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Abstract
The main goal of this work is to create a general type of proper
mappings namely, regular proper mappings and we introduce the
definition of a new type of compact and coercive mappings and give
some properties and some equivalent statements of these concepts as well
as explain the relationship among them .

Introduction
One of the very important concepts in topology is the concept of
mapping . There are several types of mapping , in this work we study an
important class of mappings, namely , regular proper mapping .
Proper mapping was introduced by Bourbaki in [1] .
Let A be a subset of topological space X . We denote to the closure and

interior of Aby A and A~ respectively .
James Dugundji in [2] defined the regular open set as , a subset A of a

space X such that called regular open set if A= A . Stephen Willard in [8]

defined the regular open set similarly with Dugundji's definition .

This work consists of three sections .

Section one includes the fundamental concepts in general topology , and
the proves of some related results which are needed in the next section .

Section two contains the definitions of regular compact mapping and
regular coercive mapping . So it will introduce the relationship among them
and some results about this subjects are proved .

Section three introduces the definition of regular proper mapping and
some of its related results are proved .
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1- Basic concepts
Definition 1,1, [2] : A subset B of a space X is called regular open (r- open)

set if B = B . The complement of regular open set is defined to be a regular

closed (r- closed) set.
Proposition 1.2, [2] : A subset B of a space X is r- closed if and only if B =

B

Its clearly that every r- open set is an open set and every r- closed set is closed
set , but the converse is not true in general as the following example shows :

Example 1.3 : Let X ={a, b, c,d} beasetand T = {Q, X, {a}, {a, b}, {a, c,

d}} be a topology on X . Notice that {a, b} is an open set in X , but its not r-

open set and {b} is a closed set in X, but its not r- closed set .

Corollary 1.4 :

(i) A subset B of a space X is clopen (open and closed) if and only if B is r-

clopen (r- open and r- closed ) .

(i) If Ais an r- closed set in X and B is a clopen set in X , then ANB is r-

closed setin B . Proposition 1.5: Let A cY < X. Then:

(M) If Aisanr-opensetinY and Y is an r- open set in X, then A is an r- open

setin X.

(i) If Ais an r- closed set in Y and Y is an r- closed set in X, then A'is an r-

closed setin X..

Definition 1.6 : Let A be a subset of a space X . A point xeA is called r-

interior point of A if there exists an r- open set U in X suchthat x e Uc A..
The set of all r- interior points of A is called r- interior set of A and its

denoted by 5" .
Proposition 1.7 : Let (X, T) be aspaceand A <X . Then:

- ol o
M)A c<a -
r

) (4" =A%)
(i) Ais r- open ifand only if A" = A .

Definition 1.8 : Let A be a subset of a space X . A point x in X is said to be r-
limit point of A if for each r- open set U contains x implies that UN A\ {x} =@

The set of all r- limit points of A is called r- derived set of A and its denoted
by A'r .

Definition 1.9 : Let X be a space and B < X . The intersection of all r- closed
sets containing B is called the r- closure of B and denotes by ;r :
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Proposition 1.10 : Let X beaspaceand A, B < X . Then:
~ —I -
- closed set .
(i) o s elnrr closed se
(iAc A . i
(i) Ais r—rclosed ifandonly if A =A.

(iv)x e A ifandonlyif ANU = 0 , for any r- open set U containing X .

Proposition 1.11: Let X and Y be two spaces,and A < X,B c Y. Then:

(i) A, B are r- open subset of X and Y respectively if and only if AxB is r-
open in XxY .

(i) A, B are r- closed subsets of X and Y respectively if and only if AxB is r-
closed in XxY .

(iti) A, B are clopen subsets of X and Y respectively if and only if AxB is
clopen in XxY .

(iv) A, B are r- clopen subsets of X and Y respectively if and only if AxB is r-
clopen in XxY .

Definition 1.12 , [3] : Let X be a space and B be any subset of X . A
neighborhood of B is any subset of X which containing an open set containing
B.

The neighborhoods of a subset {x} , consisting of a single point are also
called neighborhood of a point x .

The collection of all neighborhoods of the subset B is denoted by N(B) . In
particular the collection of all neighborhoods of x is denoted by N(x) .

Proposition 1.13 , [1] : Let X be a set . If to each element x of X , there
corresponds a collection B(x) of subsets of X , such that the properties :

(i) Every subset of X which contains a set belongs to B(x) , itself belongs to
B .

(i1) Every finite intersection of sets of B(x) belongs to B(x) .

(iii) The element x is in every set of B(x) .

(iv) If V belongs to B(x), then there is a set W belonging to B(x) such that for
eachy € W, V belongs to(y).

Then there is a unique topological structure on X such that , for each x eX ,
B(x) is the collection of neighborhoods of x in this topology .

Definition 1.14 : Let X be a space and B < X . An r- neighborhood of B is
any subset of X which contains an r- open set containing B . The r-
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neighborhoods of a subset {x} consisting of a single point are also called r-
neighborhoods of the point x.

Let us denote the collection of all r- neighborhoods of the subset B of X by
Nr(B) . In particular , we denote the collection of all r- neighborhoods of x by
Nr(x) .

Definition 1.15, [1] : Let f : X — Y be a mapping of spaces .Then :

(i) f is called continuous mapping if f*(A) is an open set in X for every open
setAinY .

(11) f 1is called open mapping if f(A) is an open set in Y for every open set A in
X.

(111) f 1s called closed mapping if f(A) is a closed set in Y for every closed set A
in X.

Definition 1.16 : A mapping f : X — Y is called r- irresolute if f*(A) is an r-
open set in X for every r- openset Ain Y .
Definition 1.17 , [1] : Let X and Y be spaces . Then the mapping f : X — Y is
called homeomorphism if
(1) f 1s bijective .
(i1) f is continuous .
(iii) f is open (or closed) .
Also , X'is called homeomorphic to the space Y (written Xz=Y).

Definition 1.18

(i) A mapping f : X — Y is called an r- open mapping if the image of each
open subset of X isan r-opensetinyY .

(i) A mapping f : X — Y is called an r- closed mapping if the image of each
closed subset of X is an r- closed setin Y .

Remark 1.19 : Every r- open (r- closed) mapping is open (closed) mapping .
The converse of Remark (1.19) , is not true in general as the following
examples show :

Example 1.20 : Let X ={a, b, c}, Y ={X,y,z}and let T = {0, X, {a}, {a, b}}
, 7= {0.Y, {x}} be topologies on X and Y respectively . Let f : X — Y be a
mapping which is defined by : f(a) = f(b) = x, f(c) =y . Notice that f is an
open mapping , but f is not r- open .
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Example 1.21 : Let X ={a, b,c,d}, Y ={x,y,z}and let T = {06, X, {a}, {b,
ch, {a, b,c}}, T ={0,Y, {x}, {X, z}} are topologies on X and Y respectively .
Let f : X — Y be a mapping which is defined by: f(a)=f(c)=z , f(b)=x ,
f(d) =y . Notice that f is closed mapping , but f is not r- closed mapping .
—Tr
Proposition 1.22 : A mapping f : X — Y is r- closed if and only if f(A) <

f(A), VASX .

Proof : —)Let f:X — Y be an r- closed mapping and A < X . Since A isa
closed set in X , then f(A) is an r- closed subset of Y , and since A = A then

_ - — 1T _ JRE— _
f(A) S f(A) . Thus f(A)r = f(A) :f(A) , hence f(A)r = f(A) .
<) Let f(_A)r S f(A),forall A< X. Let F be a closed subset of X , i.e, F =

F , thus by hypothesis E)r S f(F).But f(F) < E)r , then £(F) =jTF)r. Hence
f(F)isanr-closed setin Y , thus f : X — Y is an r- closed mapping .

Proposition 1.23 : Let X and Y be spaces , f : X — Y be an r- closed mapping
of X into Y . Then fgy : 1 ({y}) — {y}is r- closed mapping , for each yeY .

Proof : Let F be a closed subset of f({y}) . Then there is a closed subset F; of
X , such that F=F:inf'({y}) . Since fry(F) = f(F1) n{y} , then either
fo3(F) =0 or fia(F) = {y} , thus f3(F) isr- closed in {y} . Therefore fg; is an
r- closed mapping .

Proposition 1.24 : Let X and Y be spaces , f : X — Y be an r- closed mapping
of X into Y . Then for each clopen subset T of Y , fr: f(T) — T is an r-
closed mapping .

Proof : Let F be a closed subset of f*(T) . Then there is a closed subset F; of X
, such that F=F.nfXT). Since f+(F) = f(F) NT, and f(F,) is r-
closed in Y and T is clopen in Y then by Corollary (1.4), f(F) T is r- closed
in T . Thus fris an r- closed mapping .

Corollary 1.25 : Let f : X — Y be an r- closed mapping of a space X into a
discrete space Y. Then for any subset T of Y , f1: f(T) — T is an r- closed

mapping .
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Proposition 1.26 : Let X, Y and Z be spaces , f : X — Y be a closed mapping
and g:Y — Zbe anr- closed mapping , then gof : X — Z isan
r- closed mapping .

Proof : Let F be a closed subset of X , then f(F) is closed setin Y . But gis an
r- closed mapping , then g(f(F))= (gof)(F) is an r- closed set in Z . Then gof :
X — Y isan r- closed mapping .

Corollary 1.27 : Let X, Yand Zbespaces.If f: X > Y ,and g:Y — Zare
r- closed mapping , then gof : X — Zis an r- closed mapping .

Proof : Since f is an r- closed mapping , then f is a closed mapping , thus by
Proposition (1.26) , gof is an r- closed mapping .

Proposition 1.28 : Let f: X — Y be an r- closed mapping . If F is a closed
subset of X, then the restriction mapping fjr : F — Y is an r- closed mapping .
Proof : Since F is a closed set in X , then the inclusion mapping ir: F — Xisa
closed . Since f is an r- closed , then by Proposition (1.26) , foir: F — Y isan
r-closed mapping . But foir= f, thus the restriction mapping fr : F— Y isan
closed mapping .

Proposition 1.29 : A bijective mapping f : X — Y is r- closed if and only if is
r- open .

Proof : — ) Let f: X — Y be a bijective , r- closed mapping.and U be an open
subset of X , thus U is closed .Since f is r- closed then f(U )isr-closed inY,

thus (fU )) is r- open.
C

Since f is bijective mapping , then (f u%) = f(U), hence f(U) is r- open in

Y . Therefore f is an r- open mapping .
<) Let f X — Y be a bijective , r- open mapplng and F be a closed subset ch

X, thus F is open . Since f is r- open then f(F )isr- open inY , thus (f(F ))

is r- closed . Since f is a bijective mapping , then (f(F )) = f(F), hence f(F) is
an r- closed in Y . Therefore f is an r- closed mapping .

Definition 1.30 : Let X and Y be spaces .Then the mapping f : X — Y is called
r- homeomorphism if :

(1) f 1s bijective .

(i1) f is continuous .

(iii) f is r- open (r- closed) .
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Remark 1.31 : Every r- homeomorphism mapping is homeomorphism .
The converse of Remark (1.31) , is not true in general as the following
example shows :

Example 1.32 : Let X ={a, b,c} beasetand T = {0, X, {a}, {c}, {a, b}, {a,
C}} be a topology on X . Let f : X — X be the identity mapping . Notice that f
iIs homeomorphism , but its not r- homeomorphism .

Theorem 1.33, [9] : Let X be a space and A be a subset of X , x € X .Then x
e A if and only if there is a net in A which converges to x .

Lemma 1.34,[5] : If (Xd) isanetin aspace X and for each d, € D, Ago = {Xd
|d > d,}, then x e X is a cluster point of (Xd) if and only if x eA_d , forall d
eD.

Definition 1.35 : Let (Xd )qep be a netin a space X ,x € X . Then (Xd)gep -
converges to x [written yq —— x], if (Xd )qep is eventually in every r- nbd of
X . The point x is called an r- limit point of (Xd)4e<p.

Definition 1. 36 : Let (Xd )qep be a netiin a space X, X e X .Then (Xd )qep is

;
said to have x as an r- cluster point [written Xd oc x] if (Xd)4ep is frequently
in every r- nbd of x.

Proposition 1.37 : Let (X, T) beaspace and A ¢ X, X ¢ X.Thenx ¢ ;r if
and only if

r
there exists a net (Xd )gep in A and Xd oc x .

Proof : —) Let X € ;r, then UNA = 0 , foreveryr-opensetU,x € U .

Notice that (Nr(x) , <) is a directed set , such that for all U, , U, € Nr(x),
U; > Uy if and only if U; < U, . Since forall U € Nr(x), UNA = 0,
then we can define anet y : Nr(x) — Xasfollows: y(U)=yye UNA,U €

h

Nr(x) . To prove that y y o x. Let B € Nr(x) , thus BNU e Nr(x) . Since BhU
r

c U,thenBNU > U, y(BNU) = Xenv e BNU < B . Hence yy ¢ X.
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.
«) Let (Xd)gep beanetin A, suchthat y4 oc X, and let U be an r- open set ,

;
X e U.Since yq4 ¢ X, then (yg)qep IS frequently inU . Thus UNA = o , for all
r- open set U, X e U.Hencex e ;r.

Proposition 1.38 : Let X be a space and (Xd )qep be a net in X, for each d,
D, such that Ag = {4 | d > do}, then a point x of X is r- cluster point of

(Xd)gep if and only if X eA_dor’ foralld, e D.

Proof : —) Let x be an r- cluster point of (Xd )q<p and let N be an r- open set

contain x , then (Xd )4¢<p is frequently in N, thus AgsNN = 0,V d, € D, then

by Proposition (1.10) , X e A_dor'

—7r
<) Let x €Ay VvV d, € D, and suppose that x is not r- cluster point of
(Xd)gep, then there exists r- nbd N of x , such that A,NN=90 ,Vd, e D, Xd

—r . -
¢D,d>d,d >d,, then X Ay This is contradiction . Hence x

is r- cluster point of (Xd )4 .

2- Regular compact and regular coercive mappings

Definition 2.1, [6] : A space X is called Hausdorff (T,) if for any two distinct
points X,y of X there exists disjoint open subsets U and V of X such that x <
U,yeV.

Theorem 2.2, [6] : Each singletion subset of a Hausdorff space is closed .
Definition 2.3, [7] : A space X is called compact if every open cover of X has
a finite subcover .

Theorem 2.4 , [6] : A space X is compact if and only if every net in X has a
cluster pointin X ..

Theorem 2.5, [7] :

(i) A closed subset of compact space is compact .

(i) In any space , the intersection of a compact set with a closed set is compact .
(ii1) Every compact subset of T,- space is closed .

Definition 2.6 : A space X is called r- compact if every r- open cover of X has
a finite subcover .
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Proposition 2.7 : Every compact space is r- compact space .
The converse of Proposition (2.7) , is not true in general as the following
example shows :

Example 2.8 : Let T={A c R|Z < A}U{e}, be a topology on R . Notice
that the topological space (R,T) is r- compact, but its not compact .

Theorem 2.9 :

(i) An r- closed subset of compact space is r- compact .

(if) Every r- compact subset of T,- space is r- closed .

(iii) In any space , the intersection of an r- compact set with an r- closed set is r-
compact .

(iv) In a T,- space , the intersection of two r- compact sets is r- compact .

Theorem 2.10 : A space X is an r- compact if and only if every net in X has r-
cluster pointin X .

Proposition 2.11 : Let X be a space and Y be an r- open subspace of X, K c Y
. Then K'is an r- compact set in Y if and only if K is an r- compact set in X ..

Proof : —) Let K be an r- compact set in Y . To prove that K is an r- compact

setin X . Let {Ux}rc A beanr-opencoverin Xof K, letVi =UrNY,

VieA .ThenVi isr-openin X, ViecaA .ButVi < Y, thus Vi isr- open

inNY,Viea .Since K ngAV ,then {Vi}i c A isanr-open coverinY of
S

V. .
'y

, thus the cover {Ux}xr < A has a finite subcover of K . Hence K is an r-

compact set in X .

<) Let K be an r- compact set in X . To prove that K is an r- compact setin Y.

Let {Ur}r c A beanr-open coverinY of K. Since Y is an r- open subspace

of X, then by Proposition (1.5) , {Ui}x c A is an r- open cover in X of K .

Then by hypothesis there exists {1, %2, ..., A}, such that K gkmlux , thus

K, and by hypothesis this cover has finite subcover { : ,an }of K

the cover {Ux }i < A has a finite subcover of K. Hence K is an r- compact set
iny.

Definition 2.12 : Let X be a space and W < X . We say that W is compactly r-
closed set if WNK is r- compact , for every r- compact set K in X .
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Proposition 2.13 : Every r- closed subset of a space X is compactly r- closed .
The converse of Proposition (2.13), is not true in general as the following
example shows .

Example 2.14 : Let X = {a, b, c} be a space and T = {X, 0, {a, b}} be a
topology on X . Notice that the set A = {a, b} is compactly r- closed , but its not
r- closed set .

Theorem 2.15 : Let X be a T, - space .A subset A of X is compactly r- closed if
and only if Ais r- closed .

Remark 2.16: Let X be a compact, T, - spaceand A < X . Then:
(i) Alisclosed if and only if A'is r- closed .
(i1) A is compact if and only if A is r- compact .

Definition 2.17 , [6] : Let X and Y be space . A mapping f : X — Y is called
compact mapping if the inverse image of each compact set in Y , is a compact
setin X.

Definition 2.18 : Let X and Y be space . We say that the mapping f : X — Y is
an r- compact mapping if the inverse image of each r- compact setin Y , is a
compact set in X.

Example 2.19 : Let (X, T) and (Y, 1) be topological spaces , such that X is finite
set, then the mapping f:X — Y isr- compact.

Remark 2.20 : Every r- compact mapping is compact mapping .
The converse of Remark (2.20) , is not true in general as the following
example shows :

Example 221 : Let T={A < R | Z < A}U{0} be a topology on R , and
f:(R,T) - (R,T) be a mapping which is defined as f(x) =x, V X € R . Notice
that f is a compact mapping , but its not r- compact .

Proposition 2.22 : Let X and Y be spaces , and f : X — Y be an r- compact ,
continuous , mapping . If T is a clopen subset of Y , then f1: f(T) — Tisanr-
compact mapping .

Proof : Let K be an r- compact subset of T . Since T is clopen set in Y then by
Corollary (1.4) , T is an r- open , and then by Proposition (2.11) , K is an r-
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compact set in Y . Since f is an r- compact mapping , then f(K) is compact in
X.

Now , since T is a closed set in Y , and f is a continuous mapping , then f
(T) is a closed set in X , thus by Theorem (2.5), f(T)N f*(K) is a compact set

.Butf'Tl(K) =YMN 1K) , then f'Tl(K) is a compact set in (T) . Therefore
fris an r- compact mapping .

Proposition 2.23 : Let X, Y and Zbe spaces . If f : X > Y ,Q:Y —» Z are
continuous mapping . Then :

(1) If f is a compact mapping and g is an r- compact mapping , then gof : X —
Zisanr-

compact mapping .

(i1) If f and g are r- compact mappings, then gof is an r- compact mapping .

Proof :

(i) Let K be an r- compact set in Z , then g™(K) is a compact set in Y , and then
FHg™K)) = (gof)(K) is a compact set in X . Hence gof : X —Z is r- compact
mapping .

(i1) By Remark (2.18) , and (i) .

Proposition 2.24 , [2] : For any closed subset of a space X , the inclusion
mapping Ir : F — X'is a compact mapping .

Proposition 2.25 : Let X and Y be spaces . If f : X — Y is an r- compact
mapping and F is a closed subset of X , then fr : F — X is an r- compact

mapping .

Proof : Since F is a closed subset of X , then by Proposition (2.24) , the
inclusion Ir - F — X is a compact mapping . But f = foig, then by
Proposition (2.23) , f is an r- compact mapping .

Definition 2.26 , [4] : Let X and Y be spaces . A mapping f : X — Y is called
coercive if for every compact setJ c Y, there exists a compact set K < X such
that f(X\K) c Y\J.

Definition 2.27 : Let X and Y be spaces . We say that the mapping f : X — Y
is r- coercive if for every r- compact set JcY, there exists a compact set K< X
such that fX\K) c Y\J.
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Examples 2.28 :

(1) If f: (X,T) — (Y, T) is a mapping , such that X is compact space , then f is

r- coercive .

(i1) Every identity mapping on regular space is r- coercive .

Proposition 2.29 : Every r- coercive mapping is a coercive mapping .

Proof : Let f : X — Y be an r- coercive mapping , and J be a compact setinY,

S0 its r- compact , since f is r- coercive , then there exists a compact set

Kin X, such that f(X\K) < Y\J. Hence f is a coercive mapping .
The converse of Proposition (2.29) is not true in general as the Example

(2.19) .

Proposition 2.30 : Let X and Y be spaces such that Y is a compact, T, - space .

Then a mapping f : X — Y isr- coercive if and only if its a coercive mapping .

Proof : —) By Proposition (2.29) .

<) Let Jis an r- compact set in Y . Since Y is a compact , T, - space , then by

Proposition (2.16) , J is a compact set in Y , since f is a coercive mapping , then

there exists a compact set K in X , such that f(X \ K) < Y \ J . Hence f is r-

coercive .

Proposition 2.31 : Every r- compact mapping is an r- coercive .

Proof : Let f : X — Y be an r- compact mapping . To prove that f is an r-
coercive . Let J be an r- compact set in Y . Since f is an r- compact mapping ,
then f™(J) is a compact set in X . Thus f(X\ f*(J)) c Y\J.Hence f : X —» Y
IS an r- coercive mapping .

The converse of Proposition (2.31) , is not true in general as the following
example shows .
Example 2.32 : Let Y = {X, y} be a set and T is the discrete topology on Y .
Then a mapping f:([o0,1],U) — (Y,T) which is defined by :

X Vte (0,1
Uk [y Vte {01}

IS a coercive mapping , but its not compact mapping .

Proposition 2.33 : Let X and Y be spaces , such that Y isa T, — space , and f :
X — Y is a continuous mapping . Then f is an r- coercive if and only if f is an
r- compact .

Proof : —) Let J be an r- compact set in Y . To prove that f™(J) is a compact
set in X . Since Y isa T, — space , and J is an r- compact set in Y , so it’s a
closed set , then f*(J) is a closed set in X . Since f is an r- coercive mapping ,
then there exists a compact set K in X, such that fX\K) < Y\J.Then

(k) i, therefore f(J) < K, and thus f(J) is a compact set in X . Hence
f is an r- compact mapping .
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<) By Proposition (2.31) .

Proposition 2.34 : Let X, Y and Z be spaces and f : XY, g: Y—>Z be
mappings . Then :

(1) If f is coercive and g is r- coercive , then gof : X — Z is an r- coercive
mapping .

(i1) If f and g are r- coercive , then gof : X — Z is an r- coercive mapping .
Proof :

(i) Let J be an r- compact setin Z. Since g : Y — Z is r-coercive mapping ,
then there exists a compact set Kin Y , such that g(Y \K) < Z\J.Since f: X
— Y is a coercive mapping , then there exists a compact set H in X, such that
fX\H) cY\K> g(fX\H) c g(Y\K) c Z\]J
—(gof)(X\H)cZ\J .Hence gof is an r- coercive mapping .

(i1) By Proposition (2.29) , and (i) .

Proposition 2.35 : Let X and Y be spaces , and f : X — Y be an r- coercive
mapping . If F is a closed subset of X , then the restriction mapping fg: F - Y
IS an r- coercive mapping .

Proof: Since F is a closed subset of X , then by Proposition (2.24) , and
Proposition (2.31) , the inclusion mapping ir : F — X is a coercive mapping .
But fir = foir, then by Proposition

(2.34), ff is an r- coercive mapping .

Theorem 2.36 : Let X and Y be spaces , such that Y is a compact, T, - space ,
then for a continuous mapping f : X — Y , the following statements are
equivalent :

(1) f is r- coercive .

(1) f 1s r- compact .

(ii1) f is compact .

(1v) f is coercive .

Proof :

(i — ii). By Proposition (2.33) .

(i1 — iii). By Remark (2.20) .

(iii — iv). Let J be a compact set in Y . Since f is compact mapping , then f™*(J)
is compact set in X . Thus f(X\ f(J)) cY \J. Hence f is a coercive mapping .
(iv — 1). By Proposition (2.30) .

3- Regular Proper Mapping :

Definition 3.1, [1] : Let X and Y be spaces , and f : X — Y be a mapping . We
say that f is a proper mapping if :

(1) f 1s continuous .

(1) f x Iz: X xZ - Y x Zis closed , for every space Z .

Definition 3.2 : Let X and Y be spaces , and f : X — Y be a mapping . We say
that f is a regular proper (r- proper) mapping if :

(1) f is continuous .
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(1) f x lIz: X xZ - Y x Zisr-closed , for every space Z .
Example 3.3: Let X={a, b,c},Y ={x,y}bespacesand T = {X, o, {a}, {b},
{c}, {a, b}, {a, c}, {b, c}}, © = {Y, o, {x}, {y}} are topologies on X and Y
respectively . The mapping f: X = Y which is defined as f(a) = f(b)
=X, f(c) =y is an r- proper mapping .

The following example shows that not every mapping is r- proper .
Example 3.4 : Let f: (R, U) —» (R, U) be the mapping which is defined by
f(x)=0, for every x [1 R . Notice that f is not ¢ proper mapping , since for the
usual space (R , U) the mapping fxlg : RxR —RxR , such that (fxIg)(X,y) =
(0,y) , for every (x,y) (1 R is not ¢ closed mapping .
Remarks 3.5 :
(i) Every r- proper mapping is r- closed .
(i1) Every r- proper mapping is proper .
(iii) Every r- homeomorphism is r- proper .

The converse of Remark (3.5.1) , is not true in general as the Example (3.4) .
Also the converse of Remark (3.5.ii) , is not true as the following example
shows :

Example 3.6 :

Let T be a cofinite topology on N, and let f : N — N be a mapping which is
defined by : f(x) =x ,. x [] N . Notice that f is a proper mapping , but f is not
r- proper mapping , since f is not r- closed mapping .

The converse of Remark (3.5.1ii) , is not true in general as the following
example shows :

Example 3.7 : Let X ={a, b}, Y ={x,y} besetsand T = {0 , X, {a}{b}} ,T =
{0,Y {x}, {y}} be topologies on X and Y respectively . Let f: X — Y be a
mapping which is defined by : f(a) = f(b) = x . Notice that f is an r- proper
mapping , but f is not r- homeomorphism , since f is not onto .

Proposition 3.8 : Let X and Y be spaces , and f : X — Y be an r- proper
mapping . If T is a clopen subset of Y , then fr: f(T) — T is an r- proper
mapping .

Proof : Since f : X — Y is a continuous mapping , then fr IS a continuous
mapping . To prove that frxlz : f(T) xZ — TxZ is an r- closed mapping , for
every space Z . Notice that frxlz =(fxlz)Txz . Since T is a clopen subset
of Y, then by Proposition (1.11) , TxZ is a clopen subset of YxZ , thus by
Proposition (1.24) , (fxlz)txz = (frxlz) is an r- closed mapping , hence fr: f
Y(T) — T is an r- proper mapping .
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Theorem 3.9 : Let f : X — P = {w} be a mapping on a space X . If f is an r-
proper mapping , then X is a compact space , where w is any point which does
not belong to X .

Proof : Since f is r- proper mapping , then by Remark (3.5.ii) , f is proper
mapping . Thus by [1.Lemma (2.1) P.101] , X is compact space .

Theorem 3.10 : Let X and Y be spaces , and f : X — Y be a continuous
mapping . Then the following statements are equivalent :

(1) f is an r- proper mapping .

(ii) f is an - closed mapping and f™({y}) is compact foreach y e Y .

(iii) If (Xa)gepisanetin X andy e Y is an r- cluster point of f(%4) , then there

is a cluster point x e X of (Xa)gep , Such that f(x) =y .

Proof :

(i—1i). Let f : X — Y be an r- proper mapping , then fxl;: XxZ — YxZ is an
r- closed for every space Z . Let Z = {t}, then XxZ = Xx{t} [J X and YxZ =
Y x{t} [1 Y, and we can replace fxl; by f, thus f isr- closed . Now , lety e
Y . Since f is an r- proper , then by Remarks (3.5) , f is proper mapping , so by
[1, Theorem (3.1.5) ], f*({y}) is compact foreachy [ Y .

(ii — iii). Let (Xa)gepbe anetin X and y < Y be an r- cluster point of a net

f(Xd)Cin Y . Assume that f(y) = 0 ,if fi(y) =0 ,theny ¢ f(X) >V e
(f(X)) | since X is a closed set in )é and f is an r- closed mapping , then f(X) is
an r- closed set in Y . Thus (/(X)) is an r- open set in Y. Therefore (f(%q)) is
frequently in (f (X))C. .

But f(y )e f(X). d e D, then f(X)N (f(X)) % o ,andthisisa contradiction

. Thus fiy) =0 .

Now , suppose that the statement (iii) , is not true , that means, forall x e f
'(y) there exists an open set Uy in X contains x , such that () is not frequently
in Uy . Notice that fiy) = U{x}. Therefore the family {Ux|x e f(y)}

xef )
is an open cover for f™(y) . But fY(y) is a compact set , then there exists
X1, Xz, « ., Xn € f(y) , such that f(y) [ Ux JUX, ... JUX,, then f(y)
C

ﬂ[LnJ Uy = 0 — fy) N [Huii] = 0 . But (X)i- ais not frequently in Ux;
i=1 i=1
: : . n _
Vi=1,...,n.Thus (y, ) is not frequently in iL:JlUXi , but iL:JlUXi IS an open set

n n
in X, then N Uf(i is a closed set in X . Thus f( U)C(i) is an r- closed setin Y .
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. n Cc . n Cc . n Cc

Claimy ¢ f(iDluxi) ify e f(iDluxi) , then there exists x e QlUxi , such

that f(x)=y,thusx ¢ Lrj Uy ° but x e f(y), therefore f™(y) is not
i=1

a subset of Lnj Uy and this is a contradiction . Hence there is an r- open set A

i=1
inY, suchthaty e Aand ANS( %) =0 — FAANFUHNGE) =0 -
i=1 i=1
1 n ¢ -1 n - .

AN [Nu,1=0-(A) = Uy, - But (f(Xa)) is frequently in A , then

i=1 i=1

(y,) is frequently in FYA) , and then (y,) is frequently in iL=JlUXi . This is

contradiction , and this is complete the proof .

(iii — 1). Let Z be any space . To prove that f : X — Y is an r- proper mapping ,
I.e , to prove that fxlz : XxZ — YxZ is an r- closed mapping . Let F be a
closed set in XxZ . To prove that (fx1;)(F) is an r- closed set in YxZ . Let (y,2)

S (fx|z)(|:)r, then by Proposition (1.38) , there exists a net {(Yq, Zg)}aep in

(fx1)(F) such that (Vs 2g) o (¥.2) , then Ve, 2) =

((fx12)(Xq, Yq)) , where {(Xq, Ya)}aep is anetin F . Thus (f(xq) , 12(zq)) Orc (y,2)

, SO f(Xq) orc y and z4 orc z . Then by (iii) ,. x € X, such that X4 oc X and f(x)
=y, Since (Xq, Zg) o (X,2) and {(Xq, Zq)}4- piS a netin F, thus (X,y) e F .

Since F = F , then (X,y) U F — (y,2) = (fx12)(X,y)) = (v,2) O (fx12)(F) ,
and then (fx|z)(|:)r= (fxIz2)(F) , thus (fxIz)(F) is an r- closed set in YxZ .

Hence fxlz: XxZ — YxZis an r- closed mapping , hence f :
X — Y is an r- proper mapping .

Corollary 3.11 : If X is a compact space , then the mapping f : X — P = {w}
on a space X is r- proper , where w is any point which does not belongs to X .
Proof : Let X be a compact space . Since P is a single point , then f is a
continuous mapping . To prove that f : X — P = {w} is an r- proper mapping :
(i) Since f(P) =X, then f(P) is a compact set .

(i1) Let F is a closed subset of X , then cither : f(F)= 6 or f(F)= {w} . So f(F)
IS r- closed in P , then f is r- closed mapping . Thus by Theorem (3.10), f is an
r- proper mapping .

Proposition 3.12 : Let X and Y be spaces . If f : X — Y is an r- proper
mapping , then  fqa: *{y}) — {y}is anr- proper mapping , forally e Y .
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Proof : Since f : X — Y is an r- proper mapping , then f™({y}) is compact for
each 'y Y . Since {y} is a single point , then by Corollary (3.11) , fen: f
'{y}) — {y}isanr- proper mapping .

Proposition 3.13 : Let X and Y be spaces , such that X is a compact , T,- space
and f:X — Y be ahomeomorphism mapping , then f™:Y — X is an
r- proper mapping .

Proof : Since f is an open mapping , then f™ is continuous mapping . To prove
that £ is r- proper :

(i) Let F be a closed subset of Y, since f is continuous , then f™(F) is closed in
X, since X is compact , T,- space , then by Remark (2.16) , f*(F) is r- closed in
X . Hence f™ is an r- closed mapping .

(if) Let xe X, then {x} is compact set in . Since f is continuous , then f({x}) =
(FYM{XD) is compact set in Y , therefore by Theorem (3.10) , /™ is r- proper
mapping .

Proposition 3.14 : Let X and Y be spaces , and f : X — Y be a continuous ,
one to one, mapping , then the following statements are equivalent :

(1) f is r- proper mapping .

(i1) f is r- closed mapping .

(ii1) f is r- homeomorphism of X onto an r- closed subset of Y .

Proof :

(1 — ii). By Remark (3.5) .

(it — iii). Let f : X —Y be an r- closed mapping . Since X is a closed set in X,
then f(X) is an r- closed set in Y . Since f is continuous and one to one , then f
IS an r- homeomorphism of X onto r- closed subset f(X) of Y .

(iii — 1). Let f be an r- homeomorphism of X onto an r- closed subset U of Y .
Now , let Z be any space , and W be a basic open set in XxZ , then W =
W;xW, , where Wy is an open set in X and W, is an open set in Z . Since
(fxI2)(WixWy) = f(W1) xW; , and f : X — U is an r- homeomorphism , then
f : X — Us an r- open mapping and then f(W,) is an r- open set in U, thus
f(W1)xW, is r- open in UxZ , so fxl; is an r- open mapping . Since
fxlz : XxZ—-UXZ is bijective , then by Proposition (1.29) , the mapping fxIz
is r- closed . Now , let F be a closed subset of XxZ , then (fxIz)(F) is an r-
closed set in UxZ , since UxZ is an r- closed set in Y xZ , then by Proposition
(1.5), (fxIzx)(F) is r- closed in YxZ . Hence fxl; : XxZ—YxZ is an r- closed
mapping , thus f : XY is an r- proper mapping .
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Proposition 3.15: Let X, Y and Z be spaces . If f : X — Y isproperandg:Y
— Z is an r- proper mapping , then gof : X — Y is an r- proper mapping .
Proof : To prove that gof : X — Z is an r- proper mapping :

(1) Since f :X — Y is a proper mapping , then f is closed . Similarly , since g :
Y — Zis an r- proper mapping , then g is r- closed . Thus by Proposition (1.26)
,gof : X > Zisan r- closed mapping .

(ii) Let z € Z, then g™ ({z}) is a compact set in Y , and then f(g™({z}) = (g0f)
'({z}) is a compact set in X . Therefore by (i) , (ii) and since gof is continuous
then by using Theorem (3.10) , gof is an r- proper mapping .

Proposition 3.16 : Let X, Y and Z be spaces ,and f : X > Yandg:Y —» Z
are r- proper maps , then gof : X — Z is an r- proper mapping .

Proof : Since f and g are r- proper maps , then fxly and gxly are r- closed ,
for every space W , then by Corollary (1.27) , (gxlw)o(fxlw) is r- closed
mapping . But (gxlw)o(fxlw) = (gof)xlw , then (gof)xlyw is r- closed , and
since gof is continuous . Hence gof is an r- proper mapping .

Proposition 3.17 : Let X, Y and Zbe spaces,and f : X > Yandg:Y —» Z
be continuous maps , such that gof : X — Z is an r- proper mapping . If f is
onto , then g is an r- proper mapping .

Proof :

(i) Let F be a closed subset of Y, since f is continuous , then f™(F) is closed in
X . Since gof is an - proper mapping , then gof(f(F)) is r- closed in Z . But f
is onto, then gof(f*(F)) = g(F) . Hence g(F) is an r- closed set in Z
. Thus g is r- closed mapping .

(if) Letz (1 Z, since gof is ¥ proper mapping , then by Theorem (3.10) , the set
(20/)*({z}) = (g™ ({z})) is compact . Now , since f is continuous , then f(f°
Y(g™'({z}))) is compact set , but f is onto , then f(f (9"({z})) = g ({z}) is
compact for every z (1 Z . So by Theorem (3.10) , the mapping gof is r- proper

Proposition 3.18 : Let X, Y and Zbe spaces,and f : X - Y ,g:Y — Zbe
continuous maps , such that gof : X — Z is an r- proper mapping . If g is one to
one, r- irresolute mapping then f is an r- proper mapping .

Proof :

(i) Let F be a closed subset of X . Then (gof)(F) is an r- closed set in Z . Since g
Y — Z is one to one, r- irresolute , mapping , then g™*(g(f(F))) = f(F) is 1-
closed in Y . Hence the mapping f : X — Y is r- closed .

(i) Lety € Y, theng(y) [J Z.Now , since gof : X — Z is r- proper and g is
one to one , then the set (gof) (g({y}) = £ (97 (g({y}))) = /"({y}) is compact ,
for every y € Y . Therefore by Theorem (3.10) , the mapping f : X — Y isr-
proper .
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Proposition 3.19 : Let X, Y and Z be spaces , f : X — Y be a continuous
mapping and g:Y — Zbe an r-irresolute mapping , such that gof : X —
Y is an r- proper mapping . If Y isa T, - space , then f is r- proper .

Proof : Consider the commutative diagram :

1
X > XxY
(gof)xly
/
Y > 7ZxY
K

1 (x) = (%, f(x)) and K(y) = (g(y), y) . Since X is T, - space , then the graph of
[1is closed in XxY [1, Proposition .5.P.99] , and since [] is one to cne , then
by [1, Proposition .2.P.98] , [] is a proper mapping . We have (gof)xL is r-
proper , then by Proposition (3.15) , ((gof)xIz)oll is & proper . But
((gof)xIz)ol1 = Kof , so that Kof is # proper . Since g is an r- irresolute
mapping , then K is r- irresolute . Therefore by Proposition (3.18) , f is an r-
proper mapping .

Corollary 3.20 : Every continuous mapping of a compact space X into a T,-
space Y isr- proper .

Proof : Let f : X — Y be a continuous mapping .To prove that f is r- proper .
Letg:Y — P be amapping (where P is a singleton set) , since X is a compact
space , then gof : X — P is r- proper . Since Y is a T,- space , then by
Proposition (3.19), f is r- proper mapping

Proposition 3.21 : Let X ,Y and Z be spaces . If f : X — Y is an r- proper
mapping and h:Y — Zis homeomorphism mapping , then hof : X — Z is
an r- proper mapping .

Proof :

(1) Let F be a closed subset of X , then f(F) is an r- closed set in Y , since h is
homeomorphism , then hof(F) is an r- closed set in Z . Hence the mapping hof
: X — Zisr-closed .

(i) Let z € Z , then h™*({z}) is a compact set in Y (since every homeomorphism
mapping is proper) . So (f(h))({z}) = (hof)*({z}) is a compact set in X .
Therefore by Theorem (3.10), and since hof is continuous , the mapping hof :
X — Zisan r- proper .

Proposition 3.22 : Let f; : X;—>Y; and f, : X;—>Y, be maps . Then
fixf2: XixXs = Yix Y3 is an r- proper mapping if and only if f; and f, are r-
proper .

Proof : —) To prove that f,is an r- proper . Since f1x f, IS continuous , then
both f; and f, are continuous . To prove that f,x 1z : XoxZ — Y,xZ is r- closed
, for every space Z . Let F be a closed subset of X,«Z , since X, is a closed set
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in Xy, then X;xF is a closed set in X;xX,xZ . Since f1xf> IS r- proper , then
(f1xfaxIz)(X1xF) is an r- closed set in Y1xY,xZ . But (fixf2xlz)(X1xF) =
f1(X1) x (f2x1z)(F) , thus (f2x1z)(F) is an r- closed set in Y,xZ , then foxlz :
XoxZ — YoxZ is an r- closed mapping . Therefore f, : X, — Y, is an r- proper
mapping .

Similarly , we can prove that f1 : X; — Y isan r- proper mapping .
<) To prove that fixf> : XixX2 = Yix Y, is r- proper . Since f; and f, are
continuous , then f1x f, IS a continuous mapping . Let Z be any space . Notice
that :
fixfaxlz =(lyix fax12)o(fixIXax12) , since f1 and f,are r- proper maps , then
(ly1x f2xlz)
and (f1xIXx1lz) = f1XIX,xz are r- closed maps . Therefore by Corollary (1.27) ,
the mapping f1x f2xlz 1S an r- closed . Hence f1x f> IS an r- proper mapping .
Proposition 3.23 : Let f : X — Y be an r- proper mapping , then fx1z: XxZ —
Y «Z is an r- proper mapping , for every space Z .
Proof : Since f is r- proper , then f« Iy is an r- closed mapping , for every space
W . Notice that fxlzxlw = fxlzxw , but fxlz«w IS an r- closed mapping , then
fxlzxlwisr-closed , for every space W . Hence f«1zis r- proper .
Proposition 3.24 : Let X be a compact space and Y be any topological space ,
then the projection mapping Pr, : XxY — Y is r- proper .
Proof : Consider the commutative diagram :

fxly
XxY > {p}xY

Pr, h(=)

Where h: {p}«xY — Y is the homeomorphism of {p}«Y onto Y and Pr, : XxY
— Y is the projection of XY into Y . Since X is a compact space , then by
Corollary (3.11) , f:X > {p}isr-properandly:Y —» Yisa
proper mapping , then fxly is an r- proper mapping . Hence ho(f xly) is an r-
proper mapping , but Pr,=ho(fxly) , then Pr, is an r- proper mapping .
Proposition 3.25 : Let f; : X; — Yy and f> : X, — Y, be continuous maps ,
such that f;x f>is a compact mapping and f, (f1) IS r- closed mapping , then f,
(f1) 1s an r- proper .

Proof : Lety, []Y, . Take any compact set K in Y; . Then Kx{y,} is compact
in Y1xYz . So that (f1xf2) (Kx{y2}) is compact in X;xXp . But (fixf2)
H(Kx{y2}) = FHK) <21 ({y23) L then f17(K) and £, ({y2})
are compact in X; and X; respectively . Since f, is an r- closed mapping , then
by Theorem (3.10) , f» is an r- proper .
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Proposition 3.26 : Let X and Y be spaces , and f : X — Y be an r- proper
mapping . If F is a clopen subset of X , then the restriction map f g : F — Y is
an r- proper mapping .

Proof : To prove that f|pxlz : FxZ — YxZ is an r- closed mapping for every
space Z . Since F is a clopen subset of X , then F«Z is a clopen subset of X« Z .
Since fxlz is an r- closed mapping , then by Proposition (1.24) , (fx1z2)rxz 1S
an r- closed mapping . But f1exlz = (fx12)rxz , thus fpxlz isanr-
closed mapping . Hence f|r: F — Y is an r- proper .

Proposition 3.27 : Let X and Y be spaces . If f : X — Y is an r- proper
mapping , then f is an r- compact .

Proof : Let A be an r- compact subset of Y . To prove that f™(A) is a compact
setin X, let (3 )aep be anetin f7(A), then f(y ) isanetin A. Since Ais an

r- compact set in Y, then by Proposition (2.10) , there exists y €A , such that y
IS an r- cluster point of f(y,) - Since f is r- proper , then by Theorem (3.10) ,

there exists X € X, such that x is a cluster point of (Xd) , such that f(x) =y .

Then x e f'(A) . Thus every net in f*(A) has cluster point in itself , then by
Proposition (2.4) , f'(A) is a compact set in X . Therefore f : X — Y is an I-
compact mapping .

The converse of Proposition (3.27), is not true in general as the following
example shows :
Example 3.28 : Let X ={a, b, c,d},Y ={X,y, z} besetsand T = {0, X, {a, b},
{d}, {a, b, d}},t = {0, Y, {z}} be topologies on X and Y respectively .
Let f : X — Y be a mapping which is defined by : f(a) = f(b) = f(c) =y, f(d)
=z.

Notice that f is an r- compact mapping , but f is not r- proper mapping .

Since {c, d} is a closed set in X , and f({c, d}) = {y, z} isnot r- closed setin Y,
then f is not r- closed mapping . Hence f is not r- proper mapping .

Theorem 3.29 : Let X and Y be spaces , such that Y isa T,- space . If f: X —
Y is a continuous mapping , then f is an r- proper mapping if and only if f is an
r- compact mapping .

Proof : —) By Proposition (3.27) .

<) To prove that f is an r- proper mapping :

(1) Let F be a closed subset of X . To prove that f(F) is an r- closed set in Y, let
K be an r- compact set in Y , then f*(K) is a compact set in X , then by
Theorem (2.5) , FN £ %(K) is compact in X . Since f is continuous , then f(FN f
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'(K)) is compact set in Y , and then its r- compact . But f(FN f(K)) = f(F)NK
, then f(F)N K is r- compact , thus f(F) is compactly r- closed set in Y . Since Y
is a T,-space , then by Theorem (2.15) , f(F) is an r- closed set in Y. Hence f is
an r- closed mapping .

(i) Lety € Y, then {y} is r- compact in Y . Since f is an r- compact mapping ,
then f*({y}) is compact in X , therefore by Theorem (3.10) , f is an - proper
mapping .

Theorem 3.30 : Let f : X — P = {w} be a mapping on a space X , where w is
any point which does not belong to X , then the following statements are
equivalent :

(1) f is an r- compact mapping .

(i) f is an r- proper mapping .

(ii1) f is a proper mapping .

(iv) X is a compact space .

Proof :

(i1 — ii). By Theorem (3.29) .

(i1 — iii). By Remark (3.5) .

(iii — iv). See [1] .

(iv — 1). Since f*(P) = X and X is a compact space , then f is an r- compact
mapping .

Theorem 3.31 : Let X and Y be spaces , such that Y is a compact , T,- space
and f : X — Y be a continuous mapping , then the following statements are
equivalent :

(1) f 1s a proper mapping .

(1) f 1s a compact mapping .

(iii) f is an r- compact mapping .

(iv) f is an r- proper mapping .

Proof :

(1—1ii). See [1] .

(ii — iii). Let H be an r- compact set in Y . To prove that f™(H) is compact in X
. Since Y is a compact , T,- space , then by Proposition (2.15) , H is a compact
set in Y , then by (ii) , fY(H) is a compact set in X . Hence f is an r-
compact mapping .

(iii — iv). Theorem (3.29) .
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(iv — 1). By Remark (3.5) .

Proposition 3.32 : Let X and Y be spaces, such that Y is a T,- space and f : X
— Y be a continuous mapping . Then the following statements are equivalent :
(1) f is an r- coercive mapping .

(i) f is an r- compact mapping .

(iii) f is an r- proper mapping .

Proof :

(1 — ii). By Proposition (2.33) .

(i1 — iii). By Proposition (3.29) .

(iii — 1). Let J be an r- compact set in Y . Since f is r- proper , then by
Proposition (3.29) , f is an r- compact mapping , then f(J) is a compact set in
X . Since f(X\ f'(J)) < Y\J.Hence f : X — Y is an r- coercive mapping .
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