\mathbf{U} الشروط اللازمة والكافية التي يجب وضعها على الزمرة \mathbf{G} حتى تكون الزمرة \mathbf{U} منتهية محلياً ومولدة بعدد منته من العناصر .

The Sufficient and Necessary Conditions on Group G So that U is Locally Finite and Finitely Generated

م.صادق عبد العزيز مهدى

Sadiqmehdi71@yahoo.com

الملخص

A رمرة العناصر القابلة للقلب (Units Group) في حلقة الزمرة [G] حيث [G]

- U ما هي الشروط اللازمة والكافية التي يجب وضعها على الزمرة G حتى تكون الزمرة G منتهية محلياً (locally Finite).
- U ما هي الشروط اللازمة والكافية التي يجب وضعها على الزمرة G حتى تكون الزمرة G مولدة بعدد منته من العناصر (Finitely Generated).

ABSTRACT

Let G be a group and A be a ring. Let U be the units group in the group ring A[G]. Many recent studies in algebra deal with the structure of the group U knowing the structure of the group G and vice versa. In this paper we tried to prove the following problems:

- 1. What are the necessary and sufficient conditions on G so that U is locally finite?
- 2. What are the necessary and sufficient conditions on G so that U is finitely generated?

۱ – المقدمة Introduction

إذا كانت R حلقة واحدية. وكانت U_R زمرة العناصر القابلة للقلب في R في ان مسألة التعرف على بنية هذه الزمرة في حلقة محددة R هي من المسائل الجبرية الهامة ،ولقد استأثرت الحالة الخاصة التالية من هذه المسألة اهتمام الباحث الجبري (Polcino Milier) في العقود الأربعة الأخيرة من القرن المنصرم ،وماز الت:

إذا كانت A حلقة ما و G زمرة ضربية ما ،فان المطلوب هو التعرف على بنية وخصائص الزمرة U_R في حلقة الزمرة R=A[G]. R=A[G] وفي بعض الدراسات والأبحاث الجبرية وخصائص الزمرة U_R في حلقة الزمرة إليجاد الشروط اللازمة والكافية التي تحملها U_R حتى تكون اهتمت بدراسة الزمرة ما. فمثلاً أثبت (Polcino Milier) في V_R أنه إذا كانت V_R منتهية . عندئية والعكس صحيح. و في V_R دورية أو عديمة قوة فإن V_R ستكون إبدالية أو V_R ونمرة هاملتونية والعكس صحيح. و في V_R أبرهن على أنه عندما V_R منتهية فإن V_R تكرون أبدالية أو V_R وقط إذا كانت V_R أما إبدالية أو V_R ورمرة هاملتونية.

U الشروط اللازمة و الكافية لكى تكون U منتهية محلياً :

• ننوه هنا إلى ان G سترمز لزمرة ضربية (Multiplication Group)ليس من الضروري أن تكون منتهية .

قبل أن نتناول تلك الشروط الواجب و ضعها على الزمرة G حتى تكون U منتهية محلياً يجب أن نتطرق الى تعريف الزمرة المنتهية محلياً.

تعریف 1.2:

يقال عن زمرة X إنها منتهية محلياً إذا كانت كل زمرة جزئية منتهية التوليد من الزمرة X منتهية.

ملاحظة 2.2:

من الواضح أنه إذا كانت U منتهية محلياً فإن G منتهية محلياً لأن G زمرة جزئية من U و لكن العكس ليس من الضروري أن يكون صحيحاً فإذا أخذنا G زمرة منتهية وليست و لكن العكس ليست ابدالية فإن U ليست دورية بحسب المبرهنة في [1] و لذلك سوف

تحوي حتماً عنصراً واحداً على الأقل رتبته غير منتهية مثل x ، و عندئذ x > 0 زمرة جزئية من x > 0 منتهية التوليد و ليست منتهية.

حتى و لو كانت G زمرة تبديلية و منتهية فإن U ليس من الضروري أن تكون منتهية محليا كما تظهر المبرهنة التالية و نتائجها:

مبرهنة 3.2: [4]

إذا كانت X زمرة عديمة قوة و مولدة بعدد منته من العناصر الدورية فإن X ستكون منتهية.

نتيجة 4.2 :

إذا كانت U عديمة قوة و مولدة بعدد منته من العناصر الدورية فإن U سـتكون منتهيـة وبالتالي V = G منتهية ومنه فإن $|V| \ge |V|$ ، وبما أن $V \supseteq G$ فإن V = U و ينتج عن V = G أن $V \supseteq G$ ستكون في هذه الحالة :

 $G^4 = \{1\}$ إما ابدالية حيث

 $G^6 = \{1\}$ أو ابدالية حيث

أو 2-زمرة هاملتونية.

نتيجة 5.2 :

إذا كانت G زمرة منتهية وابدالية و تحوي عنصرا x رتبته ليست E و ليست E فإن E منتهية التوليد لأن E منتهية بحسب E منتهية بحسب E منتهية بحسب E منتهية و بالتالية. و بحسب النتيجة السابقة فإن أحد مولدات E سيكون ذو رتبة غير منتهية و بالتالي E ليست منتهية محلياً.

و بشكل أعم لدينا النتيجة التالية:

نتيجة 6.2 :

إذا كانت G زمرة منتهية التوليد (Finitely Generated) و تحوي عنصراً x رتبت G ليست G و G اليست G اليست G و G اليست G ال

البرهان:

لو كانت U منتهية محلياً لنتج عن كون G زمرة جزئية من U و منتهية التوليد أن U منتهية ، اذن U منتهية ثم ان U دورية U لانه اذا كان U مان U فان U منتهية أي أن رتبة U المنتهية و ينتج عن النظرية (4.1) من U أنه إما U ابدالية و U و بالتالي U تحوي عنصراً رتبته 4 و هذا يناقض الفرض .

أو G ابدالية و $G^6 = \{1\} = G$ و بالتالي G تحوي عنصراً رتبته G و هذا يناقض الفرض أيضاً.

أو G هي 2- زمرة هاملتونية و هذا أيضاً يناقض الفرض.

إذن لا يمكن أن تكون U منتهية محلياً.

نتيجة 7.2 :

 $U=\pm G$ إذا كانت U منتهية محلياً و G منتهية التوليد فإن U

البرهان:

U منتهیة التولید و U منتهیة محلیا فان G ستکون منتهیة لان G زمرة جزئیة من U ثم ان کون U منتهیة محلیا یؤدی الی أن U دوریة بحسب ما تقدم فی برهان (6.2) . لیکن ثم ان کون U منتهیة محلیا أن U عندئذ ینتج عن کون U منتهیة محلیا أن U حنتهیة وبما أن

$$ug^{-1} \in \langle u, g \rangle$$

فان ug^{-1} ذو رتبة منتهية امثال e في عبارته ليست صفرا ولذلك فهو مبتذل بحسب [2] أي أن

$$ug^{-1} = \pm g_1 \quad ; \quad g_1 \in G$$

ومنه

$$u = \pm g_1 g = \pm g_2$$
 ; $g_2 \in G$

 $u \in \pm G$ أي أن

 $U = \pm G$ وبالتالي $U \subseteq \pm G$ اذن $U \subseteq \pm G$ كما أن

ملاحظة 8.2 :

إذا كانت G ، G - زمرة هاملتونية فإن U منتهية محلياً لان $U = \pm G$ بحسب $U = \pm G$ ان U منتهية ولذلك فهي منتهية محليا .

ساتهية التوليد \mathbf{U} الشروط اللازمة و الكافية لكي تكون \mathbf{U} منتهية التوليد

سنحاول في هذه الفقرة الإجابة على السؤال التالي: ما هو الشرط اللازم والكافي الواجب فرضه على G حتى تكون U منتهية التوليد؟ في هذا الموضوع لدينا النتائج التالية:

مبرهنة 1.3 :[8]

- 1 إذا كانت U منتهية التوليد فإن G منتهية التوليد.
 - 2 إذا كانت G منتهية فإن U منتهية التوليد.

إن عكس (1) من المبرهنة (1.3) ليس صحيحاً بشكل عام أي أنه توجد زمرة G منتهية التوليد ولكن U غير منتهية التوليد. كما يوضح المثال التالى:

مثال 2.3 : [8]

G امتدادا للزمرة D_8 بزمرة دائرية D_8 غير منتهية (أي D_8 فإن D_8 منتهية التوليد لأن D_8 منتهية التوليد و لكن D_8 منتهية التوليد كما يـذكر المرجع [8] عن Mareiniak و Sehgal

إن عكس (2) من المبرهنة (1. 3) هو أيضاً غير صحيح بشكل عام كما يظهر المثال (5.3) .

مبرهنة 3.3 : [8]

و torsion free بزمرة ذات التفاف T بزمرة ذات التفاف حر G torsion free إذا كانت G امتداداً لزمرة ذات التفاف T وكانت T

تمهيدية 4.3 : [1]

إذا كانت A خالية من قواسم الصفر و G هي Ω - زمرة فإن A[G] خالية من قواسم الصفر وبالتالي لا تحوي عناصر عديمة قوة.

مثال 3.5:

إذا كانت G زمرة دائرية غير منتهية فإن U ستكون منتهية التوليد مع أن G غير منتهية. البرهان:

نضع في المبرهنة (3.3) $T=\{e\}$ و $T=\{e\}$ فنجد أن $\mathbb{Z}[G]$ خالية من قواسم الصفر بحسب (4.3) و بالتالي $\mathbb{Z}[G]$ خالية من العناصر عديمة القوة و لذلك فإن:

$$U_G = U_T.G$$
$$= \{-1,1\} \times G$$

. بحسب (3.3) و بالتالي U منتهية التوليد لأن G مولدة بعنصر واحد

كما و يمكن أن نستخلص من المبرهنة (3.3) النتيجة التالية:

نتيجة 6.3:

 $\mathbb{Z}[G]$ منتهية و $\mathbb{Z}[G]$ منتهية و $\mathbb{Z}[G]$ منتهية التوليد فإنه إما $\mathbb{Z}[G]$ منتهية التوليد.

البرهان:

إذا كانت $\mathbb{Z}[G]$ لا تحوي عناصر عديمة القوة (غير الصفر) فإنه ينتج عن المبرهنة (3.3) أن $U_G = U_T . G$

K و بما أن T منتهية فإن U_T ستكون منتهية التوليد بحسب (1.3). كما أنه ينتج عن فرضنا منتهية التوليد و T منتهية أن G منتهية التوليد و بالتالي U_T ستكون منتهية التوليد ، أي أن U_G منتهية التوليد.

مبرهنة 7.3: [8]

إذا كانت G زمرة عديمة قوة فإن U منتهية التوليد إذا و فقط إذا كانت G إما منتهية أو منتهية التوليد و $\mathbb{Z}[G]$ لا تحوي عناصر عديمة القوة.

من هذه المبرهنة نستخلص النتيجة التالية:

نتيجة 8.3:

لتكن G زمرة عديمة قوة و منتهية التوليد و غير منتهية. عندئذ لدينا واحد من الأمرين التاليين محقق:

- . وبالتالي $\mathbb{Z}[G]$ منتهية التوليد. $\mathbb{Z}[G]$
- 2- $\mathbb{Z}[G]$ تحوي عناصر عديمة القوة وينتج عنه أن $\mathbb{Z}[G]$ ليست منتهية التوليد .
- يمكن أن نستخلص بسهولة من النتيجة السابقة أنه إذا كانت G ابدالية ومنتهية التوليد وبدون التفاف فإن U منتهية التوليد.

ولكن لدينا ما هو أعم من ذلك يمكن أن نستخلصه من التمهيدية التالية:

تمهيدية 9.3: [3]

الذا كانت G زمرة منتهية التوليد وعديمة قوة فإن $C_{
m U}$ زمرة منتهية التوليد .

نتيجة 3.3.3 :

إذا كانت G ابدالية فإن:

G منتهية التوليد إذا و فقط إذا كانت U منتهية التوليد .

البرهان:

إذا كانت G منتهية التوليد وعديمة قوة وبحسب التمهيدية السابقة تكون C_U زمرة منتهية التوليد ولكن C_U لأن U ابدالية وبالتالي ستكون U منتهية التوليد .

٠ (1.3) عن العكس ينتج

تمهيدية 11.3:

إذا كانت U منتهية محلياً فإن G منتهية التوليد $U \Leftrightarrow U$ منتهية التوليد.

البرهان:

- \to بما أن U منتهية محلياً و G منتهية التوليد فإن G ستكون منتهية لأنها زمرة جزئية من U وبحسب (1.3) ستكون U منتهية التوليد.
 - (1.3) ينتج مباشرة عن المبرهنة

المراجع REFERENCES

- [1] Ahmad, M.K., On The Units Group of Z[G] and Isomorphism Problem of Group Rings, Research J. of Aleppo Univ. Vol. 10, 1988. PP. 31-35.
- [2] Buthessh, S., On Units Group of The Ring Z[G], Research J. of Aleppo Univ., Vol. 18, 1994, PP. 9-15.
- [3] Jespers , E. Parmenter , M. , Sehgal, S. , **Central Units of Integral Group Rings of Nilpotent Groups**, Proc. of the Amer. Math. Soc. , Vol. 124 , No. 4, 1996 . PP .1007 1012 .
- [4] Macdonald, I., D., The Theory of Groups, Oxford press, London, 1968.
- [5] Polcino Milier, c., **Integral Group Ring with Nilpotent Units Group**, Canad. J. Math. (5) 28, 1976, PP. 954 960.
- [6] Sehgal, S., K. and Zassenhaus, H.J., **Group Rings Whose Units Form** an FC- Group, Math. Z, 153, 1977, PP. 29 35.
- [7] Sehgal, S., K., **Topics in Group Rings**, Mercel Dekker, New York, 1978.
- [8] Wiechecki, L., **Finitely Generated Group Rings Units**, Proc. Amer. Math. Soc. Vol. 127 (1), 1999, PP 51-55.