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Abstract:

In this paper, we studied the stationary and the non-stationary incompressible Euler
equations in two-dimensional domain by using mixed finite element method. By using the
Linearized Crank-Nicolson-Galerkin Method we found the weak form to the above problem which
is then improved to the approximate solution. we consider three cases, the first case for the steady-
state and non steady-state Euler equations and proved some lemmas and theorems for the stability
of the semi-discrete and fully-discrete mixed finite element method, the second case for the steady-
state Euler equations and proved some lemmas for the ellipticity and continuity of this method and
the third case for the steady-state and non steady-state Euler equations and these estimates are then
applied to obtain quasi-optimal error analysis in the energy norm for velocity, pressure and velocity

with pressure.

Keyword: Incompressible Euler Equations, Mixed finite element method, Linearized Crank-Nicolson-
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1. Introduction

The classical numerical method for partial differential equations is the difference
method where the discrete problem is obtained by replacing derivatives with

difference quotients involving the values of the unknown at certain points.
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The finite element method is a numerical analysis technique for obtaining
approximate solutions to a wide variety of problems in mechanics and physics[6].
Although originally developed to study stresses in complex airframe structures, it has
since been extended and applied to the broad field of continuum mechanics. Because
of its diversity and flexibility as an analysis tool, it is receiving much attention in
engineering schools and in industry. In this method, the discretization procedures
reduce the problem to one of a finite number of unknowns by dividing the solution
region into elements and by expressing the unknown field variable in terms of
assumed approximating functions within each element. The approximating functions
(sometimes called interpolation functions) are defined in terms of the values of the
field variables at specified points called nodes or nodal points[" +].

Mixed finite element methods are one of the important approaches for solving
system of partial differential equations, for example, the stationary Navier-Stokes
equations. However, fully discrete system of mixed finite element solutions for the

stationary Navier-Stokes equations is of many degrees of freedom[9].

1.1 Notation

Let Q be an open and bounded domain in R*with Lipschitz continuous boundary
I .Throughout this paper we will use the standard notation for Sobolev spaces.
Specially H r(Q), where r is an integer greater than zero, will denotes the Sobolev
space of real-valued functions with square integrable derivatives of order up to r

equipped with the usual norm which we denote |-| . We will denote H°(Q)by L*(2)

and the standard L inner product by (--). Also H'(Q)will denote the space of
vector-valued functions each of whose n components belong to H'(Q2)and the dual

space of H'(Q)will be denoted by H " (Q).Of particular interest to us will be the

constrained space see [10]
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V=[H(Qf ={v=(v,,v,):v, e H}, =12}

and

Q:{q € LZ(Q):£q dx:O}

1.2 The weak formulations
We are interested in approximating the solution of the incompressible Euler
equations written in the primitive variable formulation of the velocity u=(u,,u, ) and

the pressure p. In particular, we consider the steady incompressible Euler equations,

see [3], [5].

%U+U.Vu +Vp="f inQ (1.1a)
V-u=0 in Q (1.1b)
u.n=0 on oQ=TI (1.1c)

Multiplying (1.1a) and (1.1b) by veV and qeQ, respectively, as a test

functions and take integral over Q
ou
—vdx+|(u-Vjuvdx+|Vpvdx=|fvdx ; veV
[ v [l Vuvexe [vp -] :
[divuqdx=0; qeQ,

by using Green's formulation

j%uvdx—%juz vvdx—[pdivvdx=[fvdx ,

[divu qdx=0.
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We consider the following standard weak formulation of non- steady: seek
(u, p)eV xQ such that

(u,v)—n(u;u,v)-b(v, p)=(f,v) ; veV, (1.2a)

b(u,q)=0; qeQ, (1.2b)

where

1e oo
n(u;u,v)==|u° vvdx,
(50.9)=]
b(u, q)=[divu g dx.
Also, the weak formulation of the steady Euler equations is as follows:

Seek (u, p)eV xQ such that:
—n(u;u,v)-b(v, p)=(f,v) ; veV,

b(u,q)=0; qeQ,

Continuity of the forms n(-,-,-) and b(-,-) can be demonstrated. These conditions

guarantee the existence and uniqueness of a solution (u, p) [3].

1.3 The discrete problems

Given finite dimensional spaces V, cVandQ, cQ where 0<h<1 then the
approximate solution (u,, p, ) to (u, p) is the solution of the following equations:

(U, v)=n(u,;u,,v)=b(v, p,)=(f,v) ; veV,, (1.3a)

b(u,, a)=0; qeQ,, (1.3b)
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Also, the discrete problem of the steady equations is as follows seek
(u,, p,)eV, xQ, such that:

_n(uh;uh’v) (V ph) (f.v): vev,, (1.4a)

b(u,,q)=0; qeQ,, (1.4b)

1.3 The Fully-Discrete Approximation

Now we turn our attention to some simple schemes for discretization with

respect to the time variable.

1.3.1 Forward Euler Method

Letting n, be the time step and ufthe approximation in V,of u(,t,),

k=0,---,N, at t=t_=kn,. This method is defined by replacing the time derivative

k+1 k

. : . . ut—u o N
u,,in equation (1.3) by forward differences quotient /——  with discretization

n,

error O(n, ),

Sl )bl p)= (10 vV, k0N (1S
k
b(ut,q)=0; qeQ,. (1.5b)

1.3.2 Crank-Nicolson method
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This method is defined by replacing the time derivative u, , in equation (1.3) by

k+l_ k

forward differences quotient b and the u, and p, by differences quotient

n,

k+1

uy

k k+1 k
tUu, + b

and P,
2

with the corresponding discretization error is O(nf),

(u,f”—u: V}_n(u:+l+u,f_uﬁ+1+uhk vj—b(v p:+l+p:j:(f(tk+l)+f(tk)v).

2 2 2 2

(1.6a)

b[u,q}o; qeQ, . (1.6b)

1.3.3 Semi-implicit Oseen Method for Weak Formulations

In order to reduce the computational effort at each time step, it seems
reasonable to replace the nonlinear stationary problems by linear ones in a similar
way as in the Oseen iteration, which yields a modified equation at each step. Letting

rhe the time step and u* the solution in v of u(-t,),k=12,---,N, at t=t,=kr.

This method is defined by replacing the time derivative u in problem (1.2) by

k k-1
backward differences quotient (u—u) with the corresponding discretization error
T

is O(rz) ,

uk_uk—l
( ,vj—n(u“;uk,v)—b(v, pk):(fk,v) ‘weV, k=1--- N
T

b(u*,q)=0 ;vqeQ
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1.3.4 Semi-implicit Oseen Crank-Nicolson-Galerkin Method

Letting 7 be the time step and u* the solution in V of u(-t, ),k =12,---,N, at

t=t _=Kkz. This method is defined by replacing the time derivative u in problem

k

gk
(1.2) by backward differences quotient (u—u) and theu and p by differences

T

k k-1

+Uu

: u p“ +p<t) . : N :
quotient and B with the corresponding discretization error is

k k-1 k k-1 k k-1 k k-1
) e
T

(1.7a)

b(u*,4)=0 :vqeQ (1.7b)

1.3.5 Linearized Oseen Crank-Nicolson-Galerkin Method for Weak

Formulations

Problem (1.7) shares, however with backward Euler method discussed first
above, the disadvantage of producing, at each time level, a nonlinear system of
problem. For this reason we shall consider also a linearized modification in which the

argument of n(-, -,-) is obtained by extrapolation from u** and u*?, [2], with

oy
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(1.8b)

1.3.6 Linearized Oseen Crank-Nicolson-Galerkin Method for Discrete Problem

Given finite dimensional spaces V, <V andQ, < Q where 0<h <1 then the

approximate solution (u,, p, ) to (u, p) is the solution of the following problem:
_k):(?k,v) ,wveV, ,k=1---,N (1.9a)

(1.9b)

The nonlinear equation (1.9a) will be solvable for u* when u** and u“? are given.

Choosing n(-, -, -) at u** as we did for the back ward Euler scheme will not be

satisfactory here since this would be less accurate than necessary, whereas since

1
3 K—1 :I-uk—2:uk 2+O(TZ) as ’Z'—)O

o)
Il
|

c
|

|

the choice just proposed will have the desired accuracy.

2. Abstract Results
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Let V and Q be two real Banach spaces with norms |- |, and|-| respectively.

Let a(-,-) and b(-,-) L"be continuous bilinear forms on V xV and V x Qrespectively

[4], n(-,-,-)e L” be continuous trilinear form on V xV xV [9]:

a(u,v)<[al. ul, M, Vuvev, (2.1)
In(u,u,v) <|n|.. - qu M, YuveV, (2.2)
bu, p) <[b],. Jul, [p]l,  VueV;vpeQ. (2.3)

we now state several further assumptions which we will require in the proofs of

our main results [4].

(HT) There 1s a constant a >0 (a independent of h) such that
alvv)>a|V, Wez,,

where Z, ={veV, :b(v,0)=0, VpeQ,}

(H2) S(h) is a number satisfying |v|, <S(h)v|, ; VveV,.

(H3) There is a linear operator IT, :Y —V, satisfying

b(y—I1,y,0)=0; VvyeY and ¢eQ,.

Definition 2.1 [7] Cauchy-Schwarz inequalities:

oy W

. v,we l’(Q), (2.4)

(v, W) | <[V

()

and

v,we H(Q) . (2.5)

(VWi | < [

HY(Q) HW‘

HY(Q) ;

00
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Lemma 2.1 There exists a linear operator IT, :H — H, such that, [6]
(divIL,U,v,)=(divU,v,); Wv, eV,,vUeH,

|T1,U -U|<ch

Ul ,; fors=12.

3. The Stability

The arguments for stability and bound on the approximation error are useful

for the analysis of the discrete formulations.

Lemma3.1 Suppose that u, is the discrete solution of equations (1.3). Then there

exists a constant § >0 independent of h such that:

ju,(T) <. (3.1)

Proof: By choosing v=u, €V, in problem (1.3) we get

v, .u,)-n(u,u,,u,)-b(u, p,)=(f.u,) (3.2)
note that
d 1.d , 1d 2
(Uh,t’Uh)=£aUhUh dx=5£auh dx:EaHuhH ,

Now, by using Young's inequality with e= 2c, c, and c, respectively we have
(Fu,) < o, | S+ Su
2C 2

o1
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1
)< A0 < v |

1
C
oSl

1
b )< S0 < (0]

From the above inequalities we get

1 C 1 C
2+ {—uu [ }s( {Z—CZuphuz+;uuhﬂsz—cufuz+5uuhu2,

l

put ¢ = gc, =S(h)c, in the above equation we get

P (S(h))z 2 E 2 i 2 E 2
T Y Y Y e e

2dt

d 2 2 ,B
S vz 2 pu )+ B0 o <Ly,

—2ct

multiply both sides of the above inequality by the integral factor e™ and then

integrate from 0 to T, we have

—2cT

(1) +Je2°t[ﬂ o+ SO M <o at o, (O

0

since e Z{'B Ju, [’ +( ( ) Ip.[° }>O we get

T ZcTt

[+ [
0

Ju, (T < e

If[ at,

ov
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where z1=ue [y =1

]
where y, =y[—2ce®dt
0

o,z
O

Lemma 3.2 Suppose that u, is the discrete solution of problem (1.4). Then, there

exist constants y, S >0 independent of h such that:

NENEa 3.3
Ju, | 5 (3.3)

Proof:

Put v=u, €V, and q=p, €Q, in equations (1.4a) and (1.4b) respectively, then, by

subtracting the two resulting equations, we get
_n(uh’uh’ uh):(f J uh)’
then we have [5],

Alu, I <rlu, |,

Bl <7,

we have

oA
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/7/
< [=.

Lemma3.3 Suppose that p, are the discrete solutions of problem (1.4). Then, there

|

exist constants y, ¢ >0 independent of h such that:

Ip, [ <L, (3.4)
M

Proof: For the continuous equation (1.4a) using the test function v=u, €V, which

gives
—n(u,,u,,u,)-bu,, p,)=(f,u,),
we have [5]
Bl [+ o, e, <7 u. I
Blu |+ wlp, <7 .

since |u, |*>0,we get

P <%
U

O

Lemma3.4 Suppose that u, and p, are the discrete solutions of problem (1.4). Then,

there exist constants « >0 independent of h such that:
o [+1py [ <e- (3.5)

Proof: We can prove this Lemma from equations (3.3) and (3.4),
o9
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where azmax{\/z,l} .
b u

Theorem 3.1 Let u™ €V, is the approximation solution of equation (1.5). Then

lust|<s,n, (3.6)

Proof: Put u, , = e in problem (1.3), then by using forward Euler method, we
' n

get

k+l ok

(u,vj—n(uﬁ,UE,V)—b(V’ pl)=(f.v) .

then,
(U, v)= (g, v)+n, [ n(ug,us, v)=blv, pp)l=n.(f,v)

by choosing v=u/, we get

(7,00~ o), el ) =m (1, )
SO,

k+1
h

]+ A furl -+ e ot s < m @]

u

since |ul[" >0, we get

lux|+a,+a, n <a,n,



VoV ] ggmisndly peoladl damdl «  guiss calbhll adall  Gluio iladl dlao

k+l

+o,n. <an, ,

1k —

where &,n, =min{a,, a,n, }

where g,n =a,n,_—o,n, .
a

Theorem 3.2 Let u™ eV, and p" eQ, are approximation solutions of equation
(1.6). Then

Ju?[+ e[ 0(n,) . (3.7)
Proof:
k+1 k k+1 k k+1 k
Put uht:u“ ! u, =-—" "~ and p, P Py problem (1.3),
, n,
then we get

2 oblv, pi)-blv, pi )= () )+ (£ )]
by choosing v=u, we get

1)



VoV ] ggmisndly peoladl damdl «  guiss calbhll adall  Gluio iladl dlao

o+ s+ i s+ |+ 2 i o
e lu o+ el i ot 1 2 L0 o o U ]
since Jul|" and [u| =0

then,

e o Do £ 2 o< 2 ) D]

b, n, Jus?[+b, n |pi*| <b, n +b, n +b, n,

where b, n, =1+ 4n|us] b, n, :ﬂTnk, b, n, =—Ju].b, n, =-

n
“0 o]

and b, n, =22 [|7(6,.)]+ ()]
b, 0, Jui*[+[pl<b. n, +b, n, +b, n,
where b, =min{o,,b,},

~Jus+ | pe] <0(n,)

k+1
Py

4.Error Estimated

We shall now study the errors u* —ufand p* - p where u* and p*are the solution

of weak form and usand py are the solution of the mixed finite element problem

(V, and Q,)

a1y
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Theorem 4.1 Let u“eVbe the solution of problem (1.8) and ufev, is the

approximation solution of problem (1.9). Then, there exists a constant

C > 0independent of hand 7z such that:
o ~u¥|<c(h +7). (4.1)
Proof: Let u*—uf=(u —IT,u*)—(uf —TT,u*)= p* — 6"
For each time step k and each norm, we apply the triangle inequality
o~ < [o*] 16"

from Lemma 2.1 |p*|<ch’

at

To find a bound on 6*term, note that

1
T

(6" -6 0)-n (68" 0)-b o, b - )=
%(UE U 0)-n (05,0, 0)-b (o, BY)
1

—;(Hh u* —11, uk‘1,¢)+n (Hh Gk,Hhak,(p)+b ((p, ﬁk)-

By the definition of interpolation, we have
A(u* -1, U, p)=0,
also note that

a0t )-n (a0t o)-b (o, pi)=(,0)

then, we have

ay
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:(utk ’¢’) l(Hh u‘ -1, Ukiln(”) -

T
Adding and subtracting 1 (u* —u** ) gives,
T

1
T

(0" ~04.0)-0(05" ) -bloB} )=

1

;(uk _uk_lxp)_%(nhuk _Hhuk_17¢)+(utk | w)_%(uk _uk_l,(p)

=%(pk —pf )+ (e 0)

where
g :utk _%(uk L )

choosingp =6* and p) =q*

l(ek _9k—l1ék)_n (ék,§k1ék):
T

l(pk _pk—l’ék) +(§k ’ ék)_b(ék ¥ _qk)'
T
By using (2.2) and (2.3), and multiplying by 7, we get
lo* o+ |+ s=le [ le*[ <l e[ <lo* - o l6* |+ e[+ st)<fer || * ~a |
(4.2)

applying Young's inequality two sides gives,

¢
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1 TS TS 1= 1y .. TS
A AR AR e P
1 _ ~ 1~

e e 4 RN A

st)e] ot -a* [+ 2o |

choosing S(h)=1, and multiplying 2 and rearranging gives

R R Y e e s R S RS LR

since, ‘@w4ﬂﬁwzzm

then,

2

A I PR e e P
Summing both sides from k =1 to k=N, we get
" < o + 2 3ot - o + 22 e e Y0 —at |
T =1 k=1 k=1
For the second term note that

ty
pt=p 7= [p dt

O]

this implies

ty
-l e
t.

1

thus

10
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K k-1 ||2 K 2 2 b dt 2
ot =p < | [loda] == [1al )
tiy tes

applying Jensen's inequality (see [1]) to the right hand side

K k-1 ||2 2 % 2 dt _ b 2
[ =p < e [lal = =2 [laf ot

t g Gy

this implies

1 N T ) T )
LSl [ ol <o [l dt= b ful, . (44)
k=1 0 0

13 K k-1||2 2r
;;Hp -p 7 <ch fu ],

To bound the third term of (4.3), note that

t, b
then, & =ruf - I u, dt=(t, —t._, Juf — I u, dt

teg %]

from [ Theorem 3.5.1 (p 38) in [1]], we get | &*|= tj | udt

O]

2

2’

andtoo ¢ kinkHZ <|u,
=1

To bound the fourth term of (4.3), note that
| p* —qf HZ <C,h?".

Applying these results to (4.3) gives,

1
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N |2 ( 0 0 r
[o" | <(uy —u®[+cyh

N
u°H)2+Clhjr||ut||r+2rHuttHf+Zrz c,h¥
k=1

suppose that h,=h_ =hin this paper, this implies we get

o] < Jug v v [ i ! (4.5)

], 27 {Ju,

hence, |u* —u<c(h +7).

The proof is complete.

Theorem 4.2 Let p“<Q be the solution of problem (1.8) and pfeqQ, is the

approximation solution of problem (1.9) then there exists a constant

C, >0independent of h and r such that:
| B -pi <G, (h+2) (4.6)

Proof: Put v=0,v=0U" in equations (1.8a) , (1.9a) respectively, then subtracting

the equations we find

(4.7)
Let p*—pf=(p*-1I1,p*)-(pf —I1,p")=v"* —x

by using triangle inequality, we have

v
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L T R P

from Lemma 2.1 |y*|<cCh’

P
To estimate »* from equation (4.7), put u* —uf = p* —6* and p* - p! = w* - 4*

E((pk _ek)_(pk—l_ek—l)’gk _ﬁk)_n (ﬁk _9%, 9~ _ 5%, _ﬁk)_
T

b(ék 55w _Zk):(fk’ék _IBK) ,
by using the elliptic projection , we get

Lo -04,0%)-n (8,080 (0", 2°)- 2ot - 2. 0°)- (,0°).
by using (2.2) and (2.3), and multiplying by r, we get

oo |+p|o*[" [o*+s el o [] 2] <[o i [ +lo* - o * |+ < T[] o¥].
dividing by | &*| , we get

o+ pe o] +st) ] 2] <[+t - o 2]
since A7 6| >0, we get
2] < (191191 Lot = <1

Summing both sides from k =1 to k =N, we have

S 121 =g 111015 - B 17 |

from equations (4.4) and (4.5), let 1<k* <N , we get

TA
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si [C(hr +r)+Clhr

S(h)

< Ce(hr +Z').

u [+ 7]

|7

Hence, H 7

The proof is complete.

Theorem 4.3 Let (u*, p*)eV xQ is the solution of problem (1.8) and (uf, pf)eV, xQ,

is the approximation solution of problem (1.9), then, there exists a constant

C, >0independent of h and  such that:
Ju—ul]+[ B -pe |<c, (b +2). (4.8)
Proof: We can prove this theorem from equations (4.1) and (4.6). O
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