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(ii) the restricted estimator b, coincide with the cstimator t(x)=0 (the

silly estimator)
4. The usual estimator f(x)=x is meaningful and more reasonable and

logical when we deal with the  N(71) problem, whereas the

unrestricted estimator 5, will have less meaning and less reasonability

and logicality in the linear regression problem, because it involve the
choice of b, , whatever the value of the nuisance parameter ¥

5. Because of the existence of the equivalence between the estimator h,
and the usual estimator /(x) = x in the N(;7.1) problem, we have to try
to find an alternative
estimator for it. If ¢(x)=A(x)x is the usuxl estimator, then the
equivalence between the N(7.1) problem and the regression problem
will ensure the existence of the same function 2 (which is the optimal
shrinkage function A of (43)), which provides WALS estimator of
(29), without the need for depend on the regressor variable.

6. The estimators 5, b, and b, are unbiascd as it is clear from (20),(26)
and (35) respectively.

7. The estimator b, is better than the estimator b, since F(b,)<Vib,)
according to (21) and (27).

8. The estimator & will be better as long as 4 — 0 as it is clear from (29).
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b=Ab, +(I-A)b, = b, —dn)+(1-A)b, = br — dAn
Therefore,
MSEB)Y=V (DY =V (b} - dV(ANHN~d) =1'(b, ) +dMSECA(md (45)

We conclude from {45) that
MSE(D) e« MSE(A(n)17)

That is, A
MSE(bD) is minimized iff MSE(A(7)7) is minimized (40)

Also, A=0 and A=1 are natural endpoint (since 0< A <1) because
they correspond (according to the equivalence between  the
N(7.1) problem and the regression problem) to the restricted and
unrestricted cstimator, respectively. That is, A=0 correspond to b,
estimator and A =1 correspond to A, estimator. In other words, if we can
think of f(x) as weighted average of x (the usual estimator of (37)) and 0
(the silly estimator of (38)), then

Hxy=A(x)x+ (1= 2(x)N0 (47)

Finally, the larger is M s the better is x as an estimator of 7.

8. CONCLUSIONS

1. Depending on (46), we conclude that finding best WALS estimator for
G in the linear regression problem is equivalent to finding best
estimator for 7 in the N(;.1) problem.

2. Also, we conclude that the regression problem will be solved if and only
if the N(7,1) problem is solved

3. The Equivalence that is gotten include the correspondence for any
estimator of 7 in the AN(7.1) problem, requires the existence of a
unique estimator for S in the linear regression problem. This
conclusion is clear from (47) as it is shown in the following two points;
(i) the unrestricted estimator A coincide with the estimator Hx)=x

(the usual estimator) for 7 in the N(7.1) problem.

(16)
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admissible (because #(x,0)=x is the usual estimator of (37)). For
0<c<w,the
result follow from Berger (1985), P. 127-28 [4].
Now, since A =1/(1+c) (see (40)) and the optimal ¢ is given by
¢ =1/n (see
(42)), we find the optimal 2 tobe 2" = 2. =7’ /1+7’), see (43).
The optimal 4", as function of 1, thus satisfies 0 < A"(n) <1, and A" (57)
is an
even function, that is, A'(~7)=2"(5), and 2" is an increasing function on
(0,20).
For ¢20, the estimator /(x,c) will be called the normal Bayes
estimator of 77,

because it is the Bayes estimator induced by a normal prior with mean 0
and variance
1/¢, ( for details see Al-Zaidi (2005) [3]).

7. THE EQUIVALENTS BETWEEN THE TWO PROBLEMS

In this section, we prove that the N(7,1) problem is equivalent to the

regression
problem. This will be done if we can show that finding the best estimator
of B is
equivalent to finding the best estimator of » and this will be done if we
can show that
the ASE(D) is minimized iff (if and only if) MSE(A(7)7) is minimized.
Now, from (12), (13), (14) and (19), then

b, = (XX x5~y =5 Py <b (0N X

=b, —(XX)'X& — 1 =b, ~djj (44)
where
1
1=(XX)'X=:
@={ ) ="M=

Now, using (44) in (29), then
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as a shrinkage function. Using a square error loss function, then the risk
function is

RO-)= R(7.2) = ELLU 20} = Eli(x.2)=n]" = £, (=)’

a-ny-ne ] o o ,
=L = =8 (x- —2Elix—=mndd+ E
”[ I+¢ } (1+c)‘{ (-1 [ =mmel+ £Gpe) }

1+c°n°

Vet T

TS

Which coincide with the result of Goodman (1953) [10], and R(n,c) is
minimized when

c =— (42)

with minimum risk

Iy s
¥ 9 l+(77)-}]— 5
1+ 22 2
R(f].c'):_lc—;}]—z:_’/_ﬁ_: 7 ;
(1+¢") 1+ ! ) l+7
7

Therefore, the optimal shrinkage function A at ¢’ is

=2, = 1': /- (43)
‘ l+¢ l+r5-

(tif) For ¢ >0, then the estimator is admissible as it is shown now.
Since R{0,4) =0 with equality if and only if 2 =0, we sec that t(x,0)
dominates every other

estimator at ;7 =0, and hence is admissible. Also, #(x,0) = x (from (41)), is

(14)
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H(x)=x (37)
and we call it the usual estimator, and (i)} when A(x) =0, then
H{x)=0 | (38)

and we call it the silly estimator. Let the squared error loss function be
defined as '

L A)n) =[x, ) -] (39)

Then, the risk function of the usual estimator of (37) using the squared
error toss function of (39) is

Rinph=Ex-n =T{x)=1

Hence, the usual estimator /(x)=x is unbiased and has constant risk

(variance) equal to 1. Blyth (1951) [5], showed that x is admissible (see also

Berger (1983), P.548) [4).

Now, since x is admissible and has constant risk, it must be minimax

Berger (1985), P.382 [4]. This means that the usual estimator 7(x)=x is

unbiased, admissible, has constant risk (variance) equal to 1 and minimax.
These are strong properties in favor of x as an estimator of 7. For this

reason, we might want to choose an estimator different from x, Define
AA(x) = 1 y Cc#*—1 (40}

I+c¢
as a shrinkage estimator for all X, where ¢ is a constant. So that, in
particular, from (40) we have the following cases

(i) For ¢ =0, then

A(x)=1
(ii) For ¢ =, then
A{x)=0
Now, consider
t(ve) = 1(x, A, (x)) = —— (41)
l+¢

(13)
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Now, using (26}, (30), (32) and (34) then

EB)y=20+8 =0 (35)

and

L

V(b)Y ={AA, = 4,) + 4, )01, {i(A, — 4.)+ AL}

) - M el [ . M ] n
=i AXXY' X = FY) YA =VYIOYT s Yyt
{‘ P S R AT A T
MoOAL
=g A XYY N (YY)
{ (A1) Az 2 ( )
1\{
— Ay X Xy
( ) N/ ( )
cnmt e Mo e S
2LV A T[:L\(.\X) FCVA)TAYVOVY
=z Mz
=g (YX)" + & _—_O;J (X)) (36)

When we compare (36) with (21), we note that the estimator 5 is better
than the estimator 5, forall 2 except when A =0.1.When Z=0 then
V(y=V(b,) which ecoincide with (27) and when 2=1 then
V{b)=V(b,), which coincide with (21).

6. THE USUAL ESTIMATOR
Let x~ N(1.1),and let

t{x,A)=A(x)x

be an estimator of 77 . (i) when A{x) =1, then

(12)
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b =4y, » EBbY=pf , V(h)=c (XX)"

where 4, is given in (25), and from (13), (20) and (21), we know that
bn = Alyn 9 E(bu): ﬁ k

Vib)=0 (XX)" + %;—7(1\';&')" X=X (XX
where A, is given in El-‘l)ﬂ. Then, from (13), (24), (2) and {3) we have

b,=b, =4y, - A,y =(4, - AN+l 2+ (A, - 4 (31)
Now, using (20 ) and (26 ), we get

Ebh, -b)y=f-5=0 (32).

and using (14), (25) and (31), we get

Vb, =b)=(A4 AV (e A — 4,) =c7(4, - A (A — ALY

) AL eme
:J‘[-(X'X)" \L"J{ M ::’.Y(Xi‘x')]J

Z'AE | Z’Mz
0‘2 ey i [ R Fry oy =l
= (V)X (33)

from (32) and (33), we have

b, —br ~ N(O,—Lu (XYX)") "’::',Y'(}\"X)"'}
=AMz
Substituting (24) and (31) in (30) gives
b=AA - A)XB + PAZ+ A - A e+ A, X + A€

={AA = A+ L NP+ pid s+ (A, - A )+ e (34)

(11)
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where k(é) is a constant function in & and 0 < k(é) < 1. In the notation of
this work, (28) is written as

b=Ab, +(1- )b, (29)

where A =A(77) is a constant function in 7 and 0<2<1. Then the
shrinkage estimator considers 2 as amount of confident for the estimator
b, and (1- 1) as amount of confident for the estimatorh, . The estimator
b of (29) can be rewritten as

b=i(b,—b,)+b (30)

The estimator b of (29) is called the WALS (weighted average least
squares).
The shrinkage estimators are of two types
(1) Constant weighted shrinkage function (which do not depend upon
the parameter to be estimated).
(2) Nonconstant weighted shrinkage function (which depend upon the
parameter to be estimated), i.e., 2 = i(5}).

The choice of the type does not depend on any condition, it is up to the aim
and desire of the researcher. In both cases the choice of the shrinkage
function is done almost arbitrary, and sometimes the choise of the
shrinkage function is done depending on the prior informations.

In the following section, we will study the propertics of the
estimator 4 when the shrinkage function is of the first type.

S. THE PROPERTIES OF THE ESTIMATOR »

In this section, we study the properties of the estimator » when it is
of the first type, that is, when we have a constant weighted shrinkage
function. The properties that we study are

(1) The Bias
(2) The mean squared error (MSELE)
From (29), we note that the estimator 5 depends upon the estimators b,

and b_. To study the properties of the estimator b > we have to know the
properties of the estimators b , b and b, —b,. From (24), (26) and (27)
we know that

(10)
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and
Fib) = (XX XV (3 )X (YY) =6 ()" 27
hence, b, is unbiased estimator of £ and

b, ~N(B,07(XX)y™"y

4. THE SHRINKAGE ESTIMATOR b

Although that the estimated regression parameters by the OLS method
are unbiased, but still researchers may face a problem because in these
estimators some difficulties of certain types could appear. For example,
the researcher could make a mistake not on purpose, like adopting a small
sample, the result of this mistake could imply that the resulting estimator
be away from the true value of the parameter that we want to estimate or
these estimators could have big value and consequently be away from the
true value, too.

The classical methods for estimations witly the OLS method
included assume that the parameter which we want to estimate is
unknown and we do not know any think about it. We do the estimation
process by drawing a sample out of the population to estimate the
unknown parameter. Thus, the classical methods do not depend on prior
works or on the researchers knowledge. This problem is well known and it
is not new. It was discussed by many researchers and they have found
many solutions for it. One of these solutions is using shrinkage estimator
(see [4], [6], [11], [14], [15], [16} ). The shrinkage estimator is one of the
methods which takes in account the use of the prior informations about
the vector of unknown parameters which we want to estimate. These

informations could be as initial values 0, and estimated values & ,

computed from a small random sample by any of the classical methods.
Then the final estimator would be a shrinkage estimator which is a linear

combination of 8, and 6. The shrinkage estimator will take the form of

the weighted shrinkage function and is denoted by € and is written as

0 =k(6)0+(1-k(b)o, (28)

()
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5
Frtey — g
20'2(/\" )I+

(Y vEY ! 21)

s 9 5

From (13), we note that A is a lincar function in Y, and vy s

distributed normally according to (16), then from (20), (21) and (16), the
distribution of 5, is

b, ~N(B,I(b,)).
The estimator 7 of (12) and the estimator h. of (13) are ordinary least

squares (OLS) estimators for the parameters 7 and [ in the unrestricted
model of (2).

3.3 The distribution of h.. Now, letting » =0 in (2), then the model

becomes

y,=Xp+¢ £~ N(0.0°1 ) (22)
and

¥, ~ N(XB,0°1) (23)

the model of (22) is restricted model, and the OLS estimator of £ is

b, = d,v, (24)
where
A, = (X (O X (25)

Using (22), (23), (24) and (23), then the mean and variance of 5, are

EG)y=(XX)'XEG) =(YX)"' YXB =2 (26)

(8)
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Let

,7___7___
aglz'M:

then

-

. ¥ . ,
=——F=—== and 5~ N(5.]) 19)
7 o/Nz'M= (

where ;7 represents the non-central parameter associated with t statistic

for testing that y=0.
a 3. . . .
In this paper, we assumed that ¢’ is known which is mentioned
earlier, hence the value of the parameter ;7 will depend on the value of the

parameter y ,ie. 5oy,

3.2 The distribution of b,. From (13), (14), (15) and (11), we have

b)) =4 E(y,)

'}
= [(X’X)" X' —(xx)! X'_-—_;lﬂ(x\’/} +y z)

= (XX XXB+ (X)X 2y (X)) X% j =B (20)
that is, b, is unbiased estimator of B, and
Vib,y=AV(y)A
- {(X’X)" X' -y xs T’L—[[Jal [(X’X)‘] A= (v A"—-S—J

= J:[(X'X)—n —(XX) X;.i}ﬁ S XYY < (XY _t% P
g% jod NTYS

~ - - -

(7)
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bﬂ = Ai yu (13)
where

'™ ="M
4 = (X)) A 1222 J: XXX -yt ys2 14
1 = (A ( vl S EY () A= (14)

and b, is also a linear funetion in the unrestricted variable v,

3. DISTRIBUTIONOF /, &, b

To find the distribution of 7, » and b, we need to know the

H

distribution of y, . From (2), we know that

E(.}'.u) = ‘L:B + }/ z ] I/’(_}"”) = 0-3[” (15)
then
v, ~N(XB+yz, 6°1) (16)

3.1. The distribution of 7. From (11),(12) and (15), we have

o M 'w
E(?’)———— E) =7

Iy ~(Whvyzy=y a7

that is, 7 is unbiased estimator of », and

A . Vs . I . oA 2
P = Sy () ME L EM ey ME s BE ot (18)
Az oMz Mz o 9 oo (Z'M=Y A

Since 7 is a linear function in ¥, » see (12) then from (16), (17) and (18),
we have

7o My T 1[_)

(6)
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XYy, ~ Xz~ XXb, =0 (6h)
Multiplying (6a) by (z'z)"', then

¥ =2y, b XE)z) (7)
and premultiplying (6b) by (XV)™" and using (7) , we get

b, =(XX) ' Xy, —(YX)"xp

substituting (8) in (7) gives

(8)
;= [z'yu Xy, — Xz} X’zJ(:’:)"
=2y, () = Y X (XXY X5z 4+ 7 X (XX) ' X=2(z')”
==y (z'2) =y a2y + VMY S P ) (9)
where
AM=T-XXX)' (10)
and from (10), we note that
M=M M =MMY=0XY=0 (11)
that is, matrix M is symmetric and idempotent. Now, since z'y =y'z |
then from (9), 7 is
; - Z‘:’jf N :’:if: < (12)
where My, =3y M=z

and then 7 is a lincar function in the unrestricted
variable y, . Thus, substituting (12) in (8), we get

(5)
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without atfecting the main results. The existence of the term ¥ z in the
model (1) make the model unrestricted. For this, we write model (1) as

Y. =XB+yz+e, &~ N0,c',) (2)

the estimation of the parameters vector 4 will be written as b,, wherc u

stands for unrestricted model. In the case, when (y=0), i.e. the term yz
is not in the model, then model (1) will be restricted mode! and is written
as

yo=Xf+e , &~ NO.c’I) (3)

the estimation of the parameters vector £ will be written as b., where r
stands for restricted model. From (2), we note that the error sum of
square is

0:8, - _. _J\ﬂ /Z) (}H_ ‘L/B /Z)

vy, = XB -yl - B "Xy + X' AXB+y p 'Xz-yz'y, +

i

yz’Xﬁ+yzz'z 4)

where 3} Xf=p%Y, and Z'XB= Y% Then b, :ﬁ"’ and 7 can be
gotten from differentiating (4) with respect to £ and y respectively, as
follows

@ _y 3)
dy

L _y,

ap

Then, (5) will yield the following normal equations

v, —bXE—7 22 =0 (6a)

(4)
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difficulties and it concentrates on chosen weighted shrinkage function
for this situation. For this, many research works have been done for
shrinkage function ( see [6], [11], [14], [15], [16] ) to gain advantage for
finding good estimators out of a very small sample which could be a single
observation which is the aim of this study. In other words, as long as the
prior information become less or the random Sample become smaller, the
probability of getting estimator away from its true value for the unknown
parameter become larger. For this reason, the need for the shrinkage
method increased, especially for the optimal shrinkage estimator which
yield optimal estimator-.

One of the common important statistical problems in Econometric
is the regression problem (i.e. the problem of estimating the parameter
vector £ in the multiple linear regression model) ( sce (1], 121, [3], 8], [9],

{12] ) which has the form

y=Xf+yz+e, £~ N0,61) (1)

where y isan nx1 vector of response variables, Vis an nx p matrix of
regressor (explanatory) variables, z is an nx1 veetor of additional
explanatory variables, 8 is an px1 vector of unknown parameters, » is
a nuisance parameter and ¢ is the ;x|

vector of random errors, and the problem of estimating the mean 77 of the
univariate normal distribution which is called as the N{(n.1) problem for
single observation . In this paper, we consider the shrinkage functions for
finding an estimator for the parameter without the need to depend
completely on the explanatory variables, and considering estimators for
the N{(7.1) problem depends upon single observation, we try to prove that
the two problems are equivalent and try to prove that solving any problem
will lead for solving the other one.

2. ESTIMATING THE REGRESSION MODEL’S
PARAMETERS

Assume that the matrix (X:2) has Full Column Rank and the

variance o’ is known. We have to note that the last assumption about
o’ to be known is unrealistic assumption, but it stmplifics the analysis

(3)
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ABSTRACT

In this paper, we study the estimation of the unknown mean parameter
7 of a univariate normal distribution when the variance is known

(o’ =1) and the sample is

of size one. The main estimation metheds have been discussed along with
their properties and the properties of the estimators. The focus is
concentrated on the shrinkage method for finding the estimators. We wish
to prove that there is a relationship between the shrinkage estimator 4
(the estimator of the parameter vector £ in the lincar regression niodel)
and 7 of N(n,1), where for each estimator H{x)=A(x)x for N
problem, there will be a corresponding WALS (weighted average least
squarcs)  estimator in  the regression problem of the form
b=A01)b, +(1-A(n)b,.

Key words and phrases: mean squared error criterion, model selection,
regression anlysis, shrinkage estimator, univariate normal mean.

1. INRODUCTION
There are many methods for estimation (Classical methods, Bayes
methods, Shrinkage method) ( see [4], [7], {13] ). For each method, there
are some problems and there are solutions for these problems. The idea of
shrinkage depends on combining the classical and the Bayes methods,

which takes 6, as an initial value and takes & as an estimator from a

small sample. The final estimator will be a linear combination of 8, and

¢ depending on a weighted shrinkage function which is given the symbol
A, which represents a confident value for 6 and (I-2) as a confident
value for 4, and 0<A<I1, Thus, the shrinkage estimator has the form
8 =16 +(1-1)8,.

The shrinkage estimators are very efficient when they are compared
with the classical estimators. Definitely, there will be no prior
informations about the parameters, which we want to estimate and there
will be no information for the random sample which we depend on.
Hence, we note that the estimator value will be away from its true value.
This is one of the negative points against the ¢lassical and Bayes methods.
The shrinkage method has important advantage because it reduces the

(2)
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PROBLEM AND THE
REGRESSION PROBLEM WITH
ONE NUISANCE PARAMETER
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