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Table (4): Describes the values of the constant a for the SLRM’s
parameters by SH method

Missing 10% 20% 30% 40%

data o Jii o4 p x Ji o Jii

percentage

n=10 i 0.1074 ;1 0.1243 | 0.0008 | 0.0010 | 0.0823 | 0.1092 | 0.0013 | 0.0017

n =30 0.0141 ) 0.0189 | 0.0221 ; 0.0297 | 0.0084 | 0.0139 | 0.0252 | 0.0394

n =350 0.2835 | 0.3494 | 0.1721 | 0.2334 | 0.1037 | 0.1664 | 0.0411 | 0.0730
=100  0.3075 | 0.4058 | 0.2365 | 0.3246 | 0.2316 | 0.3488 | 0.2555 | 0.3820

6. CONCLUSIONS

1. It is found that the OLS estimator and the CC estimator and the AC
estimator, are all unbiased, whereas the shrinkage estimator is biased for
all sample sizes and for all missing data percentages considered.

2. The proposed shrinkage estimator for estimating the SLRM’s
parameters was the best and better than the estimators of the OLS and
CC and AC methods, because it has less MSE compared with the other
mentioned methods,

3. The R.E for the proposed shrinkage estimator was very large for all
sample sizes and for all missing percentages considered for all methods.

4. The values of a was between 0 and 1 for all missing percentages which
coincide with the condition which was put on the proposed estimator in
the theoretical side.
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4- The R.E. for the parameter S by the CC method has the same

properties as for the parameter « by the same method.

3- The R.E for the parameters ¢ and S by the AC method increase

when the sample size increase.

6- Atsample sizen =10, we note that the R.E for the parameter « by the
SH method directly propertional with the missing data percentages
(10%, 20%, 40%). Whereas for the missing data percentage 30%, we

note decreases in R.E for the parameter « .

7- At n =30, we note fluctuations in R.E for the parameter « by SM

method for all missing data percentage.

8- At #=30100, we note that the R.E for the parameter « by SH

method directly proportional with all missing data percentage.

9- The R.E for the parameter S has the same properties as for the R.E.

of the parameter « .

10- At all sample sizes, we note that the R.E by the SH method is the
largest followed by the CC method then the AC method for all missing

data percentage,

Table (3): Describes the R.E for the SLRM’s parameters

10% 1 20% 30% 40%
Aissing data o | Jij (44 [ Jii 74 yij o Y |
ercentage | ‘ .
CCC 122372 | 14240 [ 3.3631 | 2.7958 | 13.0307 | 7.2472 | 3.4938 2.6205
1=10 " AC' 11086 | 0.6447 | 0.9924 | 0.6390 2.1968 | 1.0099 | 0.8774 0.5247 |
SH | 11.9290 | 6.0038 | 1428.5 | 771.375 | 30.7204 | 10.6857 | 761.8666 | 346.0373
l CC| 12005 | 1.1557 | 1.3156 | 1.1358 | 4.9665 | 2.8092 | 1.7475 1.3959 |
1=30 [ AC;0.6499 1 0.5933 | 0.6345 | 04875 | 1.3437 | 0.6037 | 0.6591 1.3959
o _SH | 52.7096 ; 35.9062 | 41.8974 | 18.7745 | 204.25 | 49.1025 | 30.2592 | 11.9687
| CC | L0281 | 0.9727 | 13599 | 1.0774 | 2.2558 | 1.2240 | 2.5147 1.6051 |
1=50 | AC | 0.6489 |0.5659 | 0.6434 | 1.0161 | 1.0593 | 0.4782 | 0.8265 0.4346 ‘
»SH | 2.7102 | 1.9258 | 4.7345 | 2.4716 | 11.8 3.3459 | 23.2424 | 6.7356
CCC 1 0.6360 | 1.1504 | 1.3524 | 1.0284 | 1.7389 | 1.0710 | 1.8677 1.1036 |
1=100 " AC ' 0.6303 | 0.5934 ’ 0.6524 | 0.4338 | 0.8114 | 0.4189 | 0.7233 0.5568 |
SH - 2.9663 | 1.5830 \ 3.2385 | 1.7431 | 6.2841 1.6323 | 3.3619 1.0412

From table (4), we note that all values of a by SH method is between
zero and one.

(22)
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(11) It is noticed that the MSE of the parameter /4 by the SH method has

the same properties as the parameter & has.
(12) For all sample sizes » =10.30.50.100, we notice that the MSE for the

parameters & and 3 by the SH method is the least followed by the CC
method and then the AC method for all missing data percentage.

Table(2): Describes the MSE for the SLRM’s parameters
Missing data 10% 20% 30% 40%
percentage o yii o b o Ji o 5 |
| OLS | 1.1428 | 3.7026 ,
n=10 | CC |0.5108|2.6001 ;| 0.3398 | 1.3243 | 0.0877 | 0.5109 | 0.3260 | 1.4129
| AC | 1.0308 | 5.7428 | 1.1515 | 5.7943 | 0.5202 | 3.6662 | 1.3024 | 7.0561
! 'SH | 0.0958 , 0.6167 | 0.0008 | 0.0048 | 0.0372 : 0.3465 | 0.0015 | 0.0107
I | OLS | 0.1634 | 0.5745
L =30 1 CC | 0.1361 | 0.4971 | 0.1242 | 0.5058 | 0.0329 | 0.2045 | 0.0935 | 0.4109
’ AC | 0.2514 | 0.9683 | 0.2575 | 1.1784 | 0.1216 | 0.9516 | 0.2479 | 103959
; SH | 0.0031  0.0160 | 0.0039 | 0.0306 | 0.0008 | 0.0117 | 0.0054 | 0.0480 |
f "OLS | 0.0767 | 0.2573 i
=50 ! CC 10.0746 | 0.2645 | 0.0564 | 0.2388 | 0.0340 | 0.2102 | 0.0305 | 0.1603
‘:x(: 0.1182 | 0.4546 | 0.1192 | 0.5232 1 0.0724 | 0.5180 | 0.0928 | 0.5920
SH 10.0283 | 0.1336 | 0.0162 | 0.1041 | 0.0065 | 0.0769 | 0.0033 | 0.0382
L OLS 1 0.0353 | 0.1086 g |
p=100 1 CC 10.0555 | 0.0944 | 0.0261 | 0.1056 | 0.0203 | 0.1014 | 0.0189  0.0984
AC | 0.0560 | 0.1830 | 0.0541 | 0.2303 | 0.0435 | 0.2392 | 0.0488 , 0.3242
SH | 0.0119 | 0.0686 | 0.0109 | 0.0623 | 0.0085 | 0.0362 | 0.0105 | 0.1043

From the results that appear in table (3) which represent the R.E for
the estimated SLRM’s parameters, we deduce the following:
1- For the samples of size »=10,30, we notice that the R.E for the

parameter o by the CC method directly proportional with the missing

data percentage (10%, 20%,

30%).

Whereas

for

the missing

percentage 40%, we notice decreasing in R.E. for the parameter« .

For the samples of size »=50.100, we notice that the R.E for the
parameter « by the CC method directly proportional with the all
missing data percentages.

The R.E for the parameter « increases when the sample size increase
for all missing percentage chosen.

(21)
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Table (1): Describes the absolute value for the bias of the SEMR’s
parameters

Missing 10% 20% 30% 40%

data o B o B o b o B
percentage

n=10 0.2949 | 0.7422 | 0.0290 | 0.0700 | 0.1859 | 0.1859 | 0.0386 | 0.1034
n=30 0.0554 | 0.1256 | 0.0699 | 0.1728 | 0.0298 | 0.1071 | 0.0731 | 0.2155
n=50 0.1469 | 0.3071 | 0.1178 | 0.2887 | 0.0770 | 0.2568 | 0.0566 | 0.1910
n=100 0.0830 | 0.2027 | 0.0933 | 0.2231 | 0.0911 | 0.2318 | 0.0940 | 0.2658

From the results that appear in table (2) below which represent the MSEs

for the estimated SLRM's parameters, we deduce that

(1) For the samples of size #»=10.30, we note that the MSE for the
parameter ¢ by CC method is inversely proportional with the missing
data percentage.

(2) 1t has been noted that the CC method had responded to the sample size
where the MSE for the parameter « decrease when the sample size
increase for all missing data percentage except for the sample of size
n =50 and for missing percentage 30%.

(3) The MSE for the parameter S by CC method has the same properties
of the MSE of the parametere« .

(4) For all sample sizes, it is noted that the MSE criterion for the
parameter « by the AC method fluctuate for all missing data
percentage,

(3) It has been noted that the AC method responded for the sample size
where the MSE for the parameter « decrease when the sample size
increase.

(6) The MSE for the parameter £ by the AC method has the same
properties of the MSE of the parameter « by the same method.

(7)  For the sample of sizen =10, we noticed that the MSE for the
parameter « by SH method is inversely proportional with all missing
data percentage.

(8) At sample sizen =30, it is noticed that the MSE for the parameter «
by the SH method fluctuates for all missing percentages.

(9) At sample sizesn = 50.100, the MSE for the parameter « by the SH
method is inversely proportional with the missing percentages.

(10} For all sample sizes, we notice that the MSE criterion by the SH
method for the parameter « fluctuates.

(20)
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cach of the sample size and of the missing observations percentage have
been studied. The samples of size (n = 10, 30, 50, 100) have been
generated, for all sample sizes used in this work. The observations have
heen chosen completely at random and the suggested percentage of the
missing observations of the study where (10%, 20%, 30%, 40%). Then,
the bias, MSE for the estimated parameters have been computed using
the following methods:

1. Analysis of complete observations (CC) method

2. Analysis of available observations (AC) method

3. Shrinkage estimators (SH) method

Then a comparison between the estimators of these methods with the
estimators of the OLS method using the RE have been made.

5. SIMULATION RESULTS

A SERM will be used with @ =1, £ =2 and the value of the constant in
the weight function is b = 0.5. Then the SLRM will be

y,o=1+2x + ¢,
From the results that appear in table (1) below which represent the
absolute value for the bias of the estimators of model’s paramecters, we
deduce the following:

(1) For the sample of size » =10, it is ohserved that the bias for «
inversely proportional with the missing data percentage.

(2) For samples of sizen=30,50, it is observed that the bias for the
parameter « fluctuate (unstable) for all missing data percentages.

(3) For samplie of size » =100, the bias for & directly proportional with
the missing data percentage.

(4) For all sample sizes chosen, we note that the bias for the parameter
« fluctuate.

(5) The hias for the parameter f has the same properties of the bias of

the parameterc .

(19)
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¢ s \ -1
: 20 ;2 S
Rl RS ] PR (28)
B b+ (b+1)

In a similar way, the RE (E) using (27) is

1 N kl
- 2 =-2h4" 2 , ,)‘ —-hi”
RE(S) = LA T {1+ A j]+£—1:1-%_( < eZhH} (29)

(dh+ 1) 4b +1 db+1)

The value of a that minimizes MSE(E) of (26) is gotten by equating

CMSE )

p to zero, and solving the resulting equation we get
(1

r

o
hi

A1) e ob 1)y (41 2] (30)

o =

L

Similarly, the value of a that minimizes the ;'V[LS'E(B) of (27) is

hA:
an(% + 1) p A Mzb +1) (4h £ 1+ ;.2)] (31)

4. THE EXPEREMINTAL SIDE

A Q-basic program has been used to simulate experiments
considered in this study. The computer program has generated data for
the explanatory variable which follow the uniform distribution in the
interval (0,1) and generating data for the random error variable which
follow the normal distribution. Then values have been assumed for the
parameters « and [ of the SLRM to do comparisons between the

estimators of different methods used in this work, Then, the effect of

(18)
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where 4, is defined in (18) and & is defined in (19). Thus, what remains to
calculate is just C;. Now from (24a),

. ke 1 taa )
. b ~ ? ' 2 iy
C =a I(a—a(,) e " ———¢ "dg
- 2al{ex)
~dhatoa? (aethag) . ( s o ) —(4b+|)[. a+iba, T
5 YR Ci o — G i -
=4"e 2w e]Hﬂ'J-l}-\u) J 0 elf(u) ELEY ara

A2 (e

after making change of variables, integrating by parts, using (14) and
simplifving the results, we get
2 PN S jl"‘"i
C, - 17 [(4b+1)—+—?7]££a_) oA (25)
(4b+1) -

Now substituting (24b), (24¢) and (25) in (23), we get

o2 i ;2 2, e
.HSE(C?):!’(C“()JLI—‘,G“* [+ |+ 2 1-—“17,-8”‘" (26)
l4(b+1)"‘ 4b+1 (2b+ 1)

In a similar way, we find the MSE for f§ and the result is

. ; a’ A [ 20 Wk
VSECS) = (B gz 7 4 + AT e e 27)
(b + 1) 4h +1 | (2b+D)7

Now, using the definition of the relative efficiency ( R.E ), then the R.E.
{ & ) using (26) is

MSE(e)

RELG) = -
MSE(&)

(17)
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A, =Ela-a)y=a-a,)={V(a) (20)

Substituting (18) and (20) in (17), we get

2b+1)*

adl _
Bius(e) = ).ﬂffv’(c%)li—a—,—e e —l} (21)

In a similar way, we get

s 7
Bas() = W’){W | .

Now, to find the MSE fora , we just apply the definition of MSE as
follows:

1

~h(a-a,)

MSE(G)Y = E| (@ -ayae " +(a, —a)

=C, -2C, +C, (23)
where
r R RT TP
C, = (JBE{(C? ~ay)e } , (24a)
_h(ri—r:zq)!
C.=aF{(Gd-a)a-a)e "¢
=ala—-a,)4 (24b)
C.=Fla-a) =2V(@) (24¢)

(16)
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Now, we find the bias, MSE and RE for the estimators &“andﬁ. For this,
we use

a~N@V@y . B~NBV) (16)
Then

Bias (@) = F(d —a)
= E|(d-a,)aexp|-bd@-a,)’ IV (é)|+ (a, - )]
=a A -A; (17)

where

| = [:‘[(d - )e.\‘pl— ble - ) /V(c?)JJ
A =Ela-«a,)
Now,

= El(d' —a\)exp[— b -a )’ /V(Cz’)“

- h’f};afﬂ (u c(J
~ NS 1 2 ( rl -
= J(rz -, e e lex

2h / cu’ ”

=0 BEIRET J'(a C() 1 e Wy do
N 27V ()

After making change of variables, integration by parts, using (14) and
simplifying the result, we get

reom b’
4 :;L—_ "‘L(a)e_ﬂwl (18)
ket
where

A=l —a ) yHiw) {19}

and

(15)
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The estimations of regression parameters are similar to that given in
(3), (4) and (5), and the estimation of & is

62 =(n-D, - &, |/ (n-k+1) (10)

3. ESTIMATION BY USING A NON-
CONSTANT WEIGHTED SHRINKAGE
FUNCTION.

In this section, we consider the general weighted shrinkage function
/(0)as a non constant weighted shrinkage function of the exponential
type in the following form

J;/((}]=ucxpl—b((}—()“)j”’((j)J (11)

where a and b are constants and 0 <a <1, b > 0. We know from (ii) that
the shrinkage estimator ¢ of ¢ is given as a linear combination using 8,
as an initial value and & as an estimated value calculated from a small

sample using one of the classical methods. Replacing k(6) by z//(é), then
(1) becomes

8 =66, +0, (12)

Now, using (11) in (12), we get
0 = (8- 6)aespl-b@-0,) 1F(6)| +6, (13)
Using (13), then the shrinkage estimator for & and ﬁare

&= —a,)aexpl-b(é -a,) (@) +a. (14)
and

B =(B-pyaexplbif-p) v+ 8, (15)
(14)
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The use of complete observations analysis leads to considerable loss in
data which then affect the estimators of the parameters in which that some
of its components have been omitted. To avoid considerable loss in data,
the available observations analysis method is used. The steps of this
method are summarized below:
1. Computing the variance—covariance matrix of the explanatory
variables.
Computing the vector of covariances between the response variable
with each of the explanatory variable.

I~

To estimate the means and the variance—covariance matrix, a basic
condition must be satistied which is that the mechanism of missing data
has to be of MAR type, and then computing of the covariance
between V' and L\, variables using availability variables is as follows:

LA

Sr" - Z('\_u - ‘\"' )(‘\,.'A - ‘Y" )’f(”,'a' - ]) (7)

i=]

where jjk=1,...,pji=1,..., n,,and n, represents the number of

observations where X' and .\, appear together and

H"L ”}‘

ZX In, ZA /n, (8)

and U and ,\’.4 are computed from the same common observations for the
variables X' and X,. The variances of \' and X _are calculated as

follows

Z(x R O SN 30 GRS o G )
-1

where

", I

X, =3 X In | X, =Y X,/n,
1=l
and 1, is the number of complete observations for the variable X, and
n_is the number
of complete observations for the variable A',. ThenX , X, S, and S,
are computed using the available observations for each variable in the
sample,

(13)
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some numerical computation for each one of them have been made for
different sample sizes.

2. OBSERVATIONS ANALYSIS

2.1. Complete Case Analysis (CC)

Yates (1932) was the first to define and to use the complete
observations analysis to treat the incomplete data for the SLRM
which is defined as:

Y =a+fX +e, i=1,2,...,n,; j=12,..., n, (2)
where n, represents the number of observations of explanatory variable
and n_ represents the number of common observations of cach of the

explanatory variable and response variable. In order to find the
estimation of the SLRM’s parameters in the case of incomplete data, we
use the ordinary least squares (OLS) criterion and the estimators forms
are as follows:

a=r-pX ., p=S._.IS.. (3)

where

Vo=¥XX,m , F= XIY',/nL , s,\ﬁ.}c=zct(xf-xt)(yj-}’;,) (4)
i= =

1=l
The wand/f are unbiased estimators and have MVUE and their
variances are respectively

V(o})=az[i+ X:_ J, V(ﬁ)=02/8.\m..c 3)

N, Sn

[

2.2. Available Case Analysis (AC)

In (1964), Glesser [4], defined the analysis of available observations
method for estimating the SLRM’s parameters, which is given by

B =(cov(X,, X ) cov(X ) (6)

(12)
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differ for some reasons (see [1], [5], [8], [14] [17], |21]). Some of these are
not done on purpose , for example, the failure of recording machines or
because of natural disasters, wars or others. And some are done on
purpose because of the risk or the highly cost or because of the
unavailability of sources. In this case, the observations and data are
incomplete (see [2], [3], [14], [18]).

The incomplete observations data in SLRM’s may miss one or more of
the explanatory variables for some observations for any reason (see [7],
[15], [16]). Thus, the estimators that is gotten from the incomplete data
will be incfficient estimators. In this case, the statistical analysis which
deal with the incomplete data must be used and accordingly accurate
results can be reached.

The mechanism of missing observations differs from one sample
observations to another sample observations. The missing data either are
done on purpose, i.e, not missing at random (not MAR) or are not done on
purpose. There are two types of the second case which are (i) missing at
random (MAR), (ii) missing completely at random (MCAR) (see [6], [10],
[11], [12], [19]).

[n the linear regression model one or more explanatory variables may
miss part of its observations with the assumption that the dependent (
response )variable has complete observations. And this what is called by
{incomplete observation data). In this paper, we study the SLRM when the
explanatory variable miss part of its observations, Thus, this work
describes two statistical methods for estimating the SLRM’s parameters.
These methods are (i) the complete observations and (ii) the available
observations. The two methods treat the case of incomplete observations
data. The second aim of this work is to combine the two methods together
through a linear combination, by considering that the available

observations method gives the classical estimator (ésa}'), whereas the
complete observations method gives the initial value (&, say). The linear
combination is given as follows:

6 =k(0)0 +(1-k(0))6, (1)
where I\'(é), OSI{(E:’)SI is a weighted function which represents the one

stage shrinkage estimator (see [9], [13], [20]). In this paper, k(’é) is
considered as a varying weighted function. For the proposed shrinkage
estimator of (1), the MSE, the bias and the RE are derived along with

(11)
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L. INTRODUCTION

Most of the statistical analysis methods have shown that the sample
observations data which have been studied are complete observation data.
In most of the phenomenons, part of their data are exposed to either
missing or not observed. The reasons of missing or not observing the data

el a3 S R e b sl it
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