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Abstract  

     The main goal of this work is to create a general type of proper 

mappings namely, regular proper mappings and we introduce the 

definition of a new type of compact and coercive mappings and give 

some properties and some equivalent statements of these concepts as well 

as explain the relationship among them .  

  

 

 

 

Introduction  
         One of the very important concepts in topology is the concept of 

mapping . There are several types of mapping , in this work we study an 

important class of mappings ,   namely , regular proper mapping . 

      Proper mapping was introduced by Bourbaki in [1] .  

      Let A be a subset of topological space X . We denote to the closure and 

interior of A by A  and A

 respectively . 

      James Dugundji in [2] defined the regular open set as , a subset A of a 

space X such that called regular open set if A = A

 . Stephen Willard in [8] 

defined the regular open set similarly with Dugundji
,
s definition .  

     This work consists of three sections . 

     Section one includes the fundamental concepts in general topology , and 

the proves of some related results which are needed in the next section . 

     Section two contains the definitions of regular compact mapping and 

regular coercive mapping . So it will introduce the relationship among them 

and some results about this subjects are proved . 

        Section three introduces the definition of regular proper mapping and 

some of its related results are proved .   
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1- Basic concepts 

Definition 1.1 , [2] : A subset B of a space X is called regular open (r- open) 

set if B = B

 . The complement of regular open set is defined to be a regular 

closed (r- closed)  set . 

Proposition 1.2 , [2] :  A subset B of a space X is r- closed if and only if B = 

B

 . 

Its clearly that every r- open set is an open set and every r- closed set is closed 

set , but the converse is not true in general as the following example shows : 

Example 1.3 : Let X = {a, b, c, d} be a set and T = {Ø, X, {a}, {a, b}, {a, c, 

d}} be a topology on X . Notice that {a, b} is an open set in X , but its not r- 

open set and {b} is a closed set in X , but its not r- closed set .  

Corollary 1.4 : 
(i) A subset B of a space X is clopen (open and closed) if and only if B is r- 

clopen (r- open and r- closed ) . 

(ii) If A is an r- closed set in X and B is a clopen set in X , then A  B is r- 

closed set in B . Proposition 1.5 : Let A   Y   X . Then : 

(i) If A is an r- open set in Y and Y is an r- open set in X , then A is an r- open 

set in X . 

(ii) If A is an r- closed set in Y and Y is an r- closed set in X, then A is an r- 

closed set in X . 

Definition 1.6 : Let A be a subset of a space X . A point xA is called r- 

interior point of A if there exists an r- open set U in X such that  x  U  A . 

    The set of all r- interior points of A is called r- interior set of A and its 

denoted by A
r

 . 

Proposition 1.7 : Let (X , T) be a space and A X . Then : 

(i) A
r

  A

.                 

(ii) )A(
r

= )A(


r

. 

(iii) A is r- open if and only if A
r

= A  .  

 

Definition 1.8 : Let A be a subset of a space X . A point x in X is said to be r- 

limit point of A if for each r- open set U contains x implies that U A \ {x} Ø 

.   

     The set of all r- limit points of A is called r- derived set of A and its denoted 

by A
'r

 . 

 

Definition 1.9 : Let X be a space and B   X . The intersection of all r- closed 

sets containing B is called the r- closure of B and denotes by A
r

 . 
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Proposition 1.10 : Let X be a space and A , B   X . Then : 

(i) A
r

 is an r- closed set . 

(ii) A   A
r

 . 

(iii) A is r- closed if and only if A
r

 = A . 

(iv) x  A
r

 if and only if A U   θ  , for any r- open set U containing x . 

 

Proposition 1.11: Let X and Y be two spaces , and A   X , B   Y . Then : 

(i) A , B are r- open subset of X and Y respectively if and only if AB is r- 

open in XY .  

(ii) A , B are r- closed subsets of X and Y respectively if and only if AB is r- 

closed in  XY .    

(iii) A , B are clopen subsets of X and Y respectively if and only if AB is 

clopen in XY .    

(iv) A , B are r- clopen subsets of X and Y respectively if and only if AB is r- 

clopen in XY .    

 

Definition 1.12 , [3] : Let X be a space and B be any subset of X . A 

neighborhood of B is any subset of X which containing an open set containing 

B .  

     The neighborhoods of a subset {x} , consisting of a single point are also 

called neighborhood of a point x . 

     The collection of all neighborhoods of the subset B is denoted by N(B) . In 

particular the collection of all neighborhoods of x is denoted by N(x) . 

 

Proposition 1.13 , [1] : Let X be a set . If to each  element x of X , there 

corresponds a collection β(x) of subsets of X , such that the properties :            

(i) Every subset of X which contains a set belongs to β(x) , itself belongs to 

β(x) . 

(ii) Every finite intersection of sets of β(x) belongs to β(x) . 

(iii) The element x is in every set of β(x) . 

(iv) If V belongs to β(x) , then there is a set W belonging to β(x) such that for 

each y  W , V belongs toβ(y).  

Then there is a unique topological structure on X such that , for each x X ,  

β(x) is the collection of neighborhoods of x in this topology .    

 

Definition 1.14 : Let X be a space and B   X . An r- neighborhood of B is 

any subset of X which contains an r- open set containing B . The r- 
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neighborhoods of a subset {x} consisting of a single point are also called r- 

neighborhoods of the point   x . 

     Let us denote the collection of all r- neighborhoods of the subset B of X by 

Nr(B) . In particular , we denote the collection of all r- neighborhoods of x by 

Nr(x) . 

 

 

Definition 1.15 , [1] : Let ƒ : X  Y be a mapping of spaces .Then : 

(i) ƒ is called continuous mapping if ƒ
-1

(A) is an open set in X for every open 

set A in Y . 

(ii) ƒ is called open mapping if ƒ(A) is an open set in Y for every open set A in 

X . 

(iii) ƒ is called closed mapping if ƒ(A) is a closed set in Y for every closed set A 

in X . 

 

Definition 1.16 : A mapping ƒ : X  Y is called r- irresolute if ƒ
-1

(A) is an r- 

open set in X for every r- open set A in Y . 

Definition 1.17 , [1] : Let X and Y be spaces . Then the mapping ƒ : X  Y is 

called homeomorphism if  

(i) ƒ is bijective . 

(ii) ƒ is continuous . 

(iii) ƒ is open (or closed) . 

Also , X is called homeomorphic to the space Y (written  X  Y ) . 

 

Definition 1.18  
(i) A mapping ƒ : X  Y is called an r- open mapping if the image of each 

open subset of X is an r- open set in Y . 

(ii) A mapping ƒ : X  Y is called an r- closed mapping if the image of each 

closed subset of X is an r- closed set in Y . 

 

Remark 1.19 : Every r- open (r- closed) mapping is open (closed) mapping . 

     The converse of Remark (1.19) , is not true in general as the following 

examples show : 

 

Example 1.20 : Let X = {a, b, c}, Y = {x, y, z} and let T = {θ , X, {a}, {a, b}} 

, τ= {θ ,Y, {x}} be topologies on X and Y respectively . Let ƒ : X → Y be a 

mapping which is defined by : ƒ(a) = ƒ(b) = x , ƒ(c) = y . Notice that ƒ is an 

open mapping , but ƒ is not r- open . 
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Example 1.21 : Let X = {a, b, c, d} , Y = {x, y, z} and let T = {θ , X, {a}, {b, 

c}, {a, b, c}} , τ  = {θ , Y, {x}, {x, z}} are topologies on X and Y respectively . 

Let ƒ : X  Y be a mapping which is defined   by : ƒ(a) = ƒ(c) = z  , ƒ(b) = x  , 

ƒ(d) = y . Notice that ƒ is closed mapping , but ƒ is not r- closed mapping . 

 

Proposition 1.22 : A mapping  ƒ : X  Y is r- closed if and only if ƒ(A)
r
  

ƒ( A ) ,                    A   X .  

 

Proof : ) Let  ƒ : X  Y be an r- closed mapping and A   X . Since A  is a 

closed set in X , then ƒ( A ) is an r- closed subset of Y , and since A   A  then 

ƒ(A)   ƒ( A ) . Thus                   ƒ(A)
r    )Aƒ(

r
= ƒ( A ) , hence ƒ(A)

r   ƒ( A ) .                              

 ) Let ƒ(A)
r   ƒ( A ) , for all A   X . Let F be a closed subset of X , i.e , F = 

F  , thus by hypothesis ƒ(F)
r   ƒ(F) . But ƒ(F)   ƒ(F)

r
, then ƒ(F) = ƒ(F)

r
. Hence 

ƒ(F) is an r- closed set in Y , thus ƒ : X  Y is an r- closed mapping . 

 

Proposition 1.23 : Let X and Y be spaces , ƒ : X  Y be an r- closed mapping 

of X into Y . Then ƒ{y} : ƒ
-1

({y})  {y} is r- closed mapping , for each yY . 

 

Proof : Let F be a closed subset of ƒ
-1

({y}) . Then there is a closed subset F1 of 

X , such that        F = F1 ƒ
-1

({y}) . Since ƒ{y}(F) = ƒ(F1)  {y} , then either 

ƒ{y}(F) = θ  or ƒ{y}(F) = {y} , thus ƒ{y}(F) is r- closed in {y} . Therefore ƒ{y} is an 

r- closed mapping .  

 

Proposition 1.24 : Let X and Y be spaces , ƒ : X  Y be an r- closed mapping 

of X into Y . Then for each clopen subset T of Y , ƒT : ƒ
-1

(T)  T is an r- 

closed mapping . 

 

Proof : Let F be a closed subset of ƒ
-1

(T) . Then there is a closed subset F1 of X 

, such that               F = F1 ƒ
-1

(T) . Since ƒT(F) = ƒ(F1)  T , and ƒ(F1) is r- 

closed in Y and T is clopen in Y then by Corollary (1.4) , ƒ(F)  T is r- closed 

in T . Thus ƒT is an r- closed mapping . 

 

Corollary 1.25 : Let ƒ : X  Y be an r- closed mapping of a space X into a 

discrete space Y. Then for any subset T of Y , ƒT : ƒ
-1

(T)  T is an r- closed 

mapping . 
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Proposition 1.26 : Let X , Y and Z be spaces , ƒ : X  Y be a closed mapping 

and                       g : Y  Z be an r- closed mapping , then goƒ : X  Z  is an 

r- closed mapping .  

Proof : Let F be a closed subset of X , then ƒ(F) is closed set in Y . But  g is an 

r- closed mapping , then  g(ƒ(F)) = (goƒ)(F) is an r- closed set in Z . Then goƒ : 

X  Y is an r- closed mapping . 

Corollary 1.27 : Let X , Y and Z be spaces . If ƒ : X  Y , and  g : Y  Z are 

r- closed mapping , then  goƒ : X  Z is an r- closed mapping . 

Proof : Since ƒ is an r- closed mapping , then ƒ is a closed mapping , thus by 

Proposition (1.26) ,  goƒ is an r- closed mapping . 

Proposition 1.28 : Let  ƒ : X  Y be an r- closed mapping . If F is a closed 

subset of X , then the restriction mapping ƒ|F : F  Y is an r- closed mapping . 

Proof : Since F is a closed set in X , then the inclusion mapping iF : F  X is a 

closed . Since ƒ is an r- closed , then by Proposition (1.26) , ƒoiF : F  Y is an 

r-closed mapping . But ƒoiF ≡ ƒ|F , thus the restriction mapping ƒ|F : F Y is an 

closed mapping . 

 

 

Proposition 1.29 : A bijective mapping ƒ : X  Y is r- closed if and only if is 

r- open . 

 

Proof :  ) Let ƒ : X  Y be a bijective , r- closed mapping and U  be an open 

subset of X  , thus U
c

is closed .Since ƒ is r- closed then ƒ( U
c

) is r- closed in Y, 

thus ))U
c

(ƒ(
c

 is r- open.  

     Since ƒ is bijective mapping , then ))U
c

(ƒ(
c

= ƒ(U) , hence ƒ(U) is r- open in 

Y . Therefore ƒ is an r- open mapping . 

) Let ƒ : X  Y be a bijective , r- open mapping and F be a closed subset of 

X , thus F
c

 is open . Since ƒ is r- open then ƒ( F
c

) is r- open in Y , thus ))(F
c

(ƒ

c

 

is r- closed . Since ƒ is a bijective mapping , then ))(F
c

(ƒ

c

 = ƒ(F), hence ƒ(F) is 

an r- closed in Y . Therefore ƒ is an r- closed mapping . 

 

Definition 1.30 : Let X and Y be spaces .Then the mapping ƒ : X  Y is called 

r- homeomorphism if : 

(i) ƒ is bijective . 

(ii) ƒ is continuous . 

(iii) ƒ is r- open (r- closed) . 

 

 



Journal of Al-Qadisiyah for Computer Science and Mathematics 

Vol. 3      No.1          Year 2011 

 

 167 

Remark 1.31 : Every r- homeomorphism mapping is homeomorphism . 

     The converse of Remark (1.31) , is not true in general as the following 

example shows :  

 

Example 1.32 : Let X = {a, b, c} be a set and T = {θ , X, {a}, {c}, {a, b}, {a, 

c}} be a topology on X . Let ƒ : X  X be the identity mapping . Notice that ƒ 

is homeomorphism , but its not r- homeomorphism . 

 

Theorem 1.33 , [9] : Let X be a space and A be a subset of X , x  X .Then x 

 A  if and only if there is a net in A which converges to x . 

 

Lemma 1.34 , [5] : If ( χd ) is a net in a space X and for each do  D , Ado = {χd  

| d   do} ,  then  x  X is a cluster point of ( χd ) if and only if x 
d

A  , for all d 

 D . 

 

Definition 1.35 : Let ( χd )dD be a net in a space X , x  X . Then (χd )dD r- 

converges to x [written d r  x], if (χd )dD is eventually in every r- nbd of 

x . The point x is called an r- limit point of  ( χd )dD.            

 

Definition 1. 36  : Let ( χd )dD be a net in a space X , x  X .Then (χd )dD is 

said to have x as an r- cluster point [written χd  
r
  x] if ( χd )dD is frequently 

in every r- nbd of  x . 

 

Proposition 1.37 : Let (X , T) be a space and A   X , x  X .Then x  A
r

 if 

and only if  

there exists a net ( χd )dD in A and χd
r
  x . 

 

Proof : ) Let x  A
r

, then U A   θ  , for every r- open set U , x  U . 

Notice that          (Nr(x) , ) is a directed set , such that for all U1 , U2  Nr(x) , 

U1   U2 if and only if               U1   U2 . Since for all U  Nr(x) , U A   θ  , 

then we can define a net  χ  : Nr(x)  X as follows : χ (U) = χ U  U A , U  

Nr(x) . To prove that χ U 
r
  x . Let B  Nr(x) , thus B U  Nr(x) . Since B U 

  U , then B U   U , χ (B U) = χ UB   B U   B . Hence χ U 
r
  x . 
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)  Let ( χd )dD be a net in A , such that χ d 
r
  x , and let U be an r- open set ,  

x  U . Since χ d 
r
  x , then (d)dD is frequently in U . Thus U A   θ  , for all 

r- open set U ,         x  U . Hence x  A
r

 .         

 

Proposition 1.38 : Let X be a space and (χd )dD be a net in X , for each do  

D, such that  Ado = { χ d | d   do}, then a point x of X is r- cluster point of 

( χd )dD if and only if               x 
doA

r
, for all do  D . 

 

Proof : ) Let x be an r- cluster point of ( χd )dD and let N be an r- open set 

contain x , then ( χd )dD is frequently in N , thus Ado N   θ ,  do  D , then 

by Proposition (1.10) ,               x 
doA

r
.  

) Let x 
doA

r
,  do  D , and suppose that x is not r- cluster point of  

( χd )dD, then there exists r- nbd N of x , such that Ado N = θ  ,  do  D ,
 χd  

 D , d   do d   do , then                    x  
doA

r
. This is contradiction . Hence x 

is r- cluster point of ( χd )d . 

 

2- Regular compact and regular coercive mappings 
Definition 2.1 , [6] : A space X is called Hausdorff (T2) if for any two distinct 

points  x , y of X there exists disjoint open subsets U and V of X such that x  

U , y  V . 

Theorem 2.2 , [6] : Each singletion subset of a Hausdorff space is closed . 

Definition 2.3 , [7] : A space X is called compact if every open cover of X has 

a finite subcover . 

 

Theorem 2.4 , [6] : A space X is compact if and only if every net in X has a 

cluster point in X . 

 

Theorem 2.5 , [7] : 

(i) A closed subset of compact space is compact . 

(ii) In any space , the intersection of a compact set with a closed set is compact . 

(iii) Every compact subset of T2- space is closed . 

 

Definition 2.6 : A space X is called r- compact if every r- open cover of X has 

a finite subcover . 
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Proposition 2.7 : Every compact space is r- compact space . 

   The converse of Proposition (2.7) , is not true in general as the following 

example shows : 

 

Example 2.8 : Let T = {A   R | Z   A} {θ } , be a topology on R . Notice 

that the topological  space (R,T) is r- compact , but its not compact . 

 

Theorem 2.9 : 
(i) An r- closed subset of compact space is r- compact . 

(ii) Every r- compact subset of T2- space is r- closed . 

(iii) In any space , the intersection of an r- compact set with an r- closed set is r- 

compact . 

(iv) In a T2- space , the intersection of two r- compact sets is r- compact . 

 

Theorem 2.10 : A space X is an r- compact if and only if every net in X has r- 

cluster point in X . 

 

Proposition 2.11 : Let X be a space and Y be an r- open subspace of X , K   Y 

. Then K is an r- compact set in Y if and only if K is an r- compact set in X . 

 

Proof : ) Let K be an r- compact set in Y . To prove that K is an r- compact 

set in X . Let {U λ } λ  Λ  be an r- open cover in X of K , let V λ  = U λ  Y , 

 λ  Λ  . Then V λ   is r- open in X ,  λ  Λ  . But V λ    Y , thus V λ  is r- open 

in Y ,  λΛ  . Since K  
Λλ λ

V


 , then {V λ } λ  Λ  is an r- open cover in Y of 

K , and by hypothesis this cover has finite subcover {
1
λ

V ,
2

λ
V , . . . ,

nλ
V } of  K 

, thus the cover {U λ } λ  Λ  has a finite subcover of K . Hence K is an r- 

compact set in X . 

) Let K be an r- compact set in X . To prove that K is an r- compact set in Y. 

Let {U λ } λ  Λ  be an r- open cover in Y of K . Since Y is an r- open subspace 

of  X , then by Proposition (1.5) , {U λ } λ  Λ  is an r- open cover in X of K . 

Then by hypothesis there exists { λ 1 , λ 2 , … , λ m} , such that  K  
m

1λ λ
U


, thus 

the cover {U λ } λ  Λ  has a finite subcover of   K . Hence K is an r- compact set 

in Y . 

 

Definition 2.12 : Let X be a space and W   X . We say that W is compactly r- 

closed set if W∩K is r- compact , for every r- compact set K in X . 
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Proposition 2.13 : Every r- closed subset of a space X is compactly r- closed . 

     The converse of Proposition (2.13), is not true in general as the following 

example shows . 

 

Example 2.14 : Let X = {a, b, c} be a space and T = {X, θ , {a, b}} be a 

topology on X . Notice that the set A = {a, b} is compactly r- closed , but its not 

r- closed set . 

 

Theorem 2.15 : Let X be a T2 - space .A subset A of X is compactly r- closed if 

and only if A is r- closed .  

 

Remark 2.16: Let X be a compact , T2 - space and A   X . Then : 

(i) A is closed  if and only if A is r- closed . 

(ii) A is compact if and only if A is r- compact . 

 

Definition 2.17 , [6] : Let X and Y be space . A mapping ƒ : X  Y is called 

compact mapping if the inverse image of each compact set in Y , is a compact 

set in  X . 

 

Definition 2.18 : Let X and Y be space . We say that the mapping ƒ : X  Y is 

an r- compact mapping if the inverse image of each r- compact set in Y , is a 

compact set in  X . 

 

Example 2.19 : Let (X,T) and (Y, τ ) be topological spaces , such that X is finite 

set , then the mapping   ƒ : X  Y  is r- compact . 

 

Remark 2.20 : Every r- compact mapping is compact mapping . 

     The converse of Remark (2.20) , is not true in general as the following 

example shows : 

 

Example 2.21 : Let T = {A   R | Z   A} {θ } be a topology on R , and                            

ƒ : (R,T)  (R,T) be a mapping which is defined as ƒ(x) = x ,  x  R . Notice 

that ƒ is a compact mapping , but its not r- compact .   

 

Proposition 2.22 : Let X and Y be spaces , and ƒ : X  Y be an r- compact , 

continuous , mapping . If T is a clopen subset of Y , then ƒT : ƒ
-1

(T)  T is an r- 

compact mapping . 

 

Proof : Let K be an r- compact subset of T . Since T is clopen set in Y then by 

Corollary (1.4) , T is an r- open , and then by Proposition (2.11) , K is an r- 
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compact set in Y . Since ƒ is an r- compact mapping , then ƒ
-1

(K) is compact in 

X . 

     Now , since T is a closed set in Y , and ƒ is a continuous mapping , then ƒ
-

1
(T) is a closed set in X , thus by Theorem (2.5), ƒ

-1
(T) ƒ

-1
(K) is a compact set 

.But ƒ
-1

T
(K) =ƒ

-1
(T) ƒ

-1
(K) , then ƒ

-1

T
(K) is a compact set in ƒ

-1
(T) . Therefore 

ƒT is an r- compact mapping . 

 

Proposition 2.23 : Let X , Y and Z be spaces . If ƒ : X  Y , g :Y  Z  are 

continuous mapping . Then : 

(i) If ƒ is a compact mapping and g is an r- compact mapping , then goƒ : X  

Z is an r-  

compact mapping . 

(ii) If ƒ and g are r- compact mappings, then goƒ is an r- compact mapping . 

 

Proof : 
(i) Let K be an r- compact set in Z , then g

-1
(K) is a compact set in Y , and then 

ƒ
-1

(g
-1

(K)) = (goƒ)
-1

(K) is a compact set in X . Hence goƒ : X Z is r- compact 

mapping . 

(ii) By Remark (2.18) , and (i) . 

 

Proposition 2.24 , [2] : For any closed subset of a space X , the inclusion 

mapping               iF : F  X is a compact mapping . 

Proposition 2.25 : Let X and Y be spaces . If ƒ : X → Y is an r- compact 

mapping and F is a closed subset of X , then ƒ |F : F  X is an r- compact 

mapping . 

 

Proof : Since F is a closed subset of X , then by Proposition (2.24) , the 

inclusion                     iF : F  X is a compact mapping . But ƒ|F ≡ ƒoiF , then by 

Proposition (2.23) ,  ƒ|F is an r- compact mapping . 

 

Definition 2.26 , [4] : Let X and Y be spaces . A mapping ƒ : X  Y is called 

coercive if for every  compact set J   Y, there exists a compact set K   X such 

that ƒ(X \ K)   Y \ J .  

 

Definition 2.27 : Let X and Y be spaces . We say that the mapping ƒ : X  Y 

is r- coercive if for every r- compact set JY, there exists a compact set KX 

such that                             ƒ(X \ K)   Y \ J .  
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Examples 2.28 : 

(i) If ƒ : (X,T)  (Y, τ ) is a mapping , such that X is compact space , then ƒ is 

r- coercive . 

(ii) Every identity mapping on regular space is r- coercive . 

Proposition 2.29 : Every r- coercive mapping is a coercive mapping . 

Proof : Let ƒ : X  Y be an r- coercive mapping , and J be a compact set in Y, 

so its             r- compact , since ƒ is r- coercive , then there exists a compact set 

K in X , such that                   ƒ(X \ K)   Y \ J . Hence ƒ is a coercive mapping .  

     The converse of Proposition (2.29) is not true in general as the Example 

(2.19) . 

Proposition 2.30 : Let X and Y be spaces such that Y is a compact , T2 - space . 

Then a mapping ƒ : X  Y is r- coercive if and only if its a coercive mapping . 

Proof : ) By Proposition (2.29) . 

) Let J is an r- compact set in Y . Since Y is a compact , T2 - space , then by 

Proposition (2.16) , J is a compact set in Y , since ƒ is a coercive mapping , then 

there exists a compact set K in X , such that ƒ(X \ K)   Y \ J . Hence ƒ is r- 

coercive . 

Proposition 2.31 : Every r- compact mapping is an r- coercive . 

 

 

Proof : Let ƒ : X  Y be an r- compact mapping . To prove that ƒ is an r- 

coercive .  Let J be an r- compact set in Y . Since ƒ is an r- compact mapping  , 

then ƒ
-1

(J) is a compact set in X . Thus ƒ(X \ ƒ
-1

(J))   Y \ J . Hence ƒ : X  Y 

is an r- coercive mapping . 

    The converse of Proposition (2.31) , is not true in general as the following 

example shows . 

Example 2.32 : Let Y = {x, y} be a set and T is the discrete topology on Y . 

Then a mapping                              ƒ : ([o,1],U)  (Y,T) which is defined by : 

  
is a coercive mapping , but its not compact mapping . 

Proposition 2.33 : Let X and Y be spaces , such that Y is a T2 – space , and ƒ : 

X  Y is a continuous mapping . Then ƒ is an r- coercive if and only if ƒ is an 

r- compact . 

Proof : ) Let J be an r- compact set in Y . To prove that ƒ
-1

(J) is a compact 

set in X . Since Y is a T2 – space , and J is an r- compact set in Y , so it’s a 

closed set , then ƒ
-1

(J) is a closed set in X . Since ƒ is an r- coercive mapping , 

then there exists a compact set K in X , such that         ƒ(X \ K)   Y \ J . Then 

ƒ( K
c

)  J
c

, therefore ƒ
-1

(J)   K , and thus ƒ
-1

(J) is a compact set in X . Hence 

ƒ is an r- compact mapping . 

ƒ(t) = 

x      t  (0,1) 

y      t  {0,1} 
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) By Proposition (2.31) .   

Proposition 2.34 : Let X , Y and Z be spaces and ƒ : XY, g : YZ be  

mappings . Then : 

(i) If ƒ is coercive and g is r- coercive , then goƒ : X  Z is an r- coercive 

mapping . 

(ii) If ƒ and g are r- coercive , then goƒ : X  Z is an r- coercive mapping . 

Proof : 

(i) Let J be an r- compact set in Z . Since g : Y  Z  is r-coercive mapping , 

then there exists a compact set K in Y , such that   g(Y \ K)   Z \ J . Since ƒ : X 

 Y is a coercive mapping  , then there exists a compact set H in X , such that 

ƒ(X \ H) Y \ K                                       g(ƒ(X \ H)   g(Y \ K)   Z \ J 

(goƒ)(X \ H)Z \ J .Hence goƒ is an r- coercive mapping . 

(ii) By Proposition (2.29) , and (i) . 

Proposition 2.35 : Let X and Y be spaces , and ƒ : X  Y be an r- coercive  

mapping . If F is a closed subset of X , then the restriction mapping ƒ |F : F  Y 

is an r- coercive mapping . 

Proof: Since F is a closed subset of X , then by Proposition (2.24) , and 

Proposition (2.31) , the inclusion mapping iF : F  X is a coercive mapping . 

But ƒ|F ≡ ƒoiF , then by Proposition  

(2.34) , ƒ|F is an r- coercive mapping . 

Theorem 2.36 : Let X and Y be spaces , such that Y is a compact , T2 - space , 

then for a continuous mapping ƒ : X  Y , the following statements are 

equivalent : 

(i) ƒ is r- coercive . 

(ii) ƒ is r- compact . 

(iii) ƒ is compact . 

(iv) ƒ is coercive . 

Proof : 

(i → ii). By Proposition (2.33) . 

(ii → iii). By Remark (2.20) . 

(iii → iv). Let J be a compact set in Y . Since ƒ is compact mapping , then ƒ
-1

(J) 

is compact set in X . Thus ƒ(X \ ƒ
-1

(J)) Y \ J . Hence ƒ is a coercive mapping . 

 (iv → i). By Proposition (2.30) . 

3- Regular Proper Mapping : 
Definition 3.1 , [1] : Let X and Y be spaces , and ƒ : X  Y be a mapping . We 

say that ƒ is a proper mapping if : 

(i) ƒ is continuous . 

(ii) ƒ   IZ : X   Z  Y   Z is closed , for every space Z . 

Definition 3.2 : Let X and Y be spaces , and ƒ : X  Y be a mapping . We say 

that ƒ is a regular proper (r- proper) mapping if : 

(i) ƒ is continuous . 
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(ii) ƒ   IZ : X   Z  Y   Z is r- closed , for every space Z . 

Example 3.3 : Let X = {a, b, c} , Y = {x, y} be spaces and T = {X, θ , {a}, {b}, 

{c}, {a, b}, {a, c}, {b, c}} , τ  = {Y, θ , {x}, {y}} are topologies on X and Y 

respectively . The mapping              ƒ : X  Y  which is defined as ƒ(a) = ƒ(b) 

= x , ƒ(c) = y  is an r- proper mapping . 

The following example shows that not every mapping is r- proper . 

Example 3.4 : Let ƒ : (R , U)  (R , U) be the mapping which is defined by 

ƒ(x) = 0 , for every x  R . Notice that ƒ is not r- proper mapping , since for the 

usual space (R , U) the mapping ƒIR : RR RR , such that (ƒIR)(x,y) = 

(0,y) , for every (x,y)  R is not r- closed mapping .   

Remarks 3.5 : 
(i) Every r- proper mapping is r- closed . 

(ii) Every r- proper mapping is proper . 

(iii) Every r- homeomorphism is r- proper . 

      The converse of Remark (3.5.i) , is not true in general as the Example (3.4) . 

Also the converse of Remark (3.5.ii) , is not true as the following example 

shows : 

 

 

 

Example 3.6 : 

     Let T be a cofinite topology on N , and let ƒ : N → N be a mapping which is 

defined by : ƒ(x) = x  ,   x N . Notice that ƒ is a proper mapping , but ƒ is not 

r- proper mapping , since  ƒ is not r- closed mapping . 

     The converse of Remark (3.5.iii) , is not true in general as the following 

example shows : 

Example 3.7 : Let X = {a, b} , Y = {x, y} be sets and T = { θ ,X,{a},{b}} , τ  = 

{θ ,Y,{x}, {y}} be topologies on X and Y respectively . Let ƒ: X  Y be a 

mapping which is defined  by : ƒ(a) = ƒ(b) = x . Notice that ƒ is an r- proper 

mapping , but ƒ is not r- homeomorphism , since ƒ is not onto . 

Proposition 3.8 : Let X and Y be spaces , and ƒ : X  Y be an r- proper 

mapping . If T is a clopen subset of Y , then ƒT : ƒ
-1

(T)  T is an r- proper 

mapping . 

Proof : Since ƒ : X  Y is a continuous mapping , then ƒT is a continuous 

mapping . To prove that ƒTIZ : ƒ
-1

(T) Z  TZ is an r- closed mapping , for 

every space Z . Notice that           ƒTIZ  ≡ (ƒIZ)TZ . Since T is a clopen subset 

of Y, then by Proposition (1.11) , TZ is a clopen subset of Y×Z , thus by 

Proposition (1.24) , (ƒIZ)TZ ≡ (ƒTIZ) is an r- closed mapping , hence  ƒT : ƒ
-

1
(T)  T is an r- proper mapping . 



Journal of Al-Qadisiyah for Computer Science and Mathematics 

Vol. 3      No.1          Year 2011 

 

 175 

Theorem 3.9 : Let ƒ : X  P = {w} be a mapping on a space X . If ƒ is an r- 

proper  mapping , then X is a compact space , where w is any point which does 

not belong to X . 

Proof : Since ƒ is r- proper mapping , then by Remark (3.5.ii) , ƒ is proper 

mapping . Thus by [1.Lemma (2.1) P.101] , X is compact space .        

Theorem 3.10 : Let X and Y be spaces , and ƒ : X  Y be a continuous 

mapping . Then the following statements are equivalent : 

(i) ƒ is an r- proper mapping . 

(ii) ƒ is an r- closed mapping and ƒ
-1

({y}) is compact for each   y  Y . 

(iii) If (χd )dD is a net in X and y  Y is an r- cluster point of ƒ(χd ) , then there 

is a cluster point x  X of (χd )dD , such that ƒ(x) = y .  

Proof : 
(i→ii). Let ƒ : X  Y be an r- proper mapping , then ƒIZ : XZ  YZ is an 

r- closed for every space Z . Let Z = {t}, then XZ = X{t}  X and YZ = 

Y{t}  Y ,  and we can replace ƒIZ by ƒ , thus ƒ is r- closed . Now , let y  

Y . Since ƒ is an r- proper , then by Remarks (3.5) , ƒ is proper mapping , so by 

[1, Theorem (3.1.5) ] , ƒ
-1

({y}) is compact for each y  Y .    

(ii → iii). Let (χd )dD be a net in X and y  Y be an r- cluster point of a net 

ƒ(χ
d
) in Y . Assume that ƒ

-1
(y)   θ  , if ƒ

-1
(y) = θ  , then y  ƒ(X)  y  

ƒ(X))(
c

, since X is a closed set in X and ƒ is an r- closed mapping , then ƒ(X) is 

an  r- closed set in Y . Thus ƒ(X))(
c

 
is an r- open set in Y. Therefore (ƒ(χd )) is 

frequently in ƒ(X))(
c

.  

But ƒ(χ
d
) ƒ(X) ,  d  D , then ƒ(X) ƒ(X))(

c
 
  θ  , and this is a   contradiction 

. Thus           ƒ
-1

(y)   θ  .               

     Now , suppose that the statement (iii) , is not true , that  means , for all x  ƒ
-

1
(y) there exists an open set UX in X contains x , such that (χ

d
) is not frequently 

in UX . Notice that          ƒ
-1

(y) = 
(y)ƒ

1x

{x}


. Therefore the family {UX | x  ƒ
-1

(y)} 

is an open cover for ƒ
-1

(y) . But           ƒ
-1

(y) is a compact set , then there exists 

x1, x2, . . . , xn   ƒ
-1

(y) , such that ƒ
-1

(y)  Ux1 Ux2  . . . Uxn , then  ƒ
-1

(y) 

 ]
n

1i
Uxi

[

c




 = θ   ƒ
-1

(y)   [ 
n

1i
U

c

xi
] = θ  . But (xi)iΛ is not frequently in Uxi 

, i = 1, … , n . Thus (χ
d
) is not frequently in 

n

1i
Uxi

 , but 
n

1i
Uxi

 is an open set 

in X , then 
n

1i
U

c

xi
 is a closed set in X . Thus ƒ( 

n

1i
U

c

xi
) is an r- closed set in Y . 
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     Claim y  ƒ( 
n

1i
U

c

xi
) , if y  ƒ( 

n

1i
U

c

xi
) , then there exists x  

n

1i
U

c

xi
 , such 

that                 ƒ(x) = y , thus x  
n

1i iUx
 , but x  ƒ

-1
(y) , therefore ƒ

-1
(y) is not 

a subset of 
n

1i iUx
 , and this is a contradiction .  Hence there is an r- open set A 

in Y , such that y  A and Aƒ( 
n

1i
U

c

xi
) = θ   ƒ

-1
(A)ƒ

-1
(ƒ( 

n

1i
U

c

xi
)) = θ   

ƒ
-1

(A)  [ 
n

1i
U

c

xi
] = θ ƒ

-1
(A)   

n

1i
Uxi

 . But (ƒ(χd )) is frequently in A , then 

(χ
d
) is frequently in ƒ

-1
(A) , and then (χ

d
) is frequently in 

n

1i
Uxi

 . This is 

contradiction , and this is complete the proof .  

(iii → i). Let Z be any space . To prove that ƒ : X  Y is an r- proper mapping , 

i.e , to prove that ƒIZ : XZ  YZ is an r- closed mapping . Let F be a 

closed set in XZ . To prove that (ƒIZ)(F) is an r- closed set in YZ . Let (y,z) 

  )(F)ZI(ƒ
r

, then by Proposition (1.38) , there exists a net {(yd , zd)}dD in 

(ƒIZ)(F) such that (yd , zd) 
r

 (y,z) , then                                  (yd , zd) = 

((ƒIZ)(xd , yd)) , where {(xd , yd)}dD  is a net in F . Thus (ƒ(xd) , IZ(zd)) 
r

 (y,z) 

, so ƒ(xd) 
r

 y  and  zd 
r

 z . Then by (iii) ,  x  X , such that  xd  x  and ƒ(x) 

= y , Since (xd , zd)  (x,z) and {(xd , zd)}dD is a net in F , thus (x,y)  F  . 

     Since F = F  , then (x,y)  F  (y,z) = ((ƒIZ)(x,y))  (y,z)  (ƒIZ)(F) , 

and then  )(F)ZI(ƒ
r

= (ƒIZ)(F) , thus (ƒIZ)(F) is an r- closed set in YZ . 

Hence                             ƒIZ : XZ  YZ is an r- closed mapping , hence ƒ : 

X  Y is an r- proper mapping . 

Corollary 3.11 : If X is a compact space , then the mapping ƒ : X  P = {w} 

on a space X is r- proper , where w is any point which does not belongs to X . 

Proof : Let X be a compact space . Since P is a single point , then ƒ is a 

continuous   mapping . To prove that ƒ : X  P = {w} is an r- proper mapping : 

(i) Since ƒ
-1

(P) = X , then ƒ
-1

(P) is a compact set . 

(ii) Let F is a closed subset of X , then either : ƒ(F) = θ   or ƒ(F) = {w} . So ƒ(F) 

is r- closed in P , then ƒ is r- closed mapping . Thus by Theorem (3.10) , ƒ is an 

r- proper mapping . 

Proposition 3.12 : Let X and Y be spaces . If ƒ : X  Y is an r- proper 

mapping , then      ƒ{y} : ƒ
-1

({y})  {y} is an r- proper mapping , for all y  Y . 
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Proof : Since ƒ : X  Y is an r- proper mapping , then ƒ
-1

({y}) is compact for 

each y  Y . Since {y} is a single point , then by Corollary (3.11) , ƒ{y} : ƒ
-

1
({y})  {y} is an r- proper   mapping . 

Proposition 3.13 : Let X and Y be spaces , such that X is a compact , T2- space 

and              ƒ : X  Y be a homeomorphism  mapping , then ƒ
-1

 : Y  X is an 

r- proper mapping . 

Proof : Since ƒ is an open mapping , then ƒ
-1

 is continuous mapping . To prove 

that ƒ
-1 

is r- proper : 

(i) Let F be a closed subset of Y , since ƒ is continuous , then ƒ
-1

(F) is closed in 

X , since X is compact , T2- space , then by Remark (2.16) , ƒ
-1

(F) is r- closed in 

X . Hence ƒ
-1

 is an r- closed mapping . 

(ii) Let xX , then {x} is compact set in . Since ƒ is continuous , then ƒ({x}) = 

(ƒ
-1

)
-1

({x}) is compact set in Y , therefore by Theorem (3.10) , ƒ
-1

 is r- proper 

mapping .  

Proposition 3.14 : Let X and Y be spaces , and ƒ : X  Y be a continuous , 

one to one ,   mapping , then the following statements are equivalent :  

(i) ƒ is r- proper mapping . 

(ii) ƒ is r- closed mapping . 

(iii) ƒ is r- homeomorphism of X onto an r- closed subset of Y .  

 

 

 

 

 

Proof : 

(i → ii). By Remark (3.5) . 

(ii → iii). Let ƒ : X Y be an r- closed mapping . Since X is a closed set in X , 

then ƒ(X) is an r- closed set in Y . Since ƒ is continuous and one to one , then ƒ 

is an r- homeomorphism of X onto r- closed subset ƒ(X) of Y . 

(iii → i). Let ƒ be an r- homeomorphism of X onto an r- closed subset U of Y . 

Now , let Z be any space , and W be a basic open set in XZ , then W = 

W1W2 , where W1 is an open set in X and W2 is an open set in Z . Since 

(ƒIZ)(W1W2) = ƒ(W1) W2 , and ƒ : X  U is an r- homeomorphism , then  

ƒ : X  U is an r- open mapping and then ƒ(W1) is an r- open set in U, thus 

ƒ(W1)W2 is r- open in UZ , so ƒIZ  is an r- open mapping . Since                             

ƒIZ : XZU×Z is bijective , then by Proposition (1.29) , the mapping ƒIZ  

is r- closed . Now , let F be a closed subset of  XZ , then (ƒIZ)(F) is an r- 

closed set in UZ , since UZ is an r- closed set in YZ , then by Proposition 

(1.5) , (ƒIZ)(F) is r- closed in YZ . Hence ƒIZ : XZYZ is an r- closed 

mapping , thus ƒ : XY is an r- proper mapping . 
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Proposition 3.15 : Let X , Y and Z be spaces . If ƒ : X  Y is proper and g : Y 

 Z is an r- proper mapping , then goƒ : X  Y is an r- proper mapping .  

Proof : To prove that goƒ : X  Z is an r- proper mapping : 

(i) Since ƒ :X  Y is a proper mapping , then ƒ is closed . Similarly , since g : 

Y  Z is an r- proper mapping , then g is r- closed . Thus by Proposition (1.26) 

, goƒ : X  Z is an r- closed mapping . 

(ii) Let z  Z , then g
-1

({z}) is a compact set in Y , and then ƒ
-1

(g
-1

({z}) = (goƒ)
-

1
({z}) is a compact set in X . Therefore by (i) , (ii) and since goƒ is continuous 

then by using Theorem (3.10) , goƒ is an r- proper mapping . 

Proposition 3.16 : Let X , Y and Z be spaces , and ƒ : X  Y and g : Y  Z 

are r- proper maps , then goƒ : X  Z is an r- proper mapping . 

Proof : Since ƒ and g are r- proper maps , then ƒIW  and gIW are r- closed , 

for every space W , then by Corollary (1.27) , (gIW)o(ƒIW) is r- closed 

mapping . But (gIW)o(ƒIW) = (goƒ)IW , then (goƒ)IW  is r- closed , and 

since goƒ is continuous . Hence goƒ is an r- proper mapping . 

 

Proposition 3.17 : Let X , Y and Z be spaces , and ƒ : X  Y and g : Y  Z 

be continuous maps , such that  goƒ : X  Z is an r- proper mapping . If ƒ is 

onto , then g is an r- proper mapping . 

Proof :  

(i) Let F be a closed subset of Y , since ƒ is continuous , then ƒ
-1

(F) is closed in 

X . Since goƒ is an r- proper mapping , then goƒ(ƒ
-1

(F)) is r- closed in Z . But ƒ 

is  onto , then                    goƒ(ƒ
-1

(F)) = g(F) . Hence g(F) is an r- closed set in Z 

. Thus g is r- closed mapping . 

(ii) Let z  Z , since goƒ is r- proper mapping , then by Theorem (3.10) , the set                     

(goƒ)
-1

({z}) = ƒ
-1

(g
-1

({z})) is compact . Now , since ƒ is continuous , then ƒ(ƒ
-

1
(g

-1
({z}))) is compact set , but ƒ is onto , then ƒ(ƒ

-1
(g

-1
({z}))) = g

-1
({z})  is 

compact for every z  Z . So by Theorem (3.10) , the mapping goƒ is r-  proper 

. 

Proposition 3.18 : Let X , Y and Z be spaces , and ƒ : X  Y , g : Y  Z be 

continuous maps , such that  goƒ : X  Z is an r- proper mapping . If g is one to 

one , r- irresolute  mapping then ƒ is an r- proper mapping . 

Proof : 

(i) Let F be a closed subset of X . Then (goƒ)(F) is an r- closed set in Z . Since g 

: Y  Z is one to one , r- irresolute , mapping , then g
-1

(g(ƒ(F))) = ƒ(F) is r- 

closed in Y . Hence the mapping ƒ : X  Y is r- closed . 

(ii) Let y  Y , then g(y)  Z . Now , since goƒ : X  Z is r- proper and g is 

one to one , then the set (goƒ)
-1

(g({y}) = ƒ
-1

(g
-1

(g({y}))) = ƒ
-1

({y}) is compact , 

for every y  Y . Therefore by Theorem (3.10) , the mapping ƒ : X  Y is r- 

proper . 
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Proposition 3.19 : Let  X , Y and Z be spaces , ƒ : X  Y be a continuous 

mapping and        g : Y  Z be an r- irresolute mapping , such that goƒ : X  

Y is an r- proper mapping . If Y is a T2 - space , then ƒ is r- proper .   

Proof : Consider the commutative diagram : 

 

 

(x) = (x, ƒ(x)) and K(y) = (g(y), y) . Since X is T2 - space , then the graph of 

 is closed in X×Y [1, Proposition .5.P.99] , and  since  is one to one , then 

by [1, Proposition .2.P.98] ,   is a proper mapping . We have (goƒ)×IZ is r- 

proper , then by Proposition (3.15) , ((goƒ)×IZ)o is r- proper . But  

((goƒ)×IZ)o = Koƒ , so that Koƒ is r- proper . Since g is an r- irresolute 

mapping , then K is r- irresolute . Therefore by Proposition (3.18) , ƒ is an r- 

proper mapping . 

Corollary 3.20 : Every continuous mapping of a compact space X into a T2- 

space Y is r-   proper . 

Proof : Let ƒ : X  Y be a continuous mapping .To prove that ƒ is r- proper . 

Let g : Y  P be a mapping (where P is a singleton set) , since X is a compact 

space , then goƒ : X  P is r- proper . Since Y is a T2- space , then by 

Proposition  (3.19) , ƒ is r- proper mapping 

Proposition 3.21 : Let  X ,Y and Z be spaces . If ƒ : X  Y is an r- proper 

mapping and       h : Y  Z is homeomorphism mapping , then hoƒ : X  Z is 

an r- proper mapping .   

Proof : 

(i) Let F be a closed subset of X , then ƒ(F) is an r- closed set in Y , since h is 

homeomorphism , then hoƒ(F) is an r- closed set in Z . Hence the mapping  hoƒ 

: X  Z is r- closed . 

(ii) Let z  Z , then h
-1

({z}) is a compact set in Y (since every homeomorphism 

mapping is proper) . So (ƒ
-1

(h
-1

))({z}) = (hoƒ)
-1

({z}) is a compact set in X . 

Therefore by Theorem  (3.10) , and since hoƒ is continuous , the mapping hoƒ : 

X  Z is an r- proper .         

Proposition 3.22 : Let ƒ1 : X1Y1 and ƒ2 : X2Y2 be maps . Then                                        

ƒ1ƒ2 : X1X2  Y1Y2 is an r- proper mapping if and only if  ƒ1 and ƒ2 are r- 

proper . 

Proof : ) To prove that ƒ2 is an r- proper . Since ƒ1ƒ2 is continuous , then 

both ƒ1 and ƒ2 are continuous . To prove that ƒ2IZ : X2Z  Y2Z is r- closed 

, for every space Z . Let F be a closed subset of X2Z , since X1 is a closed set 

 

Y Z×Y 
K 

X×Y X 

ƒ 
(goƒ)×IY 
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in X1 , then X1F is a closed set in X1X2Z . Since ƒ1ƒ2 is r- proper , then 

(ƒ1ƒ2IZ)(X1F) is an r- closed set in Y1Y2Z . But (ƒ1ƒ2IZ)(X1F) = 

ƒ1(X1)   (ƒ2IZ)(F) , thus (ƒ2IZ)(F) is an r- closed set in Y2Z , then  ƒ2IZ : 

X2Z  Y2Z is an r- closed mapping . Therefore ƒ2 : X2  Y2 is an r- proper 

mapping . 

     Similarly , we can prove that ƒ1 : X1  Y1 is an r- proper mapping . 

←) To prove that ƒ1ƒ2 : X1X2  Y1Y2 is r- proper . Since ƒ1 and ƒ2 are 

continuous , then ƒ1ƒ2 is a continuous mapping . Let Z be any space . Notice 

that :  

ƒ1ƒ2IZ =(Iy1ƒ2IZ)o(ƒ1Ix2IZ) , since ƒ1 and ƒ2 are r-  proper  maps , then 

(Iy1ƒ2IZ)  

and (ƒ1×Ix2×IZ) = ƒ1×Ix2×Z are r- closed maps . Therefore by Corollary (1.27) , 

the mapping ƒ1ƒ2IZ is an r- closed . Hence ƒ1ƒ2 is an r- proper mapping .       

Proposition 3.23 : Let ƒ : X  Y be an r- proper mapping , then ƒIZ : XZ  

YZ is an r- proper mapping , for every space Z . 

Proof : Since ƒ is r- proper , then ƒIW is an r- closed mapping , for every space 

W . Notice that ƒIZIW = ƒIZ×W , but ƒIZ×W  is an r- closed mapping , then 

ƒIZIW is r- closed , for every space W . Hence ƒIZ is r- proper . 

Proposition 3.24 : Let X be a compact space and Y be any topological space , 

then the projection mapping Pr2 : XY  Y is r- proper . 

Proof : Consider the commutative diagram : 

   
Where h : {p}Y  Y is the homeomorphism of {p}Y onto Y and Pr2 : XY 

 Y is the projection of XY into Y . Since X is a compact space , then by 

Corollary (3.11) ,                   ƒ : X  {p} is r- proper and IY : Y  Y is a 

proper mapping , then ƒIY is an r- proper mapping . Hence ho(ƒIY) is an r- 

proper mapping , but Pr2 = ho(ƒIY) , then Pr2 is an r- proper mapping .   

Proposition 3.25 : Let ƒ1 : X1  Y1 and ƒ2 : X2  Y2 be continuous maps , 

such that ƒ1ƒ2 is a compact mapping and ƒ2 (ƒ1) is r- closed mapping , then ƒ2 

(ƒ1) is an r- proper . 

Proof : Let y2 Y2 . Take any compact set K in Y1 . Then K{y2} is compact 

in   Y1Y2 . So that (ƒ1ƒ2)
-1

(K{y2}) is compact in X1X2 . But (ƒ1ƒ2)
-

1
(K{y2}) =                                 ƒ1

-1
(K) ƒ2

-1
({y2}) , then  ƒ1

-1
(K) and ƒ2

-1
({y2}) 

are compact in X1 and X2 respectively . Since ƒ2 is an r- closed mapping , then 

by Theorem (3.10) , ƒ2 is an r- proper .    

XY 

ƒIY 

{p}Y 

Y 

      Pr2 h() 
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Proposition 3.26 : Let X and Y be spaces , and ƒ : X  Y be an r- proper 

mapping . If F is a clopen subset of X , then the restriction map ƒ│F : F  Y  is 

an r- proper mapping . 

Proof : To prove that ƒ│FIZ : FZ  YZ is an r- closed mapping for every 

space Z . Since F is a clopen subset of X , then FZ is a clopen subset of XZ . 

Since ƒIZ is an r- closed   mapping , then by Proposition (1.24) , (ƒIZ)F×Z  is 

an r- closed mapping . But                ƒ│FIZ = (ƒIZ)F×Z , thus ƒ│FIZ  is an r- 

closed mapping . Hence ƒ│F : F  Y is an r- proper . 

Proposition 3.27 : Let X and Y be spaces . If ƒ : X  Y is an r- proper 

mapping , then ƒ is an r- compact . 

 

 

Proof : Let A be an r- compact subset of Y . To prove that ƒ
-1

(A) is a compact 

set in X , let (χ
d
)dD be a net in ƒ

-1
(A) , then ƒ(χ

d
) is a net in A . Since A is an 

r- compact set in Y , then by Proposition (2.10) , there exists y  A , such that y 

is an r- cluster point of  ƒ(χ
d
) . Since ƒ is r- proper , then by Theorem (3.10) , 

there exists x  X , such that x is a cluster point of (χ
d
) , such that ƒ(x) = y . 

Then x  ƒ
-1

(A) . Thus every net in ƒ
-1

(A) has cluster point in itself , then by 

Proposition (2.4) , ƒ
-1

(A) is a compact set in X . Therefore ƒ : X  Y is an r- 

compact mapping . 

    The converse of Proposition (3.27), is not true in general as the following 

example shows : 

Example 3.28 : Let X = {a, b, c, d} ,Y = {x, y, z} be sets and T = {θ , X, {a, b}, 

{d},           {a, b, d}}, τ  = {θ , Y, {z}} be topologies on X and Y respectively . 

Let ƒ : X  Y be a mapping which is defined by : ƒ(a) = ƒ(b) = ƒ(c) = y , ƒ(d) 

= z . 

      Notice that ƒ is an r- compact mapping , but ƒ is not r- proper mapping . 

Since {c, d} is a closed set in X , and ƒ({c, d}) = {y, z} is not r- closed set in Y , 

then ƒ is not r- closed mapping . Hence ƒ is not r- proper mapping . 

 

 

Theorem 3.29 : Let X and Y be spaces , such that Y is a T2- space . If ƒ : X  

Y is a continuous mapping , then ƒ is an r- proper mapping if and only if ƒ is an 

r- compact   mapping . 

 

Proof : ) By Proposition (3.27) . 

) To prove that ƒ is an r- proper mapping : 

(i) Let F be a closed subset of X . To prove that ƒ(F) is an r- closed set in Y, let 

K be an r- compact set in Y , then ƒ
-1

(K) is a compact set in X , then by 

Theorem (2.5) , F ƒ
-1

(K) is compact in X . Since ƒ is continuous , then ƒ(F  ƒ
-
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1
(K)) is compact set in Y , and then its r- compact . But ƒ(F ƒ

-1
(K)) = ƒ(F) K 

, then ƒ(F) K is r- compact , thus ƒ(F) is compactly r- closed set in Y . Since Y 

is a T2-space , then by Theorem (2.15) , ƒ(F) is an r- closed set in Y. Hence ƒ is 

an r- closed mapping .  

(ii) Let y  Y , then {y} is r- compact in Y . Since ƒ is an r- compact mapping , 

then ƒ
-1

({y}) is compact in X , therefore by Theorem (3.10) , ƒ is an r- proper 

mapping . 

 

Theorem 3.30 : Let ƒ : X  P = {w} be a mapping on a space X , where w is 

any point which does not belong to X , then the following statements are 

equivalent : 

(i) ƒ is an r- compact mapping . 

(ii) ƒ is an r- proper mapping . 

(iii) ƒ is a proper mapping . 

(iv) X is a compact space . 

 

 

 

 

 

 

Proof : 

(i → ii). By Theorem (3.29) .      

(ii → iii). By Remark (3.5) . 

(iii → iv). See [1] . 

(iv → i). Since ƒ
-1

(P) = X and X is a compact space , then ƒ is an r- compact 

mapping . 

Theorem 3.31 : Let X and Y be spaces , such that Y is a compact , T2- space 

and ƒ : X  Y be a continuous mapping , then the following statements are 

equivalent : 

(i) ƒ is a proper mapping . 

(ii) ƒ is a compact mapping . 

(iii) ƒ is an r- compact mapping . 

(iv) ƒ is an r- proper mapping . 

Proof : 
(i → ii). See [1] . 

(ii → iii). Let H be an r- compact set in Y . To prove that ƒ
-1

(H) is compact in X 

. Since Y is a compact , T2- space , then by Proposition (2.15) , H is a compact 

set in  Y , then by (ii) ,       ƒ
-1

(H) is a compact set in X . Hence ƒ is an r- 

compact mapping .  

(iii → iv). Theorem (3.29) . 
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(iv → i). By Remark (3.5) . 

Proposition 3.32 : Let X and Y be spaces , such that Y is a T2- space and ƒ : X 

 Y be a continuous mapping . Then the following statements are equivalent : 

(i) ƒ is an r- coercive mapping . 

(ii) ƒ is an r- compact mapping . 

(iii) ƒ is an r- proper mapping . 

Proof : 
(i → ii). By Proposition (2.33) . 

(ii → iii). By Proposition (3.29) . 

(iii → i). Let J be an r- compact set in Y . Since ƒ is r- proper , then by 

Proposition (3.29) , ƒ is an r- compact mapping , then ƒ
-1

(J) is a compact set in 

X . Since ƒ(X \ ƒ
-1

(J))   Y \ J . Hence ƒ : X  Y is an r- coercive mapping . 

 

 

 

 

 

References : 
 [1] Bourbaki , N. , Elements of Mathematics , "General Topology" , Chapter 1- 

4 , Springer – Verlog , Berlin , Heidelberg , New – York , London , Paris , 

Tokyo , 2
nd 

 Edition (1989) . 

[2] Dugundji , J. , "Topology" , Allyn and Bacon , Boston , (1966) . 

[3] Gemignani , M. C. , "Elementary Topology", Addision – Wesley Inc. , 

Mass. , 2
nd

  Edition (1972) . 

[4] Habeeb K. and Alyaa Y. , "f

- Coercive function" . Appear . 

[5] J. Cao and I. L. Reilly , "Nearly compact spaces and δ

- Continuous 

Functions" , Bollettino U. M. I. (7) , 10 – A (1996) . 

[6] Sharma J. N. , "Topology" , published by Krishna Prakashan Mandir , 

Meerut (U. P.) , Printed at Manoj printers , Meerut , (1977) . 

[7] Taqdir H. , "Introduction to Topological Groups" , (1966) . 

[8] Willard , S. , "General topology" , Addison – Wesley Inc. , Mass. , (1970) . 

 

 

 



Journal of Al-Qadisiyah for Computer Science and Mathematics 

Vol. 3      No.1          Year 2011 

 

 184 

 

 

 

 

 

 

 التطبيقاث السديدة المنتظمت

الخلاصت 

      الهدف الأسبسي هن هذا العول هى تقدين نىع عبم و جديد للتطبيق السديد هى التطبيق السديد الونتظن  

كوب تضون البحث بعض الخىاص . كوب قدهنب تعزيف جديد للتطبيق الوتزاص و التطبيق الأضطزاري . 

.   و العببرات الوتكبفئة و كذلك شزحنب العلاقة بين هذه  التعزيفبت 

 

 

 

 

 

 

 


