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 :الملخص 

بىلىجية الثنائية  الحدسية الضبابية ىالاتصال في الفضاءات الت     قدهنا في هرا البحث هفهىم 

الاتصال في    ذات الوثاليات الحدسية الضبابية . وقد حصلنا علً بعض الخىاص حىل 

وازتباطه  ا الوفهىمبىلىجية الثنائية الحدسية الضبابية  وبعض العلاقات حىل هرىالفضاءات الت

 لوفاهين الاخسي ذات العلاقة . هع ا

1. Introduction  

         The concept of  " fuzzy sets " interdused  by Zadeh [7]  in 1965 . 

The idea of  " intuitionistic fuzzy sets " was firt published by Atanassove 

[5. , 6] in 1986 , 1988 . 

Then Coker [2 , 3] introduced " intuitionistic fuzzy topological space " 

using intuitionistic fuzzy set in 1996 , 1997 . The notion of " ideal in 

intuitionistic fuzzy topological space " was introduced by A.Asalam and 

S . A . Alblowi [1] in 2012. 

 

Kelly introduced the concept of "bitopological space" as extension of 

topological space [4] in 1963  
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Mohammed (2015 ) introduced the notion of " intuitionistic fuzzy ideal 

bitopological space" [9] .  

    The purpose of this paper is to introduce and study the notion of "    

connectedness in intuitionistic fuzzy ideal bitopological space " . 

We study the notion of " pairwise    connected intuitionistic fuzzy ideal 

bitopological space" . 

 2. Preliminaries : 

Definition 2.1. [7] :- 

Let X be a non – empty set and   ,      -  be the closed interval of the 

real numbers .  A fuzzy subset μ of  X is defined to be membership 

function μ      , such that μ (  )    for every      The set of all 

fuzzy subsets of  X denoted by    . 

Definition 2.2 [ 5 ] :- 

An intuitionistic fuzzy set ( IFs , for short ) A is an object have the form : 

  *    μ (  )   (  )        + , where the functions μ      , 

        denote the degree of membership and the degree of non – 

membership of each element     to the set A respectively ,and 

  μ  ( )    (  )    , for each     . The set of all intuitionistic 

fuzzy sets in X denoted by IFS ( x ) . 

Definition 2.3. [ 3 ] :- 

             ,              are the intuitionistic sets 

corresponding to empty set and the entire universe respectively . 
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Definition 2.4. [ 2 ] :- 

Let X be a non – empty set . An intuitionistic fuzzy point ( IFP , for short 

) denoted by  (   ) is an intuitionistic fuzzy set have the form 

 (   )( )  {
                     
                        

  , where     is a fixed point , 

and      ,      - satisfy       . The set of all IFPs denoted by 

IFP ( x ) . If      ( ) . We say the  (   )    if  and only if     ( ) 

and     (  ) , for each     . 

Definition 2.5. [2] :- 

Let      μ  ( )    (  )   ,       μ  ( )    (  )   be two 

intuitionistic fuzzy sets in X . A is said to be quasi – coincident with B ( 

written AqB ) if and only if , there exists an element     such that 

μ  ( )    ( ) or   (  )  μ  ( ) , otherwise A is not quasi – 

coincident with B and denoted by   ̃  . 

Definition 2.6. [2] :- 

Let  (   )     ( ) and      ( ) . We say that  (   ) quasi – coincident  

with  A denoted  (   )  A if and only if , α    (  ) or β  μ  ( ) , 

otherwise  (   ) is not quasi – coincident with A and denoted by  (   ) ̃ 

A . 

Definition 2.7.[2] :- 

Let  (   ) be an intuitionistic fuzzy point in X and 

  *    μ  ( )    (  )        + an IFS in X . Suppose further α and 

β are real numbers between 0 and 1 . The intuitionistic fuzzy point  (   ) 

is said to be properly contained in A if and only if , α  μ  ( )  and             

β    (  ) . 
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Definition 2.8.[2] :- 

An intuitionistic fuzzy point  (   ) is said to be belong to an intuitionistic 

fuzzy set A in X , denoted by  (   )    if α  μ  ( ) and β    (  ) . 

Proposition 2.9. [3] :- 

Let A , B  be IFSs and   (α  β) an IFP in X . Then  

1-    ̃       

2-  AqB       , 

3-   (   )      (   ) ̃ 
  , 

4-   (   ) q A    (   )   
  . 

 Proposition 2.10. [8] :- 

For          and  (   )      ( ) , we have : 

        if and only if  , for   (   )    then   (   )    – i 

ii -       if and only if , for   (   ) q A then   (   ) q B . 

Lemma 2.11. [10] :- 

Let A , B and C be intuitionistic fuzzy sets . If  (   ) , then CqA or 

CqB . 

Definition 2.12. [3] :- 

An intuitionistic fuzzy topology ( IFT , for short ) on a non empty set X 

is a family τ of an intuitionistic fuzzy set in X such that  

( i )        τ ,  

( ii )       τ , for any        τ ,  

( iii )     τ , for any arbitrary family {        +   τ .  

In this case the pair (    τ ) is called an intuitionistic fuzzy topological 

space ( IFTS , in short ) . 
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Definition 2.13. [3] :- 

Let (    τ ) be an intuitionistic fuzzy topological space and 

  *    μ  ( )    (  )        + be an intuitionistic fuzzy set in X 

then , an intuitionistic fuzzy interior and intuitionistic fuzzy closure of A 

are respectively defined by  

    ( )      *    is an IFOS in X and    +  

   ( )   ̅   *    is an IFCS in X and     + . 

Definition 2.14. [3] :- 

A non – empty collection of intuitionistic fuzzy sets  L of a set X is 

called intuitionistic fuzzy ideal on X ( IFI , for short ) such that : 

( i ) If     and         ( heredity )  

( ii ) If     and           ( finite additivity ) . If (   τ ) be 

an IFTS , then the triple (    τ    ) is called an intuitionistic fuzzy ideal 

topological space  ( IFITS , for short ) . 

Definition 2.15. [1] :- 

Let (    τ    ) be an IFITS . If      ( ) . Then the intuitionistic fuzzy 

local function   (   τ ) (   , for short ) of A in (    τ    ) is the union of 

all intuitionistic fuzzy points  (    )   such that :  

  (    τ )   *  (    )         , for every    (  (    )  τ ) +  , where 

  ( (    )  τ ) is the set of all quasi – neighborhoods of an IFP  (    ) in τ 

. The intuitionistic fuzzy closure operator of an IFS A is defined by  

   ( )       , and τ ( ) is an IFT finer than τ generated    ( ) and 

defined as 

 τ ( )  *      (  )    + . 
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Lemma 2.16. [8] :- 

Let (    τ    ) be an IFITS and B     . Then  

  (τ    )   
 (τ  )        

 

Lemma 2.17. [8] :- 

Let (    τ    ) be an IFITS and B     . Then 

   
 ( )     ( )       

Definition 2.18. [8] :- 

An intuitionistic fuzzy set (IFS) A of intuitionistic fuzzy ideal 

topological space(    τ    ) is said to be *-dense if    ( )      

   An intuitionistic fuzzy ideal topological space (    τ    ) is said to be 

*-hyperconnected if IFS A is *-dense for every IF open subset      of  

X .  

Lemma 2.19. [8] :- 

Let (    τ    ) be an IFITS  for each   τ  τ 
  (τ )

  . 

Lemma 2.20. [8] :- 

Let (    τ    ) be an IFITS ,       and   τ . The following are 

equivalent 

(1) A is *-IF open in Y,  (2) A is *-IF open in X . 

Proof :- (1) ( ) let A be *-IF open in Y .Since   τ  τ    by lemma 

(2.19) , A is *-IF open      in X . 

Let  A be *-IF open in X . By lemma (2.19) ,       is *-IF open in 

X .( )  ( ) .  

Definition 2.21. [8] :- 

Two non empty intuitionistic fuzzy sets A and B of an intuitionistic 

fuzzy ideal topological space (    τ    ) are said to be intuitionistic fuzzy 
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   separated sets ( IF    separated sets , for short ) if    ( ) ̃  and 

  ̃   ( ). 

Definition 2.22. [8] :- 

An intuitionistic fuzzy set E in intuitionistic fuzzy ideal topological space 

(    τ    ) is said to be intuitionistic fuzzy    connected if it can not be 

expressed as the Union of two intuitionistic fuzzy    separated sets . 

otherwise , E is said to be intuitionistic fuzzy    disconnected . 

If    , then X is said to be intuitionistic fuzzy    connected space .  

Definition 2.23. [8] :- 

Let τ  and τ  be two intuitionistic fuzzy topologies on a non – empty set 

X . The Triple (    τ   τ  ) is called an intuitionistic fuzzy bitopological 

space ( IFBTS , for short ) , every member of τ  is called τ   

intuitionistic fuzzy open set (τ   IFOS ) ,   *    + and the complement 

of τ   IFOS is τ   imtuitionistic fuzzy closed set (τ   IFCS ) , 

  *    + . 

 

Example 2.24.[8] :- 

Let   *    + and          (  ) such that 

     (          )  (         )   , 

      (          )  (         )   . Let    *          +  and τ  

*          + be two IFTS on X . Then (    τ   τ  ) is IFBTS .  

 

Definition 2.25.[8] :- 

Let (           ) be an IFBTS ,       ( ) and  (    )      ( ) . Then 

A is said to be quasi – neighborhood of  (    ) if there exists a     IFOS 

B ,   *    + such that  (    )     . The set of all quasi –
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neighborhoods of  (    ) in (           ) is denoted by :     

 ( (    )    )   *   +   

Definition 2.26.[8] :- 

An intuitionistic fuzzy bitopological space (    τ   τ  ) with an 

intuitionistic fuzzy ideal L on X is called intuitionistic fuzzy ideal 

bitopological space (    τ   τ    ) and denoted by IFLBTS 

Example 2.27. [8] :- 

Let   * + and         ( ) such that                , 

                . Let (           ) be an IFLBTS , where    

*          + and    *          + . If   *               ( ) and 

   + be an IFL on X . Then (           ) is IFLBTS .  

 

Definition 2.28. [8] :- 

Let (    τ   τ    ) be an IFLBTS and      ( ) . Then the intuitionistic 

fuzzy local function of A in (    τ   τ    ) denoted by   (   τ )    

*    + and defined by as follows : 

  (   τ )   * (    )         , for every   (  (    )  τ  ) +   *   + . 

Definition 2.29. [8]:- 

Let (    τ   τ  ) be an IFBTS and      ( ) . Then intuitionistic fuzzy 

interior and intuitionistic fuzzy cloure of A with respect to τ  ,   *    + 

are defined by : 

τ      ( )    *         τ           + .  

τ     ( )    *         τ           + . 

  Proposition 2.30.[8] :-    

Let (    τ   τ  ) be an IFBTS and      ( ) . Then we have : 
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( i )    τ      ( )       *    + 

( ii )  τ      ( ) is a largest τ   IFOS contains in A 

( iii ) A is a τ   IFOS if and only if τ      ( )     

( iv ) τ      (τ      ( ))  τ      ( ) . 

( v )   τ     ( )    *    + . 

( vi ) τ     ( ) is smallest τ   IFCS contains A . 

( vii ) A is a τ   IFCS if and only if τ     ( )    . 

( viii ) τ     (τ     ( ))  τ     ( )  

( ix ) ,τ      ( )-
  τ     ( 

 )    *    + . 

( x ) ,τ     ( )-
  τ      ( 

 )    *    + . 

Definition 2.31. [8] :- 

We define    intuitionistic fuzzy closure operator for intuitionistic fuzzy 

bitopology τ 
 ( ) as follows : 

τ    
 ( )      (   τ ) for every   τ      ( ) .Also , τ 

 ( ) is 

called an intuitionistic fuzzy bitopology generated by τ    
  ( ) and 

defined as : 

τ 
 ( )  *   τ    

 (  )        *    + + .  

Note : τ 
 ( ) finer than intuitionistic fuzzy bitopology τ  , ( i . e τ  

τ 
 ( )) . 

Remark 2.32. [8] :- 

( i ) If   *  +    
  (   τ )  τ     ( ) , for any       ( )  

  τ    
 ( )      (   τ )    τ     ( )  τ     ( ) 

 τ 
  (*  +)  τ  ,   *    + .      

( ii ) If       ( )    (   τ )      , for any       ( )  

      τ    
 ( )      (   τ )         

     τ 
 ( ) is the intuitionistic fuzzy discrete bitopology on X  . 
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   3. Main Results  

3.1    Connectedness in Intuitionistic fuzzy Ideal 

Bitopological Spaces 

Definition 3.1.1 :- 

Two non empty τ   intuitionistic fuzzy sets A and B of an intuitionistic 

fuzzy ideal bitopological space (    τ   τ    ),   *   +, are said to be  

intuitionistic fuzzy    separated sets  (τ   IF    separated sets , for 

short ) ,   *   +  if  

τ    
  ( ) ̃  and   ̃ τ     ( )  

Propoition 3.1.2 :- 

Let A and B be an τ   intuitionistic fuzzy   separated sets in IFLBT 

(    τ   τ    ) , A , B  are two non empty τ   intuitionistic fuzzy  

 separated sets such that      and      then    and    are 

τ  intuitionistic fuzzy   separated sets in X ,   *   +  . 

Proof :- 

Since      and      , we have 

τ    
 (  )  τ    

 ( ) and τ    (  )  τ    ( ) , Since A ,B are 

τ   intuitionistic fuzzy   separated then ,  

τ    
 ( ) ̃  and  ̃τ    ( ) ,   *   + 

Therefore τ    
 ( ) ̃  we get τ    

 (  ) ̃    

And  ̃τ    ( ) , and also we get    ̃τ    (  ) ,   *   + 

Then    and    are τ       separated . 

Theorem 3.1.3 :- 

Let A be τ  intuitionistic fuzzy open set (τ  IFOS) ,   *   + and B be 

  τ   intuitionistic fuzzy open set in intuitionistic fuzzy ideal 
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bitopological space (    τ   τ    ) . Then A and B are τ  IF  

 separated sets in X if and only if ,  ̃  . 

Proof :- 

( ) suppose that AqB , then exists an element         such that 

μ ( )    ( ) or   ( )  μ ( ) , and since 

  τ    
 ( ) and  τ    ( ) ,   *   + 

This implies μ      ( )( )    ( ) or        ( )( )  μ ( ) 

And μ ( )        ( )( ) or   ( )  μ     ( )( ) ,   *   +      

Then τ    
 ( )   and Aqτ    ( ) ,   *   + 

This is contradiction . Hence  ̃  . 

( ) Suppose that  ̃  . 

By proposition ( 2.9 ) , we have      

Since    is τ   intuitionistic fuzzy closed set ,   *   + 

Therefore , τ    
 ( )  τ    

 (  )     ,   *   +  τ    
 ( )  

   

Hence by proposition ( 2.9 ), we get τ    
 ( ) ̃(  )  . 

Then τ    
 ( ) ̃  … (1) 

Let     , since    is   τ  IFCS in X . 

Therefore , τ    ( )  τ    ( 
 )     ,   *   + 

Hence by proposition ( 2.9 ) , we have τ    ( ) ̃( 
 )  ,then τ  

  ( ) ̃   

Since   τ    ( ) and  τ    ( ) ,   *   + 

Thus   ̃τ    ( ) …(2) 

From (1) and (2) we get A and B are τ        separated sets in X . 
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Proposition 3.1.4 :- 

Let A be an   τ  IFCS and B is an τ  IFCS ,   *   + in intuitionistic 

fuzzy ideal bitopological space (    τ   τ    ) . 

Then A and B are τ  IF    Separted sets in X if and only if  ̃  . 

Proof :- 

( ) suppose that A , B are τ  IF    separated sets in X . 

 τ    
 ( ) ̃  and  ̃τ    ( ) ,   *   +  

Since A is   τ  IFCS , then τ    
 ( )    ,   *   +, we get A ̃  

( ) Suppose that A ̃  

Since A is   τ  IFCS and B is τ  IFCS ,   *   + 

Therefore , τ    
 ( )    and τ    ( )    ,   *   +  

We get τ    
 ( ) ̃  and A ̃τ    ( ) 

Hence A , B are τ  IF   separated sets in X . 

Definition 3.1.5 :- 

An τ  intuitionistic fuzzy set (τ  IFS) A of intuitionistic fuzzy ideal 

bitopological space (    τ   τ    ) is said to be   τ   dense if τ  

   ( )    ,   *   +    

An IF ideal bitopological space (    τ   τ    ) is said to be  

 hyperconnected if  τ  IFS A is   τ  dense for every τ  IF open 

subset     of  X ,   *   + .  

Theorem 3.1.6 :- 

Let (    τ   τ    ) be an intuitionistic fuzzy ideal bitopological space and 

A ,B are τ  intuitionistic fuzzy sets such that A , B      . Then A 

and B are τ  IF   separated in Y if and only if A , B are τ  IF  

 separated in X . 
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Proof :- It follows from lemma ( 2.17 ) that τ    
 ( ) ̃  and A ̃τ  

  ( ) ,   *   + . 

Proposition 3.1.7 :- 

Let A be an  τ  intuitionistic fuzzy open set (τ  IFOS ) and B is an 

   τ  intuitionistic fuzzy open set (   τ  IFOS ) in IFLBTS 

(    τ   τ    ) . Then the sets        
  and                      

  

are  τ  IF   separated in X . 

Proof :- 

Since        
  ,      

  

τ    
 (   )   τ    

 (  )     because    is    τ  IFCS ,  

By proposition ( 2.9 ) we get  

τ    
 (   ) ̃( 

 )   τ    
 (   ) ̃   ,   *   + 

Since       

Therefore  τ    
 (   ) ̃    … ( 1 ) 

     
   

τ    (   )  τ    ( 
 )       *   +  

τ    (   )   
   

  τ    (   ) ̃( 
 )     *   +    τ    (   ) ̃     *   +  

Since         

Then  τ    (   ) ̃    … ( 2 ) 

From ( 1 ) and ( 2 ) we get ,     ,     are  τ  IF   eparated set in X . 

 

Proposition 3.1.8 :- 

Let A be an    τ  intuitionistic fuzzy closed set (   τ  IFCS ) and B 

be  τ  intuitionistic fuzzy closed set (τ  IFCS ) in IFLBTS 



Journal of Thi-Qar University Vol.12 No.1 Mar 2017 

20 

www.Jutq.utq.edu.iq  Web Site of the Journal 

 

(    τ   τ    ) . Then the  τ  IFS        
  and        

  are  

τ  IF   separated sets in X ,   *   + . 

Proof :- 

Since A is    τ  IFCS and B is an  τ  IFCS ,   *   + 

So A  τ    
 ( ) and B = τ    ( ) 

       τ    
 (   )   τ    

 ( )    ,   *   +  

By proposition ( 2.9 ) we get  

τ    
 (   ) ̃ 

   

Since      
  , then  τ    

 (   ) ̃    … ( 1 ) 

Since         τ    (   )   τ    ( )    ,   *   + 

By proposition ( 2.9 ) we get  

τ    (   ) ̃ 
   

Since      
  , then  τ    (   ) ̃    … ( 2 )  

    ,     are  τ  IF   separated sets in X . 

Theorem 3.1.9 :- 

Let (    τ   τ    ) be IFLBTS . Then A and B are two  τ  IF  

 separated sets if and only if there exists an  τ  intuitionistic fuzzy open 

set (τ  IFOS )U and    τ  intuitionistic fuzzy open set V ( 

  τ  IFOS ) ,   *   +  

Such that             ̃  and  B ̃ .  

 

Proof :- 

( ) Suppoe that A , B are  τ  IF   separated sets . 

   τ    
 ( ) ̃  and A ̃ τ    ( )  

Now put V =  (τ    
 ( ))  and U =( τ    ( ))

  

So U is  τ  IFOS and V   τ  IFOS ,   *   + 
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Then    ̃  and    ̃    

By proposition ( 2.9 ) we get           and A    

So   (τ    ( ))
  and   (τ    

 ( ))   

Since B τ    ( ) and since τ    
 ( )      (   τ ) ,   *   + , 

then A τ    
 ( ) 

Then A    and B    

Therefore , A ̃  and B ̃  . 

( ) Suppose that there exist U be τ  IFos and V be   τ  IFOS in X 

such that A   , 

B   , A ̃  and B ̃  .  

Now   is τ  IFCS and    is an   τ  IFcs in X ,   *   + 

Since A ̃  and B ̃  , then A    and B    . 

Since     and    , thus       and        

Since      τ    
 ( )  τ    

 (  )     

Because    is   τ  IFCS 

 τ    
 ( )        , since B     

 τ    ( )  τ    ( 
 )     , because    is τ  IFCS ,   *   + 

Thus τ    ( )   
     

By proposition ( 2.9 ) τ    
 ( )     ,  

Then τ    
 ( ) ̃   … ( 1 )  

τ    ( )   
  τ    ( ) ̃  , then A  ̃τ    ( ) … ( 2 )  

Hence A , B are τ  IF    separated sets  

Definition 3.1.10 :- 

An τ  intuitionistic fuzzy set E in intuitionistic fuzzy ideal bitopological 

space (    τ   τ    ) is said to be  intuitionistic fuzzy    connected  if  it 
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can not be expressed as the Union of  two intuitionistic fuzzy    

separated sets . Otherwise , E is said to be  intuitionistic fuzzy  

   disconnected  . If    , then X is said to be  intuitionistic fuzzy    

connected space  . And we shall denoted it by (τ  IF   connected sets , 

for short   *   + ) . 

Theorem 3.1.11 :- 

Let  A and B be τ  intuitionistic fuzzy   separated sets in an 

intuitionistic fuzzy ideal bitopological pace (    τ   τ    ) and E be a non 

empty τ  IF   connected set in X such that E     . Then exactly 

one of the following conditions holds : 

a)     and        

b)     and       . 

Proof :- 

Let        

Since       then     

Similarly , if        we have     

Since       then        and        can not hold 

simultaneously                       ( because      )  

Suppose that        and       . 

Then     and     are τ  IF   separated set in X such that 

  (   )  (   ) therefore E is an τ  intuitionistic fuzzy     

 disconnectedness of E . 

This is contradiction  

Hence exactly one of the conditions (a) and (b) must hold .  

 

 



Journal of Thi-Qar University Vol.12 No.1 Mar 2017 

22 

www.Jutq.utq.edu.iq  Web Site of the Journal 

 

Theorem 3.1.12  :- 

Let E ,F be two τ  intuitionistic fuzzy sets of IFLBTS (    τ   τ    ) if 

E is an τ  IF   connected and     τ    
 ( ) ,   *   + . Then F 

is an τ  IF   connected set . 

Proof :- 

If     , then the result is true . 

Let F    and F is an IF   disconnected. There exist two τ  IF  

 separated sets A and B in X such that F =    . Since E is an τ  IF  

 connected and  

                         

So by theorem ( 3.1.11) , we get  

    and        or     and         

Let     and        

        τ    
 ( )    τ    

 ( )         ,   *   + 

It follows that        when B=    or μ ( )    ( ) ,      . 

Since     μ ( )    ( ) ,      .  

Thus ,      where    denotes the support of B . 

Now        implies                  

Which is a contradiction  

Similarly , if     and        , then we get E =   a contradiction  

Hence F is an τ  intuitionistic fuzzy   connected . 

Theorem  3.1.13  :- 

Let A and B be two τ  intuitionistic fuzzy   connected sets which are 

not τ  intuitionistic fuzzy   separated .Then     isτ  intuitionistic 

fuzzy  connected set . 
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Proof :- 

Suppose that     is an  τ  intuitionistic fuzzy   disconnected set   

        where G and H are τ  intuitionistic fuzzy   separated 

sets in X .  

Since       and        

Then       and        

By theorem ( 3.1.11 ), we get   

    with        or     with        . 

And     with        or     with       . 

If     and     or     and     

We get that A and B are τ  intuitionistic fuzzy   separated and this 

contradiction  

If     with        and     with       . 

If     with        and     with        

We get that  

      and H =    or       and G =    which  contradiction , 

therefore ,     is τ  intuitionistic fuzzy   connected set . 

Therom 3.1.14 :- 

Let   (    τ   τ    )  (    τ   τ ) is intuitionistic fuzzy continuous on 

to mapping , if (    τ   τ    ) is an  τ  intuitionistic fuzzy   connected 

ideal bitopological space .Then (  τ  τ ) is also τ  intuitionistic fuzzy 

  connected bitopological space . 

Proof :- 

It is known that connectedness is preserved by intuitionistic fuzzy 

continuous surjections . 
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The proof is clear. 

Corollary 3.1.15 :- 

If IFS A is an τ  intuitionistic fuzzy   connected set in an intuitionistic 

fuzzy ideal bitopological space (    τ   τ    ) . Then τ    
 ( ) , 

  *   + is τ  intuitionistic fuzzy   connected set .   

Proof :- 

Since τ    
 ( )      (   τ ) ,   *   + ,  

Then  τ    
 ( ) . 

Since A is τ  IF   connected set  and   τ    
 ( ) . 

By theorem ( 3.1.12 ) 

τ    
 ( ) is an τ  IF   connected set .  

Theorem 3.1.16 :- 

If *μ     + is a non empty family of τ  intuitionistic fuzzy  

 connected sets of an IFLBTS (    τ   τ    ) with ⋂ μ       . Then 

    μ  is an τ  intuitionistic fuzzy   connected set .  

 Proof :- 

Suppose that        is not    IF   connected set .  

Then by definition ( 3.1.10 ) , there exist two τ  IF   separated sets H 

and G , such that  

    μ      , since     μ    . We have a point x in     μ  . 

Since      μ  , either     or      . 

Suppose that    . Since   μ  for each    , then μ  and H intersect for 

each     . 

By theorem ( 3.1.11 )  μ    and  μ       or μ    and  μ    

   . 

   Suppose that μ    μ    for all     and hence   ⋃ μ       . 
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This implies that τ  IF   separated set G is empty .  

This is a contradiction . 

Suppose that μ    . By similar  way , we get     . 

And this is a contradication . 

Thus ,     μ  is an τ  intuitionistic fuzzy   connected set . 

Theorem 3.1.17 :- 

Suppose that *μ     + is an sequence of τ  intuitionistic fuzzy  

 connected open sets of an intuitionistic fuzzy ideal bitopological space 

(    τ   τ    ) and μ  μ      for each    . Then     μ  is τ  IF 

  connected set .  

Proof :- 

By induction and theorem ( 3.1.16 )  

The        μ  is τ  IF   connected open set for each     

Also ,    is τ  IF   connected open set .  

Thus ,     μ   is τ  IF   connected set . 
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