl^*(A) \ and \ B = \tau_i - cl(B) \\ C_AB \le A \implies \ \tau_i - cl^*(C_AB) \le \ \tau_i - cl^*(A) = A \ , \ i \in \{1,2\} \\ By \ proposition \ (2.9 \) \ we \ get \\ \tau_i - cl^*(C_AB) \ A^c \\ Since \ C_BA \le A^c \ , \ then \ \ \tau_i - cl^*(C_AB) \ G_C_BB \ \dots \ (1 \) \\ Since \ C_BA \le B \implies \ \tau_i - cl(C_BA) \le \ \tau_i - cl(B) = B \ , \ i \in \{1,2\} \\ By \ proposition \ (2.9 \) \ we \ get \\ \tau_i - cl(C_BA) \ \widetilde{q}B^c \\ Since \ C_AB \le B^c \ , \ then \ \ \tau_i - cl(C_BA) \ \widetilde{q}C_AB \ \dots \ (2 \) \\ C_AB \ , \ C_BA \ are \ \ \tau_i - IF * -separated \ sets \ in \ X \ . \end{array}$

Theorem 3.1.9 :-

Let (X, τ_1, τ_2, L) be IFLBTS. Then A and B are two $\tau_i - IF *$ -separated sets if and only if there exists an τ_i -intuitionistic fuzzy open set $(\tau_i - IFOS)U$ and $* - \tau_i$ -intuitionistic fuzzy open set V (* $- \tau_i - IFOS$), $i \in \{1, 2\}$

Such that $A \leq U$, $B \leq V$, $~A \tilde{q} V$ and $~B \tilde{q} U.$

Proof :-

 $(\Longrightarrow) \text{ Suppoe that A , B are } \tau_i - IF * -separated sets .$ $\Rightarrow \tau_i - cl^*(A)\tilde{q}B \text{ and } A\tilde{q} \tau_i - cl(B)$ Now put V = $(\tau_i - cl^*(A))^c$ and U = $(\tau_i - cl(B))^c$ So U is $\tau_i - IFOS$ and V $* - \tau_i - IFOS$, $i \in \{1,2\}$

Then V^cq̃B and Aq̃U^c By proposition (2.9) we get $V^c \le B^c \Longrightarrow B \le V$ and $A \le U$ So $A \leq (\tau_i - cl(B))^c$ and $B \leq (\tau_i - cl^*(A))^c$ Since $B \subseteq \tau_i - cl(B)$ and since $\tau_i - cl^*(A) = A \lor A^*(L, \tau_i)$, $i \in \{1, 2\}$, then $A \subseteq \tau_i - cl^*(A)$ Then $A \le V^c$ and $B \le U^c$ Therefore, Aqv and BqU. (\Leftarrow) Suppose that there exist U be τ_i –IFos and V be $* -\tau_i$ –IFOS in X such that $A \leq U$, $B \le V$, $A\tilde{q}V$ and $B\tilde{q}U$. Now U^c is τ_i –IFCS and V^c is an $* -\tau_i$ –IFcs in X, $i \in \{1,2\}$ Since Aq̃V and Bq̃U, then $A \le V^c$ and $B \le U^c$. Since $A \leq U$ and $\leq V$, thus $U^{c} \leq A^{c}$ and $V^{c} \leq B^{c}$ Since $A \leq V^c \Longrightarrow \tau_i - cl^*(A) \leq \tau_i - cl^*(V^c) = V^c$ Because V^c is $* -\tau_i$ –IFCS $\Rightarrow \tau_i - cl^*(A) \le V^c \le B^c$, since $B \le U^c$ $\Rightarrow \tau_i - cl(B) \le \tau_i - cl(U^c) = U^c$, because U^c is $\tau_i - IFCS$, $i \in \{1,2\}$ Thus $\tau_i - cl(B) \leq U^c \leq A^c$ By proposition (2.9) $\tau_i - cl^*(A) \leq B^c$, Then $\tau_i - cl^*(A)\tilde{q}B \dots (1)$ $\tau_i - cl(B) \le A^c \Longrightarrow \tau_i - cl(B)\tilde{q}A$, then $A \tilde{q}\tau_i - cl(B) \dots (2)$ Hence A , B are τ_i –IF \ast – separated sets **Definition 3.1.10 :-**

An τ_i –intuitionistic fuzzy set E in intuitionistic fuzzy ideal bitopological space (X, τ_1 , τ_2 , L) is said to be intuitionistic fuzzy * – connected if it

can not be expressed as the Union of two intuitionistic fuzzy *- separated sets . Otherwise, E is said to be intuitionistic fuzzy

* − disconnected . If = X, then X is said to be intuitionistic fuzzy * − connected space . And we shall denoted it by ($τ_i$ −IF * −connected sets, for short i ∈ {1,2}).

Theorem 3.1.11 :-

Let A and B be τ_i –intuitionistic fuzzy *-separated sets in an intuitionistic fuzzy ideal bitopological pace (X, τ_1 , τ_2 ,L) and E be a non empty τ_i -IF *-connected set in X such that $E \le A \lor B$. Then exactly one of the following conditions holds :

a) $E \leq A$ and $E \wedge B = 0_{\sim}$

b) $E \leq B$ and $\wedge A = 0_{\sim}$.

Proof :-

Let $E \wedge B = 0_{\sim}$

Since $E \le A \lor B$ then $E \le A$

Similarly, if $E \lor A = 0_{\sim}$ we have $E \le B$

Since $E \le A \lor B$ then $E \land A = 0_{\sim}$ and $E \land B = 0_{\sim}$ can not hold simultaneously (because $E \ne 0_{\sim}$)

Suppose that $E \wedge B \neq 0_{\sim}$ and $\wedge A \neq 0_{\sim}$.

Then $E \wedge A$ and $E \wedge B$ are τ_i –IF * –separated set in X such that

 $E = (E \land A) \lor (E \land B) \text{ therefore } E \text{ is an } \tau_i - \text{intuitionistic fuzzy} *$ -disconnectedness of E.

This is contradiction

Hence exactly one of the conditions (a) and (b) must hold .

Theorem 3.1.12 :-

Let E ,F be two τ_i –intuitionistic fuzzy sets of IFLBTS (X, τ_1 , τ_2 ,L) if E is an τ_i –IF * –connected and E \leq F \leq τ_i – cl^{*}(E), i \in {1,2}. Then F is an τ_i –IF * –connected set.

Proof :-

If $= 0_{\sim}$, then the result is true.

Let $F \neq 0_{\sim}$ and F is an IF * -disconnected. There exist two τ_i -IF * -separated sets A and B in X such that $F = \vee B$. Since E is an τ_i -IF * -connected and

 $E \leq F = E \lor F$, $E \leq F = A \lor B$, $E \leq A \lor B$

So by theorem (3.1.11), we get

 $E \leq A$ and $E \wedge B = 0_{\sim}$ or $E \leq B$ and $E \wedge A = 0_{\sim}$

Let $E \leq A$ and $E \wedge B = 0_{\sim}$

 $B = B \land F \le B \land \tau_i - cl^*(E) \le B \land \tau_i - cl^*(A) \le B \land B^c \le B, i \in \{1,2\}$

It follows that $B = B \wedge B^c$ when $B=0_{\sim}$ or $\mu_B(x) = \nu_B(x)$, $\forall x \in X$.

Since $\neq 0_{\sim} \Longrightarrow \mu_B(x) = \nu_B(x)$, $\forall x \in X$.

Thus, $B_r = X$ where B_0 denotes the support of B.

Now $E \wedge B = 0_{\sim}$ implies $E_r \wedge B_r = \emptyset \Longrightarrow E_r = \emptyset \Longrightarrow E = \emptyset$

Which is a contradiction

Similarly, if $E \leq B$ and $E \wedge A = 0_{\sim}$, then we get $E = 0_{\sim}$ a contradiction

Hence F is an τ_i –intuitionistic fuzzy * –connected .

Theorem 3.1.13 :-

Let A and B be two τ_i –intuitionistic fuzzy * –connected sets which are not τ_i –intuitionistic fuzzy * –separated .Then A V B is τ_i –intuitionistic fuzzy* –connected set .

Proof :-

Suppose that A V B is an τ_i –intuitionistic fuzzy * –disconnected set \Rightarrow A V B = G V H where G and H are τ_i –intuitionistic fuzzy * –separated sets in X.

Since $A \le A \lor B$ and $B \le A \lor B$

Then $A \leq G \lor H$ and $B \leq G \lor H$

By theorem (3.1.11), we get

 $A \leq G$ with $A \wedge H = 0_{\sim}$ or $A \leq H$ with $A \wedge G = 0_{\sim}$.

And $B \leq G$ with $B \wedge H = 0_{\sim}$ or $B \leq H$ with $\wedge G = 0_{\sim}$.

If $A \leq G$ and $B \leq H$ or $A \leq H$ and $B \leq G$

We get that A and B are τ_i –intuitionistic fuzzy \ast –separated and this contradiction

If A \leq G with B \wedge H = 0 $_{\sim}$ and B \leq G with \wedge H = 0 $_{\sim}$.

If A \leq H with A \wedge G = 0 $_{\sim}$ and B \leq H with B \wedge G = 0 $_{\sim}$

We get that

 $\begin{array}{l} A \lor B \leq G \mbox{ and } H = 0_{\sim} \mbox{ or } A \lor B \leq H \mbox{ and } G = 0_{\sim} \mbox{ which } \mbox{ contradiction ,} \\ \\ \mbox{therefore , } A \lor B \mbox{ is } \tau_i \mbox{ -intuitionistic fuzzy } * \mbox{ -connected set .} \end{array}$

Therom 3.1.14 :-

Let f: $(X, \tau_1, \tau_2, L) \rightarrow (Y, \tau_1, \tau_2)$ is intuitionistic fuzzy continuous on to mapping, if (X, τ_1, τ_2, L) is an τ_i –intuitionistic fuzzy * –connected ideal bitopological space. Then (Y, τ_1, τ_2) is also τ_i –intuitionistic fuzzy * –connected bitopological space.

Proof :-

It is known that connectedness is preserved by intuitionistic fuzzy continuous surjections.

The proof is clear.

Corollary 3.1.15 :-

If IFS A is an τ_i –intuitionistic fuzzy * –connected set in an intuitionistic fuzzy ideal bitopological space (X, τ_1 , τ_2 , L). Then $\tau_i - cl^*(A)$,

 $i \in \{1,2\}$ is τ_i –intuitionistic fuzzy * –connected set .

Proof :-

Since $\tau_i - cl^*(A) = A \lor A^*(L, \tau_i)$, $i \in \{1,2\}$,

Then $\subseteq \tau_i - cl^*(A)$.

Since A is $\tau_i - IF * -$ connected set and $A \subseteq \tau_i - cl^*(A)$.

By theorem (3.1.12)

 $\tau_i - cl^*(A)$ is an τ_i –IF * –connected set .

Theorem 3.1.16 :-

If $\{\mu_i : i \in N\}$ is a non empty family of τ_i –intuitionistic fuzzy * –connected sets of an IFLBTS (X, τ_1, τ_2, L) with $\bigcap_{i \in I} \mu_i \neq \emptyset$. Then $\bigcup_{i \in I} \mu_i$ is an τ_i –intuitionistic fuzzy * –connected set.

Proof :-

Suppose that $\bigcup_{i \in I} \mu_i$ is not $\tau_i - IF * -connected$ set.

Then by definition (3.1.10) , there exist two τ_i –IF \ast –separated sets H and G , such that

 $\cup_{i\in I} \mu_i = H \cup G$, since $\cap_{i\in I} \mu_i \neq \emptyset$. We have a point x in $\cap_{i\in I} \mu_i$.

Since $\in \! \cup_{i \in I} \mu_i$, either $x \in H$ or $x \in G$.

Suppose that $\in X$. Since $x \in \mu_i$ for each $\in N$, then μ_i and H intersect for each $i \in N$.

By theorem (3.1.11) $\mu_i \subset H$ and $\mu_i \wedge G = 0_{\sim}$ or $\mu_i \subset G$ and $\mu_i \cap H = 0_{\sim}$.

Suppose that $\mu_i \subset H \Longrightarrow \mu_i \subset H$ for all $i \in N$ and hence $\bigcup_{i \in I} \mu_i \subset H$.

37

This implies that τ_i –IF \ast –separated set G is empty .

This is a contradiction.

Suppose that $\mu_i \subset G$. By similar way, we get $H = \emptyset$.

And this is a contradication .

Thus , $\cup_{i\in I} \mu_i$ is an τ_i –intuitionistic fuzzy * –connected set .

Theorem 3.1.17 :-

Suppose that $\{\mu_n : n \in N\}$ is an sequence of τ_i –intuitionistic fuzzy * –connected open sets of an intuitionistic fuzzy ideal bitopological space (X, τ_1, τ_2, L) and $\mu_n \cap \mu_{n+1} \neq \emptyset$ for each $\in N$. Then $\cup_{i \in I} \mu_i$ is τ_i –IF * –connected set.

Proof :-

By induction and theorem (3.1.16)

The $N_n = \bigcup_{k \le n} \mu_k$ is $\tau_i - IF * -$ connected open set for each $n \in N$

Also , N_n is τ_i –IF * –connected open set .

Thus , $\cup_{n\in N}\,\mu_n\;\; \text{is}\;\tau_i\,-\text{IF}*-\text{connected set}$.

References

[1] A.A.Salama and S.A.Alblowi ,"intuitionistic fuzzy ideal topological spaces" ,Advances in fuzzy Mathematics , ISSN 0973-533x vol..7 ,No.1 , 2012 , PP 51-60 .

[2] D.Coker ,"On intuitionistic fuzzy points ",Notes IFSI, (1995), no.2, 79-84.

[3] D.Coker, "An introduction on to intuitionistic fuzzy topological spaces", Fuzzy sets and systems, vol.88, pp, 81-89, 1997.

[4] J.C.Kelly ,"Bitopological spaces", Pro C.London Math.Soc. 13(1963) , 71-89.

[5] K.T.Atanassove,"Intuitionistic fuzzy sets ",Fuzzy sets and systems 20(1986) ,no.1 , 87-96.

[6] K.T.Atanassove," Review and new results on intuitionistic fuzzy sets

",Mathematical Foundation of Artifical Intelligance seminar, sofia, 1988

, pp.1-8.

 $\ensuremath{\left[7\right]}$ L.A.Zadeh ,"fuzzy sets", information and control , 18(1965) , 338-353 .

[8] Mohammed J. Mohammed Al-Msafer , "on Intuitionistic Fuzzy Ideal Topological Spaces", M.S.C. Thesis (2012) .

[9] Mohammed Jassim Taimah , Mohammed Jassim Mohammed , "ON INTUITIONISTIC FUZZY IDEALS BITOPOLOGICAL SPACES" , JOURNAL OF ADVANCES IN MATHEMATICS , ISSN 2347-1921 , VOL.11 , NO.6 , 2015 , PP 5352-5359 .

[10] T.Shyla Isac Mary and P.Thangavelu ,"Contra rps-continuous functions ".Asian journal of Current Engineering and Maths , 1(4) , (2012) , 219-221 .