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Abstract:

In this work, we proposed a new application of modified
Adomian decomposition method (MADM) to solve the advection,
KdV and K(2,2) equations depend on the idea of El-Kalla [7]. We
prove the convergence of MADM applied to these equations. Our
results are compared with those obtained by Adomian
decomposition method (ADM). The numerical results show that the
present method has high accuracy, fast convergence and large
convergence region.
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1-Introduction:

Nonlinear differential equations are encountered in such
various felids as physics, chemistry, biology, mathematics and
engineering. Most nonlinear models of real-life problems are still
very difficult to solve either numerically or theoretically.

There has recently been much attention devoted to the search
for better and more efficient solution methods for determining a
solution (analytical or numerical) of nonlinear models. Recently, a
lot of attention has been focused on the application of the Adomian
decomposition method [1,8,9]. Moreover, the ADM was developed
to solve nonlinear models [3,10,13], one of these modification has
been proposed by notable research El-Kalla [7]. He applied this
modification to solve nonlinear ordinary differential equations.

In this paper, we introduce a new application by using this
modification to solve the advection, KdV and K(2,2) equations. The
present paper has been organized as follows: In Section 2 we give
an analysis of the method; in Section 3 we apply this method for
solving our problems; in section 4 we will prove the convergence of
this method applied to these equations; in section 5 we will present
results discussion and in the last section we give some
conclusions.



2-Analysis of the method:

General properties of the decomposition methods can be found
in [3,10,12,13]. Some of these are outlined as follows:

Suppose that we need to solve the following equation:

G(u) = f :
(1)

where G is a nonlinear operator from a Hilbert space H into H,
f is given function inH ; and uis unknown in H.

The principle of the decomposition methods is based on the
decomposition of the nonlinear operator G in the following form:

G=L+R+N,

where L + R represents linear terms and N represents nonlinear

terms, L invertible with Lt as inverse. Using that decomposition,
equation (1) is equivalent to

u=0+L1f — LH(R(U)) - LHN()) ,
(2)

where ¢ satisfiesL(€)=0.

In ADM, u is represented as the infinite of series

and the nonlinear function N(u) is decomposed as follows:

N(U)= S A |
n=0
(@)

where the A ’'s are polynomials of u;,u,,...,u  called Adomian’s
polynomials and are calculated by the formula:

1d" &
Ay :E@[N(igﬂ u)l,., n=012..

(5)



Thus (2) can be rewritten as follows:

iun —9+Ltf - L‘l(R(iun)) — L‘l(iAn)
n=0 n=0 n=0
(6)

o0
Each term of the series ) u_ is given by recurrent relations
n=0

Uy =6+ Lt }
u, =-LHRU, ) - L (A n>1
(7)
The relations (7) are called Adomian algorithm.

The crux of Adomian algorithm depend on calculate the
Adomian polynomials, the Adomian polynomials are not unique
[3,10,12,13]. In [12] are defined as the following form:

Ay =N(ug)
0
A= Ul(a)N(uo)

2 .2
o0 Uy o
Ao =l INC) + () N Co)

_ 0 \N Gl N uf o° N
A3_u3(%) (Uo)+U1u2(£) (UO)+(§)(£) (Up)

(8)

By depending on the idea of [7], we can define the nonlinear
function N(u) as follows:

NU) = 3 A
n=0
©)

where the 'Eh are functions that depend on u,,u;,...,u,. They are
determined by



Ko = N(up)
n n-1

A, =N u)-NCu) nx1
i=0 i=0

(10)
Substitute (3) and (9) into (2) yields
iun 0+ Lt - L‘l(R(iun)) - L_l(i A)
n=0 n=0 n=0
(11)

The u,’s can be determined by the recurrent relations

Uy =6+ L1 }
u, =-L*(Ru,,)-L (A, n>1
(12)

The relations (9)-(12) are called modified Adomian decomposition
method (MADM).

3-Applications:

In this part, we apply the ADM and the MADM to the equations
of advection, Kdv and K(2,2), respectively, in the next three
problems.

Problem1:

Consider the homogeneous advection equation [4],

ut—%(uz)xzo, O<x<1 t>0 :
(13)

with initial condition u(x,0) = 0.2x°

The explicit analytic solution IS given by
u(x.t) = (1-0.4xt) - \2/1— 0.8xt _ (14)
0.4t

Now, we solve Eq. (13) using ADM and MADM. In this problem



N(u) = (%uz)x, f =0, R(u) =0 and® = u(x,0) = 0.2x*

We use the recursive relations given by (7) to obtain the terms of
the decomposition series (3). In this case by using (8), we obtain

A=),
A1=(UOU1)X
A, = (Ugu, +%U12)x

Ag = (Ugug +UyUy)

(15)

and so on, the rest of the polynomials can be constructed in a
similar manner.

Knowing { A } terms leads to the calculation of the{u_} terms by
using relations (7)

u1:2£5x3t
u2=2i5x4t2
L1453
3625
(16)

Substituting these individual terms in (3), we have

u(x,t) :éx2

(17)

+£x3t Jrixd't2 +£x5
25 25 625

t3 4+ ..

Now, we solve Eq. (13) by MADM. By using Eq. (10), { An}terms
can be computed as:



_ 1 5
— 1
A1 = (Uguy +Eu12)x

_ 1 2

— 1 2
A3 = (UgUg + UjUg +UsUg + Eu3)x

(18)
and so on.

Substituting relations (18) into recurrent relations (12) gives

_ 2 53, 9 o4, 164 75, 6 86, 16 97
125 6250 78125 15625 546875

(19)
Putting these individual terms in Eq. (3), one obtains

u(x,t) :Ex2 +£x3t +ix4t2 +£x5t3 +4—9x6t4 +16—4x7t5
5 25 25 625 6250 78125

6 16
+—x8t6 + x9t7

15625 546875

(20)
Problem?2:
Consider the following KdV equation [6],

U, +(3uz)x +Uy, =0, —12<x<12,t>0,

(21)




with the initial condition u(x,0) :%sechz(g),

The exact solution is given by

u(x.t) :%sechz(XT_t)

(22)
Here, we solve EqQ. (21) by the ADM and the MADM, respectively.
In this problem

N(U)=(3u?),, f =0, R(U)=U,,, and 9:u(x,0)=%sech2 g),

We again use the recursive relations given by (7) to obtain the
terms of the decomposition series (3). In this case, by using the
relations (8), we have

Ay =(3up),
A = (Buguy)
A, = (Bugu, + 3“12)x

(23)

and so on,

Substituting the relations (23) into recurrent relations (7) yields

U, = =sech?(
0 12 (2)
u, = —sech? X tanhzt
=5 (2) (2)

1 X X X
u, = é[—sechz(i) + 3sech2(§) tanhz(z)]tz

(24) |

The {u,} terms are known, so the solution is given by

u(x,t) = %sechz(g) ; %sechz(g) tanh(g)t



< [-sech?() + 3sech? () tanh* )]
(25)

Now we solve Eg. (21) by the MADM. By using Eq. (10), {An}
terms can be computed as:

n 2
Ao = (3u0)x
A1 = (Bugu, + 3u12)X
Az = (BUgU, + 6UU, +3u3),

(26)
and so on,

Using the recursive relations in (12) gives the first few components
as follows:

1 2 X
u, =—-sech”(=
0 12 (2)
u :—sech2 X tanhzt
1 21 (2) (2)
u, =— —sech2 X +33ech2 X '[anh2 X t2
5 8[ (2) (2) (2)]

1 4, X X 6, X X 4. X 3 X113
+§[sech (5) tanh(E)—Ssech (5) tanh(§)+sech (E)tanh (E)]t
(27)

Substituting these individual terms in Eq. (3), we have

e+ Lo Ny tanhyt + Lo sech? (X
U(x,t) = sech®(0) + ~sech® ) tanh()t + - [~sech® ()

2,X 2 X2 1 4,X X
+ 3sech (E)tanh (E)]t +§[sech (E)tanh(a)

6, X X 4 ,X 3, X143
—5sech (E)tanh(5)+sech (E)tanh (E)]t + -
(28)




Problem: 3
Consider the following K(2,2) equation [2]
u, + (u2)X + (u2)><xx =0, 0<x<10,t>0,
(29)
with the initial condition u(x,0) = x,
The exact solution is given by

u(x,t) = X ,

1+ 2t
(30)

We solve Eq. (29) by the ADM and MADM, respectively. In this
problem

N(U) = (U?), + (U)o, f =0, R(U)=0 and® =u(x0) = X,

To obtain the solution by ADM, we use the relations (8). In this
case the Adomian polynomials is given by

Ay = (US), + (ud)xx

A = (2uguy) , + (2ugUy) s

A, =(2uyu, + u12)X +(2uqu, + u12)xxx

A; = (2ugus +2uU,) , + (2UQUg +2U4U5) o

(31)
and so on,

The A,’s have been known, so the{u_}terms can be determined
by using the recursive relations (7). Simple calculation leads to

Ug = X
u; =—-2xt
u, — 4xt?
Usg - —8xt>




Putting these individual terms in (3), we have
U(x,t) = X — 2xt + 4xt% —8xt> + - --
(33)
By using Eqg. (10), we can be calculated { An} terms as:
= 2 2
Ao = (Ug)y + (Ug)xxx
A1 = (2uyuy + ulz)x +(2uquy + u12)xxx
A2 = (2ugU, + 2U Uy +U5), + (2ugU, + 2U,U, +US)
Az = (2ugug + 2u U + 2U,U5 + u32)x +(2UQUg + 2u U5 + 2U,Ug + u§)xXX

(34)
and so on,

Substituting relations (34) into recursive relations (12) yields

Uy =X
u; =—-2xt
u, = 4xt 2_843
3
Uy =053 4 32t 32545, B0 128,47
3 3 9 63
(35)

Substituting these individual terms in (3), we obtain

u(x,t) =x- 2xt + 4xt? — 8xt> 332 —3—32xt 64 —@xt

9 63
(36)
4- Convergence of MADM:

A series is often of no use if it is convergent in a rather
restricted region, and thus proving convergence of the solution
series is very important. To demonstrate the convergence of the
MADM for nonlinear partial differential equations (13), (21) and




(29) let us consider the Hilbert space H defined as H :LZ(Q):
where Q= (a,b)x[0,T], and using the set of applications:

u:Q - R with [u®(x,s)dsdr < +oo,
Q

the scalar product

(u,v) = [u(x,s)v(x,s)dsdr,
Q
(37)

and the associated norm
|ul® = [u?(x,9)dsd.
Q

(38)

Now, we want to prove the convergence of the MADM applied to
problems (1), (2) and (3) by using similar approach of the [8,11].
To prove that, we will prove the following two hypotheses are
satisfied:

Hy i (L(u) - L(v),u-v) > kHu—sz,k >0,vVu,veH,

H,: For anyM >0,3 a constantC(M) >0, such that for u,veH
with Jul< M, M<M,

we have (L(u)-L(v),w) <C(M)|u-v|w| for every we H.

Theorem(1): The MADM applied to (13) converges towards a
particular solution.

Proof: To prove this theorem, we will verify the conditions H; and
H,, firstly, we will verify the convergence hypothesis H, for the
operator L(u). From (13) we have

L)~ L) =5 = [u® V7]

therefore,



(LW~ L) u=V) = (L u? —v?]u-v),
2 0OX
(39)
by Schwartz inequality, definition of scalar product and the
properties of the differential operator 9 inH, then there exist a

OX
constant 6 >0 such that

Ju-v

(—i[u2 — v2],u —V) <
OX

0,2 .2
—[u“ —v
8)([ ]

<8u? =v?lu-v

=5(u-V)u+V)fu-v
<28M [[u -,
where || u|| <M ,|| v|| <M. Therefore
0 2
<&[u2 —VA,u—v) > 25MJu v,

(40)
Substitute (40) in (39) we get:

(L(u) = L(v),u-v)=8M |u- vH2 =k|u - VH2
where k=3M then the hypothesis H, holds.

Secondly, we verify the convergence hypothesis H, for the
operator L(u). For that we have:

(L(U) — L(v), W) = <§(u2 “v3),w)

<M | u—vijw
<C(M)|u=v]jwi,

where C(M)=3M, hence the hypothesis H, holds.



Theorem(2): The MADM applied to (21) converges towards a
particular solution.

Proof: To prove this theorem, firstly, we will verify the
convergence hypothesis H, for the operatorL(u). From (21) we

have

3

L(u) - L(v) = —a—g[u =322 oV,
OX OX
therefore,
o3 0.2 2
(L(u)—L(v),u—v)=(——3[u—v],u—v>+3(——[u —V,u-v),
OX OxX
(41)

by the definition of scalar product and the properties of the
3

differential operator %and 8—3 inH , then there exist constants
oX
9;, 1=12 such that

63 55 2
- Slu-vu-v 25—

(42)

and according the Schwartz inequality, we get

Ju=v

(—i[u2 — v2],u —-V) <
OX

0,2 .2
—[u® —v
ax[ ]

< 82Hu2 - VZHH u-vj
=35|(u-v)(u+v)fju-v
<25,M [u—v|?,

where |u|<M,|v|<M, then we have



(%[u2 v, u-v)> 28 ,M |u —VHZ,
(43)
by substitute (42) and (43) in (41) we obtained:

(L(u) = L(v),u—v)>3,|u- VH2 +68,M |u - VHZ
— (8, +68,M)Ju -V
= Kju -

where k=9, +65,M >0= 5, >-65,M.

Thus, hypothesis H; holds.

Now verify hypothesis H,
3

(LW - LW = Tu—v] - 32 [u? ~v?],w),
X OxX

This yields

(L(u) = L(v),w) < —3i[u—v]
OX

i+ W

< 8y | u—vijw+ 83,M u - vijw
<C(M)|u -V,
where C(M) =9, +65,M and, therefore, H,, fulfilled.

3
0
———[u-V]
6x3

Theorem(3):The MADM applied to K(2,2) equation (29) converges
towards a particular solution.

Proof: we will prove the convergence hypothesis H, for the
operatorL(u). From (29) we have

B _ 0.2 2_£ 2 .2
L(u) L(V)_ax[u V7] axg[u V7],



therefore,
0. 2 2 8> 2 2
(L) =L ,u-v)=(-—[u" =v,u-v) + (———[u” =V ,u-v),
OX 8)(3
(44)
by Schwartz inequality, definition of scalar product and the
properties of the differential operator agand inH , then there exist
X

a constant 81 >0 such that

Ju-v

(—i[u2 — v2],u —V) <
OX

0,2 .2
—[u“ —v
8x[ ]

<8y u” ~v¥|Ju-v]

= 8,(u-v)(u+V)flu-v
<28,M |u-Vv,

where |u|<M,|v|<M, then we have

0
(S u? =vALu—v) = 25Mu - i,
(45)

similarly by Schwartz inequality, definition of scalar product and
3
the properties of the differential operator 5—3and inH , then there
OX
exist a constant 6, >0 such that

8> 2 2
<_a_3[u -V ],U—V>S
X

Ju—v

3
0~ . 2 2
axg[u e

<8,Ju” V2 [u-]



=8,|(u-v)(u+v)u-
<25,M u—i?
where |u|<M,|v|<M, then we have

53
ol Va2 25,Mu -,
(46)

by substitute (45) and (46) in (44) we obtained:

(L(u) = L(v),u—v) > 25, M |u = V[* + 25,M |u - |
= (25,M + 25, ,M)|u V|
~u - f?

where k=25M +26,M >0=6,>-06,, then the hypothesis H,;
holds.

Now verify hypothesis H,

(L) - Lo =202 v - 2 2w
1 Bl OX 8X3 ’ ,

This yields

(L(u) = L(v),w) <

wi + Wi

<25,M |u—vijw] +25,M [u—vijw]
<CM)|u-vijw|
where C(M)=26;M +26,M, then the hypothesis H, holds.

53
———[u-yv]
8x3

0
S u-

Remark:

From theorems (1), (2) and (3), we could prove that the solutions
given by MADM are convergence toward the particular solutions.



Similarly we can prove the convergence of ADM, but it is appears

from applications that Z'Eh IS a much better approximation to
n=0

N(u) than i A, -
n=0

5- Results and discussion:

In this part, we present the comparison of the approximate
solutions obtained by ADM and MADM with exact solution.
According to the Tables 1, 2 and 3, we can see that the absolute

errors of MADM (‘u — 55‘ and ‘u —57‘) are less than the absolute

errors of ADM (ju—®;| and |u—®,|). Figures 1,2 and 3 show the

comparisons between the results of the exact solutions, ADM and
MADM. From figure 1, it can be clearly seen that there is very
good agreement among them and the results obtained from the
exact, ADM and MADM have the same shapes for all (0<t<1).
Figures 2 and 3 show, when we increase slightly the range of t, the
shapes of the ADM solutions deferent from the shapes of the exact
solutions. On the other hand, the MADM solutions have the same
shapes as the exact solutions even for the large range of t.
Therefore, based on these present comparisons, we can see that
the accuracy of the MADM is remarkable. Furthermore, the MADM
has larger convergence region and faster convergence rate for the
series solution than the ADM has.

Table 1: Comparison of ADM and MADM solutions
for problem 1.

ADM MADM
t x ‘u—CDS‘ ‘u—cI)7‘ ‘u—@s‘ ‘u—dh‘
0.1 4.6161e-015 3.8871e-015 2.0691e-015 1.77808e-015
O 0.4 1.4211e-010 1.0423e-013 3.1122e-011 5.62744e-015
1 0.7 7.2894e-009 1.5518e-011 1.6351e-009 2.05669e-014
1 9.0364e-008 3.9281e-010 2.0770e-008 5.52836e-013
0.1 2.7288e-011 2.9852e-014 6.0233e-012 2.63244e-015

O ' 0.4 4.9745e-007 8.6808e-009 1.2427e-007 2.87437e-011



0.1

0.4

0.7

Table 2:

problem

o ©
o

o =

12

2.8205e-005
3.9331e-004
9.0364e-010
1.8761e-005
1.2976e-003

2.6126e-002

\u—@ﬂ

2.9503e-009
1.0202e-006
4.4659e-005
1.1698e-006
3.4856e-009
8.7471e-008
3.0554e-005
2.6095e-003
4.0091e-005
1.2219e-007
6.1800e-007
2.1760e-004
2.5926e-002
3.2529e-004
1.0225e-006
2.4323e-006
8.6194e-004
1.2335e-001
1.4563e-003

4.7778e-006

ADM

1.5169e-006
4.3508e-005
3.9284e-012
1.3210e-006
2.8535e-004

1.2187e-002

u-a,|

1.7894e-011
3.1555e-009
1.4565e-006
3.0012e-009
2.0274e-011
2.1611e-009
4.0408e-007
3.4192e-004
3.5812e-007
2.7755e-009
3.4931e-008
6.8429e-006
7.6923e-003
5.3754e-006
5.0895e-008
2.4815e-007
5.0488e-005
6.5543e-002
3.1484e-005

4.1076e-007

8.0348e-006
1.2886e-004
2.0770e-010
5.5940e-006
5.2024e-004

1.4822e-002

‘u - CD5‘
3.1246e-015
3.7225e-012
4.5137e-008
4.4692e-012
3.4181e-015
3.3843e-012
3.8631e-009
4.6848e-005
1.3362e-008
9.6122e-012
1.6971e-010
1.8646e-007
2.1600e-003
3.2245e-007
2.2232e-012
4.6813e-009
4.9262e-006
5.1801e-002
1.0580e-005

6.8393e-009

Table 2: Comparison of ADM and MADM solutions for problem 3.

ADM

Comparison of ADM and MADM
2.

MADM

MADM

1.18459e-008

6.73930e-007

5.52856e-014

1.31054e-008

1.01868e-005

1.61571e-003

solutions for

‘u - 7‘
8.4703e-022
6.4811e-019
5.5511e-017
1.7347e-018
3.3881e-021
1.6941e-021
1.0842e-018
1.2052e-010
1.7347e-017
2.0329e-020
2.2446e-020
2.6672e-016
6.4557e-007
9.8463e-015
2.7105e-021
2.8167e-017
5.5585e-013
8.8874e-004
1.6594e-011

4.0129e-017



u-@g| u-@,| ‘u—as‘ ‘u—57‘

1 5.3333e-005 2.1333e-006 1.6277e-006 3.8691e-009

4 2.1333e-004 8.5333e-006 6.5111e-006 1.5474e-008

> 7 3.7333e-004 1.9333e-005 1.3944e-005 2.7084e-008
10 5.3333e-004 2.3333e-005 1.2777e-005 3.8691e-008

1 5.0000e-001 5.0000e-001 4.7003e-003 1.6443e-004

4 2.0000e+000 2.0000e+000 1.8802e-006 6.5774e-004

e 7 3.5000e+000 3.5000e+000 3.2902e-002 1.1510e-003
10 5.0000e+000 5.0000e+000 4.7003e-002 1.6443e-003

1 6.8344e+000 3.0375e+000 2.3586e-002 1.4861e-003

0.7 4 2.7337e+001 1.2150e+001 9.4346e-002 5.9444e-003
5 7 4.7841e+001 2.1262e+001 1.6511e-001 1.0403e-002
10 6.8344e+001 3.0375e+001 2.3586e-001 1.4861e-002

6- Conclusions:

The modified Adomian decomposition method (MADM) is
carried out successfully for finding the approximate solutions of
advection equation, KdV equation and K(2,2) equation. The
obtained solutions are compared with exact solutions and ADM
solutions, three solved applications show that the results of the
present method have high precision, fast convergence rate for the
series solution and large convergence region. It really has
advantage over the ADM. For computation and plot, software
Mathematica 6 has been used.
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(b)

Fig.1: All graphs are plot the solutions of problem 1 with
0<x<1land 0<t<1 (a) Exact solution,(b)Approximate solution

obtained by ADM,(c)Approximate solution obtained by MADM.



(b)

Fig.2: All graphs are plot the solutions of problem 3 with

—-12<x<12 and 0<t<25 (a)Exact solution,(b)Approximate
solution

obtained by ADM,(c)Approximate solution obtained by MADM.
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Fig.3: All graphs are plot the solutions of problem 3 with
0<x<10and 0<t<0.8 (a) Exact solution,(b)Approximate solution

obtained by ADM,(c)Approximate solution obtained by MADM.
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