Evaluation the Energy of the $(1s^2 ns)$ state of the Li atom

and Li-like ions

Mayada J.AL-Sharaa* Khalil H. AL-Bayati** Chemistrydepartmentmisan University – * College of Science *Physics department Baghdad University – * College of Science for Women

Abstract:

The aim of this work is the evaluation of the energy, repulsion energy $\langle v_{ee} \rangle$, attraction energy $\langle v_{en} \rangle$, the potential energy $\langle V \rangle$, total energy $\langle E \rangle$, one-electron expectation value $\langle r_1^k \rangle$ and inter –*electron expectation value* $\langle r_{12}^k \rangle$ (where k is an integer takes the value -2, -1, 1, 2) for the ground state and for the different excited states ($1s^2 ns$) and (n=3,4,5) of Li atom and Li–like ions such as Be^{+1}, B^{+2} and $C^{+3}by$ using Hartree –Fock approximation in position space. A systematic study of the differences Finally all the . in electronic distributions between the singlet and triplet states are carried out studied properties are calculated using atomic units and using software MATHCAD 2001i.

Keywords : Hartree- FockEnergy, position space .Li atom

1- Introduction:

The Hartree –Fock (HF) approximation were first proposed by Fock in 1930 .Since then ,the HF method has taken a central role in studying the atomic and molecular electronic properties[1].theHartree –Fock(HF) method enables calculation not only of the ground state but also excited states of atoms and ions. Thus, it can be studied and examinedmany configurations for different excited states for any system[2].The Hartree–Fock atomic wave function are independent–particle–model approximations to the nonrelativistic Schrodinger's equation for stationarystates . the use of Slater determinants ccountsfor the Pauli principle ,and for an N-electron system the HF equations yield NHartree –Fock spin orbitals. In conventional Hartree–Fock calculation, the spin orbitals are expressed as products of a radial function times spherical harmonic times a spin function, the radial functions are taken to depend only on the quantum numbers **n** and ℓ , and the total wave function is required to be an Eigen function of the total orbital and spin angular momentum ; the form of the spin orbitals guarantees that **Lz**, **Sz**, and parity are good quantum numbers.[3,4]

2-Theory

For any N-electron system, the two-particle density $\Gamma(\chi_m, \chi_n)$ can be written as [5-7]

 $\Gamma(\chi_m,\chi_n) = \binom{N}{2} \int \psi(\chi_m,\chi_n,\dots,\chi_N) \psi(\chi_m,\chi_n,\dots,\chi_N) d\chi_m \dots d\chi_N \dots (1)$ Where χ_m stands for the spin and space coordinate of electrons and $d\chi_m$ indicates that the integration performed for all electrons within system except m and n, while the binomial factor $\binom{N}{2}$ is introduced to ensure that the second order density matrix $\Gamma(\chi_m,\chi_n)$ is normalized to the number of electron pairs in the system mathematically it is equal to

> $(2) \int \Gamma(\chi_m, \chi_n) d\chi_m \dots d\chi_n = \binom{N}{2}$ The binomial factor $\binom{N}{2}$ can be written as [8,9] $\binom{N}{2} = \left[\frac{N!}{2!(N-2)!}\right]$

(2-1): Two-particle radial distribution function $D(r_1, r_2)$:

Two-particle density distribution function $D(r_1, r_2)$ is defined as [10,11]

Where $d\Omega_i$ denotes that the integration is over all angular coordinates of the position vector and it is simply defined as:

Where i=1 or 2 and $d\sigma$ denotes spin-part (α spin up, β spin down). the normalization condition for two-particle radial density distribution function $D(r_1, r_2)$ can be define as

 $\iint D(r_1, r_2) \, d \, r_1 dr_2 = 1 \tag{5}$

This means the two-particle density distribution $D(r_1, r_2)dr_1dr_2$ is a measure of probability of finding the two-electron simultaneously and their radial coordinates are in the range r_1 and $r_1 + dr_1$, and r_2 to $r_2 + dr_2[11, 12]$

(2-2):One-particleRadial distribution function $D(r_1)$:

Dŗ

The radial density distribution functionis of extreme importance in thestudying atom and ions because it measure the probability of finding an electron ineach shell, and it is defined as [13–15]

.....(6)
$$D(r_1) = \int_{0}^{\infty} D(r_1, r_2) dr_2$$

The one particle expectation value can be calculated from [16].

(2-4):Inter - particle expectation value :

Inter particle expectation value (r_{12}^k) is given by the relation [17].

$$\langle r_{12}^k \rangle = \int_0^\infty f(r_{12}) r_{12}^k dr_{12} \dots$$
(7)

Where(r_{12}) represents the distance between two-electrons . $f(r_{12})$ is inter electron-electron distribution function ,which describes the probability of locating two electrons separated by distance (r_{12}) from each other, was first introduced by Coulson and Neilson in their study of electron correlation for

He(1S) in the ground state. The electron–electron distribution function $f(r_{12})$ plays a central role in the discussion of correlation holes in many electron systems [18,19]. Pair distribution function can be written as [18].

$$f(r_{12}) = 8\pi^2 r_{12} \begin{bmatrix} \int_{0}^{r_{12}} r_1 dr_1 \int_{r_1 - r_{12}}^{r_1 + r_{12}} \Gamma(r_1, r_2) r_2 dr_2 + \\ \int_{0}^{\infty} r_1 dr_1 \int_{r_{12} - r_{11}}^{r_{12} + r_{12}} \Gamma(r_1, r_2) r_2 dr_2 \end{bmatrix} \dots \dots (9)$$

(2-5): The expectation value of energy :

The potential energy is simply the sum of the attraction energy and the repulsion energy, which is proportional to the expectation values (r_i^{-1}) and (r_{ij}^{-1}) respectively. Therefore can be written inatomic units (a.u.).[19,20]:

$$....(10) (V) = -Z \sum_{i}^{N} (r_{i}^{-1}) + \sum_{i < j}^{N} (r_{ij}^{-1})$$

where Z is the atomic number .

Results and discussions

The results obtained in the one-particle expectation values for different powers (n=-2 to 2) for the total ground state and different excited states of Li– like ions up to Z=5 are listed in tables (1,2,3,4). From this tables, we noted the effect of the increaseing in atomic number with fixed the number of electrons. It is observed when (k) takes negative values the expectation values of (r_1^k) increase with icreasing in the atomic number, the values of (\mathcal{T}_1^{-1}) refer to attractive .energy between the nucleus and the electron, while when(k) takes positive values the expectation values of (r_1^k) are decreases because the distance between the electron and the nucleus become smallest as nuclear charge increases.normalization condition has been applied for all wavefunctions.

Tables: (5,6,7,8) contain the results of inter-particle expectationvalue(r_{12}^k), we noted when(k) takes negative values the expectation values(r_{12}^n) increase as atomic number increasesforall different configurationsstateswhere(r_{12}^{-1}) value represents the repulsion energy between pair of electrons, while(r_{12}^k) decreases when(k) takes positive values.

Tables :(8,9,10,11) represent the expectation values of all energies, attraction and , repulsion, The potential energy and total energy of studied system from these results we observed all energies increase as atomic number increase, because increasing (Z) lead to decreasing in the distance between electrons and nucleus and the distance between two electrons, this lead to increasing in attraction energy

۲۱۳

and repulsion energy according to coulomb law .the attraction energy increases with atomic number for each of the studied systems, Also we noted that the lower value of the energy in the lithium atom attraction as that any electrically neutral atomic number equal to the number of electrons.this behavior can be understood from the fact that each shell contract toward nucleus as result of increasing the nuclear charges influence on the orbital electrons hence the separation distances are reduced thus reduction of attraction and repulsion forces according to Coulomb law.but the ions (Be^{+1} , B^{+2} , C^{+3}) have atomic number greater than the number of electrons because of the loss of electrons corn from the last shell resulting in increased energy attract electrons to nucleus.Also for all ions the expectation values of repulsion energy are increased as (Z) increases due to that the coulomb interaction became stronger as (Z)increased.

Table(1): one particle expectation value (r_1^k) of $(1s^22s^1)$ configurations of Li atomand Li– like ions.

Atom or lon	Ζ	$\langle \mathcal{T}_1^{-2} \rangle$	$\langle \mathcal{T}_{1}^{-1} \rangle$	$\langle \mathcal{T}_1^1 \rangle$	$\langle \mathcal{T}_1^2 \rangle$	$Z(\mathcal{T}_1^{-1})$
Li	3	10.07064	1.90515	1.6733	6.21071	5.71545
Be^{+1}	4	18.99183	2.65745	1.03666	2.18472	10.6298
B^{+2}	5	30.74896	3.40817	0.76217	1.13746	17.0409
C ⁺³	6	45.34043	4.1585	0.60489	0.70152	24.951

Table(2): one particle expectation value (r_1^k) of $(1s^23s^1)$ configurations of Li atomand Li– like ions.

Atom or lon	Ζ	$\langle T_1^{-2} \rangle$	$\langle \mathcal{T}_1^{-1} \rangle$	$\langle T_1^1 \rangle$	$\langle T_1^2 \rangle$	$Z(\mathcal{T}_1^{-1})$
Li	3	9.970842	1.83679	3.780184	39.80704	5.51037

مجلة أبحاث ميسان ، المجلد الثالث عشر ، العدد الخامس والعشرون ، السنة ٢٠١٧

Be⁺¹	4	18.66368	2.541396	2.158276	12.23963	10.16558
B^{+2}	5	30.07328	3.2454	1.531611	5.99125	16.227
C^{*3}	б	44.19918	3.94924	1.19161	3.56567	23.6954

Table(3): one particle expectation value (r_1^k) of $(1s^24s^1)$ configurations of Li atomand Li– like ions.

Atom or Ion	Z	$\langle T_1^{-2} \rangle$	$\langle T_1^{-1} \rangle$	$\langle T_1^1 \rangle$	$\langle T_1^2 \rangle$	$Z(T_1^{-1})$
Li	3	9.9515861	1.8157505	6.8861192	143.29597	5.447252
Be^{+1}	4	18.59477	2.50368	3.7802	41.61813	10.01472
B^{+2}	5	29.925559	3.191328	2.6346359	19.836496	15.95664
$\mathcal{C}^{\star 3}$	6	43.943936	3.878897	2.0285251	11.624108	23.27338

Table(4): one particle expectation value (r_1^k) of $(1s^25s^1)$ configurations of Li atomand Li– like ions.

Atom or lon	Ζ	$\langle T_1^{-2} \rangle$	$\langle \mathcal{T}_1^{-1} \rangle$	$\langle T_1^1 \rangle$	$\langle T_1^2 \rangle$	$Z(r_{1}^{-1})$
Li	3	9.945689	1.806599	10.996437	379.30763	5.419797
Be ⁺¹	4	18.57195	2.486845	5.902015	106.53485	9.94738
B^{+2}	5	29.87541	3.16693	4.070998	50.025002	15.83465
$\mathcal{C}^{\star 3}$	6	43,854484	3.846972	3.115456	29.059875	23.08183

Table(5):inter –particles expectation values r_{12}^k of ($1s^22s^1$) configurations of Li atomand Li– like ions.

Atom or lon	Ζ	$\langle \mathcal{T}_{12}^{-2}\rangle$	$\langle \mathcal{T}_{12}^{-1}\rangle$	$\langle \mathcal{T}^{1}_{12}\rangle$	$\langle r_{12}^2 \rangle$	$Z(r_1^{-1})$
Li	3	1.67743	0.76031	2.89636	12.4214	
					2	2.28093

مجلة أبحاث ميسان ، المجلد الثالث عشر ، العدد الخامس والعشرون ، السنة ٢٠١٧

Be^{+1}	4	3.27827	1.11152	1.75336	4.36945	4.44608
B^{+2}	5	5.4127	1.45688	1.2760	2.27492	7.2844
$\mathcal{C}^{\star 3}$	6	8.08053	1.8003	1.00683	1.40304	10.8018

Table(6):inter –particles expectation values (r_{12}^k) of $(1s^23s^1)$ configurations of Li

atomand Li- like ions.

Atom or lon	Ζ	$\langle \mathcal{T}_{12}^{-2}\rangle$	$\langle T_{12}^{-1} \rangle$	$\langle r_{1_2}^1 \rangle$	$\langle r_{1_2}^2 \rangle$	$Z(\mathcal{T}_1^{-1})$
Li	3	1.59985	0.63692	7.08986	79.6121	1.91076
Be^{+l}	4	3.05949	0.913724	3.978937	24.47918	3.654896
B^{+2}	5	4.99119	1.1883	2.79984	11.9825	5.9415
$\mathcal{C}^{\star 3}$	б	7.39475	1.46209	2.16727	7.13133	8.77254

Table(7):inter –particles expectation values (r_{12}^k) of $(1s^24s^l)$ configurations of Li atomand Li– like ions.

Atom or lon	Ζ	(r_{12}^{-2})	(r_{12}^{-1})	$\langle r_{12}^1 \rangle$	$\langle r_{12}^2 \rangle$	$Z(r_1^{-1})$
Li	3	1.5847472	0.5973182	13.29147	86.4835923	1.791955
Be⁺¹	4	3.01239	0.845274	7.216664	82.229323	3.381096
B^{+2}	5	4.8962716	1.0921674	5.000855	39.672373	5.460837
C^{+3}	6	7.2363039	1.3386773	3.8367027	23.248074	8.032064

Table(8):inter –particles expectation values (r_{12}^k) of $(1s^25s^1)$ configurations of Li atomand Li– like ions.

Atom or lon	Ζ	$\langle \mathcal{T}_{12}^{-2}\rangle$	(r_{12}^{-1})	$\langle r_{12}^1 \rangle$	$\langle r_{12}^2 \rangle$	$Z(r_{1}^{-1})$
Li	3	1.579936	0.57979	21.490015	757.708039	1.73937

									_
Atom or lon	Ζ	- (Ven)	(I	ee)		- (V)	- (E _{HF})	
Li	3	17.1463757	7 2.280921	266	14.865	5454526	7.43	3272726	
		9	0						
Be+1	4	31.8893585	5 3.334565	995	28.554	4792538	14.2	2773963	
		Ĵ	3						
B +2	5	51.1226231	4.370641	359	46.751	981762	23.3	3759909	
		2	?						
C+3	6	74.8529969	5.400899	534	69.452	2097456	34.7	7260487	
		9)						
Be^{+1}	4	2.996665	0.8138834	11.	452276	212.93	6333	3.2555.	34
B ⁺²	3	5 4.86391	1.047382	7.	870087	100.02	2763	5.236	91
$C^{\star 3}$	Ć	5 7.181603	1.280649	6.	008245	58.114	4102	7.6838	94

Table(9) : The expectation values for all attraction , repulsion, The potential energy and total energy of ($1s^2 2s^1$) configurations of Li atomand Li–like ions.

Table(10) : The expectation values for all attraction , repulsion, The potential energy and total energy of ($1s^23s^1$) configurations of Li –atom and like ions.

Atom o	r Z	- (V _{en})	(Vee)	- (V)	– (E _{HF})
Ιοι	7				
L	i 3	16.5311285	1.910767212	14.620425642	7.31021282
Be⁺	4	30.49675412	2.741172502	27.755581619	13.8777908
B^{\star}	² 5	48.68098557	3.56488646	45.116099105	22.5580496
\mathcal{C}^{\star}	3 6	71.08631619	4.386259731	66.700056462	33.3500282

Table(11) : The expectation values for all attraction , repulsion, The potential energy and total energy of ($1s^24s^1$) configurations of Li –atom and like ions

Atom or lon	Ζ	- (Ven)	(Vee)	- (V)	- (<i>E</i> _{<i>HF</i>})
Li	3	16.341754	1.79195471	14.54979988	7.27489994
		6	8	7	
Be^{+l}	4	30.044160	2.53582307	27.50833768	13.7541688
		8		6	
B^{+2}	5	47.869923	3.27650229	44.59342125	22.2967106
		6	4	5	
C+3	6	69.820155	4.01603193	65.80412385	32.9020619
		8	8		

Table(12) : The expectation values for all attraction , repulsion, The potential energy . and total energy of ($1s^2 5s^1$) configurations of Li –atom and like ions

Atom or lon	Ζ	- (V _{en})	(Vee)	- (V)	- (<i>E</i> _{<i>HF</i>})
Li	3	16.2593919	1.73936895	14.52992303	7.26001152
			4	2	
Be⁺¹	4	29.8421474	2.44165031	27.40049711	13.7002486
			3	8	
B^{+2}	5	47.5039769	3.14213989	44.36183700	22.1809185
			6	9	
C*3	6	69.2454964	3.84194797	65.40354838	32.7017742
			2	6	

Figure (1) shows the relation between (V_{ee}) versus z of ($1s^2 2s^1$),($1s^2 3s^1$),($1s^2 .4s^1$) and ($1s^2 5s^1$) configurations

Figure (2) shows the relation between (V_{en}) versus z of ($1s^22s^1$),($1s^2 3s^1$),($1s^2 .4s^1$) and ($1s^2 .5s^1$) configurations

Conclusions

From the results shown in tables (1-12) and Figures (1-2) the followingscan be concluded:

1. expectation values of (r_1^k) and $(r_{1_2}^k)$ inrease when (n)takes negative values and the

مجلة أبحاث ميسان ، المجلد الثالث عشر ، العدد الخامس والعشرون ، السنة ٢٠١٧

invers for positive values as atomic number increase while the expectation values of all energies increase as nuclear charge increase. 2. As Z increases the (V_{en}) and (V_{ee}) increases

References:

[1]. Shiro L.Saito,2009 .Hartree–Fock–Roothaan energies and expectation values for the neutral atoms He to Uuo: The B–spline expansion method.J.Atomic Data and Nuclear Data Tables, V. 95.No.6.p.836–870.

[2]. Dosh, R.J,2014. Radial atomic properties of excited states for Li–atom using Hartree – Fock approximation.J. Of Kufa – Physics.V.6.No.1.P.107–111.

[3]. Bunge, C.F,Barrientos, J.A and Bunge, A.V, 1993.<u>Roothaan-Hartree-Fock Ground-State</u>
<u>Atomic Wave Functions: Slater-Type Orbital Expansions and Expectation Values for Z = 2-54</u>. J.
Atomic Data and Nuclear Data Tables, V.53,No.1.P.113-162.
[4].AL-Khafaji,Q.SH.2015,Computation The Hartree-Fock Energy Of Ground State For Boron

Atom And Iso Electronic Series. Inter. Sci. J. Theoretical & Applied Science, V.23. No.3 P. 18-

24

 [5]. Koga,T. and Kawata ,Y.2002,Statistical angular correlation coefficients of atomic Hartree–Fock orbitalsJ. Chemical Physics,V. 117, No. 20 , P.9133–9137.
[6].King, F.W.1997.Progress on high precision calculations for the ground state of atomic lithium,J. of Molecular Structure–Thec ,V.400,No.2, P.7–56

[7]. Yasuda, K. 1999. Direct determination of the quantum-mechanical

مجلة أبحاث ميسان ، المجلد الثالث عشر ، العدد الخامس والعشرون ، السنة ٢٠١٧

<u>density matrix: Parquet theory</u>, J. Physical Review A , V. 59, No. 6, P. 4133–4149 . [8].Greenman,L. and Mazziotti,D.A.2008,Electronic excited-state energies from a linear response theory based on the ground-state two-electron reduced density matrix.J. Chem. Phys.,V.128, No.11,P. 114109 .

[9].Fukuda, M.; and Fujisawa, K.2011.Variational approach for the electronic structure calculation on the second- order reduced density matrices and the N-represent ability problem, arXiv:V.2.P.1010.4095.

[10].Banyard,K. E.; and Baker,C. C. 1969.Analysis of Electron Correlation in Two-Electron Systems. I. H⁻, He, and Li^t, J. Chem. Phys.V. 51.No. 6.P. 2680 –2689.

[11].Koga,T.; and Matsuyama,H. 2007.Direct and exchange contributions to inner and outer radii in many-electron atoms, J. Theor. Chem.Acc ,V.118 No.5. P.931–935

[12].Al-Hayani,A.H. 2006.<u>Study of the Properties for Boron Positive Ion in Position Space</u>, Tikrit journal of pure science, V.11,No.1. P.89–92

[13].Koga,T.;andMatsuyama,H.2006.Inner and outer radial density functions in many-electron atoms. J. Theor. Chem.Acc ,V.115.No.1. P.59–64

[14].Matsuyama, H.; and Koga,T.2010.Inner and outer radial density functions in singly– excited 1snl states of the He atom. ,J.Comp. And App. Math,.V.233.No.6. P. 1584–1589.

[15].Fischer,C.F. and Saxena,K.M.S.1975 Correlation study of Be 1s²2s2p

¹P by a separated-pair numerical multi configuration Hartree-Fock

procedure.j.Physical Review A, V.12, No.6 P.2281.

[16].Chen,C.2010.Studies of the electron density at the nucleus and radial expectation values of the ground state for lithium-like systems from Z=11 to 18 J. The European Physical D,V.56 .No.3.P. 303-309.

[17].Gupta, A, and Russell, J.B. 1978.Density difference representation of electron correlationJ. Chem.Phys,V.68. No.4. P.1951

[18].Al-Robayi,E.M.2006.Ph.D. Thesis "A study of coulomb hole in momentum space for closed and open shells" College of Education (Ibn Al-Haithem), Baghdad University.

[19].Giorgi, P. G ,andSavin, A.2005. Simple model for the spherically and

<u>system-averaged pair density: Results for two-electron atoms</u>. J. Physical ReviewA, V. 71. No. 3, P. 032513, 1-9.

[20].Riveros AF, Contreras,A.2008.<u>Compression effects in helium–like</u> atoms (z=1,....,5) constrained by hard spherical walls. PhysicsLetters A,V.372.No.40,P. 6175–6182. [21].Krebs,S.1999.A review on the derivation of the spin-Restricted Hartree—Fock (RHF) Self-Consistent Field (SCF) equations for open-shell systems. Description of different methods to handle the off-diagonal Lagrangian multipliers coupling closed and open shells J. Computer physics Communications, V.116, No.2 P. 137-277

[22].Al–Robayi,E.M.2002.M.Sc.Thesis "Study of electronic density distributions function of the electronic shells for the positive boron ion $(1s^22s^2)$ using Hartree–Fock approximation "

College of Education (Ibn Al-Haithem), Baghdad University .

The data are taken from the website http://cdfe.sinp.msu.ru/services/wftables/FirstPage_eng.htm