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Abstract:

In this work, we proposed a new application of modified
Adomian decomposition method (MADM) to solve the advection,
KdV and K(2,2) equations depend on the idea of El-Kalla [7]. We
prove the convergence of MADM applied to these equations. Our
results are compared with those obtained by Adomian
decomposition method (ADM). The numerical results show that the
present method has high accuracy, fast convergence and large
convergence region.
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1-Introduction:

Nonlinear differential equations are encountered in such
various felids as physics, chemistry, biology, mathematics and
engineering. Most nonlinear models of real-life problems are still
very difficult to solve either numerically or theoretically.

There has recently been much attention devoted to the search
for better and more efficient solution methods for determining a
solution (analytical or numerical) of nonlinear models. Recently, a
lot of attention has been focused on the application of the Adomian
decomposition method [1,8,9].  Moreover, the ADM was developed
to solve nonlinear models [3,10,13], one of these modification has
been proposed by notable research El-Kalla [7]. He applied this
modification to solve nonlinear ordinary differential equations.

In this paper, we introduce a new application by using this
modification to solve the advection, KdV and K(2,2) equations. The
present paper has been organized as follows: In Section 2 we give
an analysis of the method; in Section 3 we apply this method for
solving our problems; in section 4 we will prove the convergence of
this method applied to these equations; in section 5 we will present
results discussion and in the last section we give some
conclusions.



2-Analysis of the method:

General properties of the decomposition methods can be found
in [3,10,12,13]. Some of these are outlined as follows:

Suppose that we need to solve the following equation:

fuG )( ,
(1)

where G is a nonlinear operator from a Hilbert space H into H ,
f is given function in H ; and u is unknown in H .

The principle of the decomposition methods is based on the
decomposition of the nonlinear operator G in the following form:

NRLG  ,

where RL  represents linear terms  and N represents nonlinear
terms, L invertible with 1L as inverse. Using that decomposition,
equation (1) is equivalent to
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where satisfies 0)( L .

In ADM, u is represented as the infinite of series
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and the nonlinear function )(uN is decomposed as follows:
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where the nA ’s are polynomials of nuuu ,...,, 21 called Adomian’s
polynomials and are calculated by the formula:
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Thus (2) can be rewritten as follows:
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Each term of the series 
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0n
nu is given by recurrent relations
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The relations (7) are called Adomian algorithm.

The crux of Adomian algorithm depend on calculate the
Adomian polynomials, the Adomian polynomials are not unique
[3,10,12,13]. In [12] are defined as the following form:
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By depending on the idea of [7], we can define the nonlinear
function )(uN as follows:
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where the nA are functions that depend on nuuu ,...,, 10 . They are
determined by
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Substitute (3) and (9) into (2) yields
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The nu ’s can be determined by the recurrent relations
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The relations (9)-(12) are called modified Adomian decomposition
method (MADM).

3-Applications:

In this part, we apply the ADM and the MADM to the equations
of advection, Kdv and K(2,2), respectively, in the next three
problems.

Problem1:

Consider the homogeneous advection equation [4],
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with initial condition 22.0)0,( xxu 

The explicit analytic solution is given by
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Now, we solve Eq. (13) using ADM and MADM. In this problem
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We use the recursive relations given by (7) to obtain the terms of
the decomposition series (3). In this case by using (8), we obtain
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and so on, the rest of the polynomials can be constructed in  a
similar manner.

Knowing }{ nA terms leads to the calculation of the }{ nu terms by
using relations (7)
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Substituting these individual terms in (3), we have
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Now, we solve Eq. (13) by MADM. By using Eq. (10), }{ nA terms
can be computed as:
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and so on.

Substituting relations (18) into recurrent relations (12) gives
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Putting these individual terms in Eq. (3), one obtains
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Problem2:

Consider the following KdV equation [6],
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with the initial condition )
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Here, we solve Eq. (21) by the ADM and the MADM, respectively.
In this problem
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We again use the recursive relations given by (7) to obtain the
terms of the decomposition series (3). In this case, by using the
relations (8), we have
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and so on,

Substituting the relations (23) into recurrent relations (7) yields
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The }{ nu terms are known, so the solution is given by
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Now we solve Eq. (21) by the MADM. By using Eq. (10), }{ nA
terms can be computed as:
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and so on,

Using the recursive relations in (12) gives the first few components
as follows:
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Substituting these individual terms in Eq. (3), we have
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Problem: 3

Consider the following K(2,2) equation [2]
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We solve Eq. (29) by the ADM and MADM, respectively. In this
problem
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To obtain the solution by ADM, we use the relations (8). In this
case the Adomian polynomials is given by
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and so on,

The nA ’s have been known, so the }{ nu terms can be determined
by using the recursive relations (7). Simple calculation leads to
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Putting these individual terms in (3), we have
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By using Eq. (10), we can be calculated }{ nA terms as:
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Substituting relations (34) into recursive relations (12) yields
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Substituting these individual terms in (3), we obtain
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4- Convergence of  MADM:

A series is often of no use if it is convergent in a rather
restricted region, and thus proving convergence of the solution
series is very important. To demonstrate the convergence of the
MADM for nonlinear partial differential  equations (13), (21) and
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Now, we want to prove the convergence of the MADM applied to
problems (1), (2) and (3) by using similar approach of the [8,11].
To prove that, we will prove the following two hypotheses are
satisfied:
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Substitute (40) in (39) we get:

22),()( vukvuMvuvLuL  ,

where Mk  then the hypothesis 1H holds.

Secondly, we verify the convergence hypothesis 2H for the
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Theorem(2): The MADM applied to (21) converges towards a
particular solution.

Proof: To prove this theorem, firstly, we will verify the
convergence hypothesis 1H for the operator )(uL . From (21) we
have
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where ,, MvMu  then we have
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(45)

similarly by Schwartz inequality, definition of scalar product and

the properties of the differential operator
3

3

x

 and  in H , then there

exist a constant 02  such that
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2 vuM 

where ,, MvMu  then we have
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

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by substitute (45) and (46) in (44) we obtained:

2
2

2
1 22),()( vuMvuMvuvLuL 

2
21 )22( vuMM 

2vuk 

where ,022 1221  MMk then the hypothesis 1H

holds.

Now verify hypothesis 2H

,],[][),()( 22
3

3
22 








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x

vu
x

wvLuL
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wvu
x

wvu
x

wvLuL ][][),()(
3

3












wvuMwvuM  21 22

,)( wvuMC 

where ,22)( 21 MMMC  then the hypothesis 2H holds.

Remark:

From theorems (1), (2) and (3), we could prove that the solutions
given by MADM are convergence toward the particular solutions.



Similarly we can prove the convergence of ADM, but it is appears

from applications that 


0n
nA is a much better approximation to

)(uN than 


0n
nA .

5- Results and discussion:

In this part, we present the comparison of the approximate
solutions obtained by ADM and MADM with exact solution.
According to the Tables 1, 2 and 3, we can see that the absolute
errors of  MADM ( 5u and 7u ) are less than the absolute

errors of  ADM ( 5u and 7u ). Figures 1,2 and 3 show the
comparisons between the results of the exact solutions, ADM and
MADM. From figure 1, it can be clearly seen that there is very
good agreement among them and the results obtained from the
exact, ADM and MADM have the same shapes for all ( 10  t ).
Figures 2 and 3 show, when we increase slightly the range of t, the
shapes of the ADM solutions deferent from the shapes of the exact
solutions. On the other hand, the MADM solutions have the same
shapes as the exact solutions even for the large range of t.
Therefore, based on these present comparisons, we can see that
the accuracy of the MADM is remarkable. Furthermore, the MADM
has larger convergence region and faster convergence rate for the
series solution than the ADM has.

Table 1: Comparison of ADM and MADM  solutions
for problem 1.

t x

ADM MADM

5u 7u 5u 7u

0.
1

0.1 4.6161e-015 3.8871e-015 2.0691e-015 1.77808e-015

0.4 1.4211e-010 1.0423e-013 3.1122e-011 5.62744e-015

0.7 7.2894e-009 1.5518e-011 1.6351e-009 2.05669e-014

1 9.0364e-008 3.9281e-010 2.0770e-008 5.52836e-013

0.
0.1 2.7288e-011 2.9852e-014 6.0233e-012 2.63244e-015

0.4 4.9745e-007 8.6808e-009 1.2427e-007 2.87437e-011



5 0.7 2.8205e-005 1.5169e-006 8.0348e-006 1.18459e-008

1 3.9331e-004 4.3508e-005 1.2886e-004 6.73930e-007

1

0.1 9.0364e-010 3.9284e-012 2.0770e-010 5.52856e-014

0.4 1.8761e-005 1.3210e-006 5.5940e-006 1.31054e-008

0.7 1.2976e-003 2.8535e-004 5.2024e-004 1.01868e-005

1 2.6126e-002 1.2187e-002 1.4822e-002 1.61571e-003

Table 2: Comparison of ADM and MADM  solutions for
problem 2.

t x

ADM MADM

5u 7u 5u 7u

0.
5

-12 2.9503e-009 1.7894e-011 3.1246e-015 8.4703e-022

-6 1.0202e-006 3.1555e-009 3.7225e-012 6.4811e-019

0 4.4659e-005 1.4565e-006 4.5137e-008 5.5511e-017

6 1.1698e-006 3.0012e-009 4.4692e-012 1.7347e-018

12 3.4856e-009 2.0274e-011 3.4181e-015 3.3881e-021

1

-12 8.7471e-008 2.1611e-009 3.3843e-012 1.6941e-021

-6 3.0554e-005 4.0408e-007 3.8631e-009 1.0842e-018

0 2.6095e-003 3.4192e-004 4.6848e-005 1.2052e-010

6 4.0091e-005 3.5812e-007 1.3362e-008 1.7347e-017

12 1.2219e-007 2.7755e-009 9.6122e-012 2.0329e-020

1.
5

-12 6.1800e-007 3.4931e-008 1.6971e-010 2.2446e-020

-6 2.1760e-004 6.8429e-006 1.8646e-007 2.6672e-016

0 2.5926e-002 7.6923e-003 2.1600e-003 6.4557e-007

6 3.2529e-004 5.3754e-006 3.2245e-007 9.8463e-015

12 1.0225e-006 5.0895e-008 2.2232e-012 2.7105e-021

2

-12 2.4323e-006 2.4815e-007 4.6813e-009 2.8167e-017

-6 8.6194e-004 5.0488e-005 4.9262e-006 5.5585e-013

0 1.2335e-001 6.5543e-002 5.1801e-002 8.8874e-004

6 1.4563e-003 3.1484e-005 1.0580e-005 1.6594e-011

12 4.7778e-006 4.1076e-007 6.8393e-009 4.0129e-017

Table 2: Comparison of ADM and MADM  solutions for problem 3.

ADM MADM



t x

5u 7u 5u 7u

0.1

1 5.3333e-005 2.1333e-006 1.6277e-006 3.8691e-009

4 2.1333e-004 8.5333e-006 6.5111e-006 1.5474e-008

7 3.7333e-004 1.9333e-005 1.3944e-005 2.7084e-008

10 5.3333e-004 2.3333e-005 1.2777e-005 3.8691e-008

0.5

1 5.0000e-001 5.0000e-001 4.7003e-003 1.6443e-004

4 2.0000e+000 2.0000e+000 1.8802e-006 6.5774e-004

7 3.5000e+000 3.5000e+000 3.2902e-002 1.1510e-003

10 5.0000e+000 5.0000e+000 4.7003e-002 1.6443e-003

0.7
5

1 6.8344e+000 3.0375e+000 2.3586e-002 1.4861e-003

4 2.7337e+001 1.2150e+001 9.4346e-002 5.9444e-003

7 4.7841e+001 2.1262e+001 1.6511e-001 1.0403e-002

10 6.8344e+001 3.0375e+001 2.3586e-001 1.4861e-002

6- Conclusions:

The modified Adomian decomposition method (MADM) is
carried out successfully for finding the approximate solutions of
advection equation, KdV equation and K(2,2) equation. The
obtained solutions are compared with exact solutions and ADM
solutions, three solved applications show that the results of the
present method have high precision, fast convergence rate for the
series solution and large convergence region. It really has
advantage over the ADM. For computation and plot, software
Mathematica 6 has been used.
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(a) (b)

(c)

Fig.1: All graphs are plot the solutions of problem 1 with

1x0  and 1t0  (a) Exact solution,(b)Approximate solution

obtained by ADM,(c)Approximate solution obtained by MADM.



(a) (b)

(c)

Fig.2: All graphs are plot the solutions of problem 3 with

12x12  and 5.2t0  (a)Exact solution,(b)Approximate
solution

obtained by ADM,(c)Approximate solution obtained by MADM.

(a) (b)



(c)

Fig.3: All graphs are plot the solutions of problem 3 with

10x0  and 8.0t0  (a) Exact solution,(b)Approximate solution

obtained by ADM,(c)Approximate solution obtained by MADM.

باستخدام طریقة تحلیل أدومین المعدلة K(2,2)وKdvحل معادلات الحمل و

عبدالنبي حسین علي

جامعة البصرة/كلیة التربیة/قسم الریاضیات

المستخلص

في ھذا البحث قدمنا تطبیق جدید لطریقة تحلیل أدومین المعدلة لحل معادلات الحمل     
وأثبتنا بأن ] 7[بالاعتماد على التطویر الذي قدمھ إبراھیم الكالة في المصدر 

K(2,2)و Kdv و

رنت مع نتائج طریقة النتائج التي حصلنا علیھا من تطبیق ھذه الطریقة قو. ھذه الطریقة متقاربة

تحلیل أدومین القیاسیة فأظھرت النتائج العددیة لطریقة تحلیل أدومین المعدلة بأنھا تمتلك دقة 
.    عالیة وأسرع في التقارب ومنطقة تقاربھا أكبر من طریقة تحلیل أدومین


