
Fixed Point Theorems for Several Contractive Mappings and
Expansive Mappings in G-Metric Spaces

Ahmed Hassan Alwan

Department of Mathematics, College of Education, Thi-Qar
University,

Thi-Qar, Iraq.

keywords:Fixed point theory ,G-Metric spaces, Contractive

Mappings

Abstract

The purpose of this paper is to define two of types mappings in G-

metric spaces and find the fixed points of these mappings. The first type

is called several contractive mappings, where we define the contraction

condition on the closure of an orbit, where the orbit is bounded and

orbitally complete. Also, we will discuss the uniqueness of a fixed point

only in this orbit. Finally, we prove the existence of a fixed point for

surjective expansive mapping.

1. Introduction

In 2005, a new structure of generalized metric spaces was

introduced by Mustafa Z. and Brailey Sims [1] called G-metric spaces.

Mustafa Z. and Brailey Sims [1], Mustafa Z. [2] studies the convergence

concept and the continuity of G-metric function. Also, Mustafa Z. [2]

introduced some theorems of fixed point theory.

Mustafa Z. [3] and Mustafa Z. et al. [4] gave certain type of

contractive mapping in G-metric spaces. Here we will recall such

mapping by several contractive mapping.

In section two, we introduce some fixed point theorems for

several contractive mapping in the closure of an orbit of the space. Here,



the orbit must be bounded and orbitally complete, and the uniqueness of a

fixed point will be discussed in this orbit.

In section three, we introduce some fixed point theorems for

expansive mappings, depending on the convergence of the iterative

sequences in G-metric spaces.

2- Preliminaries

Now, we give the following definitions and propositions

concerning the G-metric spaces.

Definition (2.1), [1], [2]:

Let X be a nonempty set, and G : XXX  R+, (R+ is a set of

all non-negative real numbers), be a function satisfying the following:

(G1) G(x, y, z)  0 if x  y  z.

(G2) 0 < G(x, x, y), for all x, y  X, with x  y.

(G3) G(x, x, y)  G(x, y, z), for all x, y. z  X with z  y.

(G4) G(x, y, z)  G(x, z, y)  G(y, z, x)  …; (symmetry in all three

variables).

(G5) G(x, y, z)  G(x, a, a) + G(a, y, z), for all x, y, z, a  X, (rectangle

inequality)

Then the function G is called a generalization metric, or a G-

metric on X, and the pair

(X, G) is a G-metric space.

We recall the following proposition without proof:



Proposition (2.2), [1]:

Let X be a G-metric space and x0  X, r > 0. Then the G-ball with

center x0 and radius r, is:

BG(x0, r)  {y  X : G(x0, y, y) < r}

Proposition (2.3), [1]:

Let (X, G) be a G-metric space. Then for any x0  X and r > 0 :

1. If G(x0, x, y) < r, then x, y  BG(x0, r).

2. If y  BG(x0, r), then there exist a  > 0, such that BG(y, )  BG(x0,

r).

Proof:

(1) Follows directly from (G3), while (2) follows from (G5) with

  r  G(x0, y, z). 

It follows from (2) of the above proposition that the family of all

G-balls:

B  {BG(x, r) : x  X, r > 0}

is the base of a topology (G) on X, the G-metric topology.

Definition (2.4), [1], [2]:

Let (X, G) be a G-metric space, and {xn} be a sequence of X. If

there exist a point x  X, such that
n,m

lim


G(x, xn, xm)  0, then the



sequence {xn} is G-convergent to x, and x is said to be the limit point of

the sequence.

Or, for any  > 0, there exists k  N (through this paper, we mean

by N to the set of  natural numbers), such that G(x, xn, xm) < , for all n,

m  k.

Definition (2.5), [1], [2]:

Let (X, G) be a G-metric space. The sequence {xn}  X is said to

be G-Cauchy sequence if for every  > 0, there exists k  N, such that

G(xn, xm, x ) < , for all n, m,   k.

Definition (2.6), [1], [2]:

A G-metric space (X, G) is said to be G-complete (or complete G-

metric space) if every G-Cauchy sequence in (X, G) is G-convergent in

(X, G).

Definition (2.7), [1], [2]:

Let (X, G), (X, G) be two G-metric spaces and let f : (X, G) 

(X, G) be a mapping, then f is said to be G-continuous at a point a  X,

if given  > 0, there exists  > 0, such that for all x, y  X; and G(a, x, y)

< , implies G(f(a), f(x), f(y)) < .

A mapping f is G-continuous at x if and only if, it is G-continuous

at all a  X.

Definition (2.8), [2]:

Let (X, G) be a G-metric space, the function G is jointly

continuous in all three of its variables, if for any convergent sequences



{un}, {vn}, {wn} in G-metric space X, where {un} converge to u  X,

{vn} converge to v  X and {wn} converge to w  X. Then, {G(un, vn,

wn)} converges to G(u, v, w).

Mustafa, Z. and Sims, B. [1] introduced the following

propositions, here we mention to their without proof.

Proposition (2.9):

Let (X, G), (X, G) be G-metric spaces. Then a mapping f : X

 X is G-continuous at a point x  X if and only if it is G-sequentially

continuous at x, that is, whenever {xn} is G-convergent to x one has

{f(xn)} is G-convergent to f(x).

Proposition (2.10):

Let (X, G) be a G-metric space. Then the function G is jointly

continuous in all three of its variables.

Analogous to [5] and [6], we define the following concepts in the

G-metric space.

Definition (2.11):

Let (X, G) be a G-metric space. Let f : X  X be a function:

1. The orbit of f at the point x  X is the set:

o(x)  {x, fx, f2x, …}

2. An orbit o(x) of x in X is said to be G-bounded (or bounded) if there

exists a constant k > 0, such that G(u, v, w)  k, for all u, v, w  o(x).

The constant k is called G-bound (or bound).

3. An orbit o(x) is called an orbitally complete if every Cauchy

sequence in o(x) converges to a point in X.



Definition (2.12):

Let (X, G) be a G-metric space and S be a nonempty subset of X.

Define the diameter of S, as:

G(S)  sup{G(x, y, z) : x, y, z  S}

3- Fixed Point Theorems for Several Contractive Mapping in G-

Metric Spaces

In this section, we will prove some theorems of fixed point for

several contractive mappings. Mustafa Z. et al. [3], introduced the

following definition, here, we will recall that by "several contractive

mapping:

Definition (3.1), [3]:

Let (X, G) be a G-metric space an f : X  X be a mapping,

then f is said to be several contractive mapping on G-metric space if,

G(fx, fy, fz)  aG(x, fx, fx) + bG(y, fy, fy) + cG(z, fz, fz) …(3.1)

for all x, y, z  X, where 0 < a + b + c < 1.

Also, if the contraction condition (3.1) restricted on all x, y, z in

O(x0) then we say that f is several contractive on the orbit O(x0).

Now, we need to prove the following proposition:

Proposition (3.2):

Let (X, G) be a G-metric space. Let x  X, such that xn  fnx, n 

N. If the orbit {xn} is bounded. Define:

i  G{xi, xi+1, xi+2, …}, i  1, 2, …



Then,

1. n is finite for all n  N.

2. {n} is non-increasing sequence, for all n  N.

Moreover, n    0, as n .

Proof:

For (1), since {xn} is bounded, then the diameter of {xn} is finite

Therefore, n is finite for all n

For (2), let r, r+1  {n}

r  G{xr, xr+1, xr+2, …}  G{xr+1, xr+2, xr+3, …}  r+1, for all n 

N.

Therefore, from (1) and (2), we have n    0, as n . 

Theorem (3.3):

Let (X, G) be a G-metric space and f : X  X be a mapping. If

there exists x0  X, such that O(x0) is G-bounded, and f is several

contractive mapping on the orbit O(x0). Then, {fnx0} is a G-Cauchy

sequence in O(x0).

Proof:

Let xn  fnx0, n  N

Since f is several contractive mapping on the orbit O(xO), we have:

G(xn, xn+p, xn+p+t)  G(fxn1, fxn+p1, fxn+p+t1)



 aG(xn1, fxn1, fxn1) + bG(xn+p1, fxn+p1,fxn+p1) +

cG(xn+p+t1, fxn+p+t1, fxn+p+t1)

 aG(xn1, xn, xn) + bG(xn+p1, xn+p, xn+p) + cG(xn+p+t1,

xn+p+t, xn+p+t)

Taking the supremum over p and t, we get:

n  an1 + bn+p1 + cn+p+t1 (since the orbit {xn} is G-bounded)

Since {n} is nonincreasing sequence (by proposition (3.2)). Hence,

n  an1 + bn1 + cn1

 (a + b + c)n1

But, 0 < a + b + c < 1, we have:

(a + b + c)n1 < n1

Thus,

n < n1

Taking the limit as n  , we get  <  and if  > 0, which is a

contradiction.

Hence,   0, that is n  0, as n . Then,

G(xn, xn+p, xn+p+t)  (a + b + c)n1  0, as n 

Hence {fnx0} is a G-Cauchy sequence. 

Theorem (3.4):

Let (X, G) be a G-metric space and f : X  X be a several

contractive mapping on the orbit 0O(x ) . Then f has a unique fixed point

in 0O(x ) .

Proof:



For existence, since O(x0) is bounded and {xn} is a sequence in

O(xn), then from Theorem (3.3), we have {xn} is a Cauchy sequence.

Since O(x0) is orbitally complete, there exists p  X, such that {xn}

converges to p

For n  N, and since f is several contractive mapping on the orbit 0O(x ) ,

we have:

G(xn, fp, fp)  aG(xn1, xn, xn) + bG(xn1, xn, xn) + cG(p, fp, fp) …(3.2)

Since G jointly continuous in three variables

Taking the limit into both sides of the inequality (3.2) as n  , we

have:

G(p, fp, fp)  aG(p, p, p) + bG(p, p, p) + cG(p, fp fp)

Thus:

G(p, fp, fp)  cG(p, fp, fp) < G(p, fp, fp)

If G(p, fp, fp) > 0, which is not true. Thus: G(p, fp, fp)  0, and then fp 

p, and p is a fixed point of f in 0O(x )

To prove the uniqueness, suppose that q is another fixed point of f

in 0O(x ) , i.e., fp  p,

fq  q

By using the property of several contraction mapping , we have:

G(p, q, q)  G(fp, fq, fq)  aG(p, fp, fp) + bG(q, fq, fq) + cG(q, fq,

fq)

 aG(p, fp, fp) + (b + c)G(q, fq, fq)

Hence, p  q



Therefore, p is the unique fixed point of f in 0O(x ) . 

Corollary (3.5):

Let (X, G) be a G-metric space and f : X  X be a mapping, if

there exists x0  X, such that O(x0) is bounded and orbitally complete,

where:

G(fx, fy, fy) aG(x, fx, fx) + bG(y, fy, fy) (3.3)

for all x, y  0O(x ) , where 0 < a + b < 1. Then f has a unique fixed point

in 0O(x ) .

Proof:

The proof follows directly from Theorem (3.4), by putting z  y in

inequality (3.1), then we see that every mapping satisfies inequality (3.3)

satisfies the inequality (3.1) on the orbit

0O(x ) . 

Corollary (3.6):

Let (X, G) be a G-metric space and f : X  X be a mapping, if

there exists x0  X, such that O(x0) is bounded and orbitally complete,

where:

G(fx, fy, fy)  dG(x, y, y)

…(3.4)

for all x, y  0O(x ) , where 0 < d < 1/4. Then f has a unique fixed point in

0O(x ) .

Proof:



By using property (G5) of G-metric function, we have:

G(x, y, y)  G(x, fx, fx) + G(fx, y, y) …(3.5)

G(fx, y, y)  G(fx, fy, fy) + G(fy, y, y) …(3.6)

G(fy, y, y)  G(y, fy, fy) + G(fy, y, y) …(3.7)

Hence, from inequalities (3.5)-(3.7), we see that inequality (3.4) becomes:

G(fx, fy, fy)  dG(x, y, y)

 dG(x, fx, fx) + dG(fx, fy, fy) + 2dG(y, fy, fy) …(3.8)

Then, f will satisfy the following inequality:

G(fx, fy, fy)  aG(x, fx, fx) + bG(y, fy, fy)

…(3.9)

for all x, y  0O(x ) , where a  d
1 d

and b  2d
1 d

.a + b < 1, since d  1/4.

Therefore, inequality (3.4) is satisfied and the proof follows from

corollary (3.5). 

Now, we prove the following theorem by supposing that the

iterative sequence has a convergent subsequence:

Theorem (3.7):

Let (X, G) be a G-metric space, and f be a self map on X. If there

exists a point x0  X, such that the sequence ni 0{f x } is a convergent

sequence in X, where:

G(fx, fy, fz)  qG(x, y, z) …(3.10)

for all x, y, z  X and for some 0  q < 1. Then f has a unique fixed point

in X.



Proof:

For existence, suppose that ni 0{f x } is a convergent sequence in X

Then, there exists a point t  X, and ni 0
i
lim f x


 t

To show ni 1 0
i
lim f x


 ft, by using inequality (4.1)

G( n 1i 0f x , n 1i 0f x , ft)  qG( ni 0f x , ni 0f x , t) …(3.11)

By taking the limit to the both sides of inequality (3.11) as i  , we

get n 1i 0
i
lim f x


 ft

If ft  t, there exist k  N, such that if i > k, then there exist two G-open

balls B1  (t, ) and B2  B(ft, ), where:

 < min{G(t, ft, ft), G(ft, t, t)}

and

G( ni 0f x , n 1i 0f x , n 1i 0f x ) > , for all i > k …(3.12)

From inequality (3.10), we have:

G( n 1i 0f x , n 2i 0f x , n 2i 0f x )  qG( ni 0f x , n 1i 0f x , n 1i 0f x ) …(3.13)

for all  > j > k, and by inequality (3.13), we get:

G( n
0f x , n 1

0f x , n 1
0f x )  qG( n 1

0f x , n
0f x , n

0f x )

 q2G( n 2
0f x , n 1

0f x , n 1
0f x )



 n n jq  G( n j
0f x , n 1j

0f x , n 1j
0f x )



Taking  , we get:

n n 1 n 1
0 0 0lim G(f x ,f x , f x ) 


  


 0

This is a contradiction with (3.12)

Therefore, ft  t and t is a fixed point of f in X.

For uniqueness, suppose that r be another fixed point of f in X

This means that ft  t and fr  r and t  r

By inequality (3.10), we have:

G(t, t, r)  G(ft, ft, fr)  qG(t, t, r), for some 0  q < 1

This means that:

G(t, t, r)  qG(t, t, r) < G(t, t, r)

Which is a contradiction if G(t, t, r) > 0

Hence, G(t, t, r)  0 and therefore, t  r.

Then, t is a unique fixed point of f

Therefore, f has a unique fixed point in X. 

Corollary (3.8):

Let (X, G) be a G-metric space, and f be a self-mapping on X. If

there exists a point x0  X, such that the sequence ni 0{f x } is a convergent

sequence in X, where:

G(fx, fz, fz)  qG(x, z, z) …(3.14)

for all x, z  X and for some 0  q < 1. Then f has a unique fixed point in

X.

Proof:



The proof follows from Theorem (3.7), by taking y  z in

inequality (3.10), consequently f has a unique fixed point in X. 

4. Fixed Point Theorems for Expansive Mapping in G-Metric Spaces

In this section, we will prove some theorems for fixed point

theory of expansive mappings in G-metric spaces.

Analogous to [5], [6], we define the expansive mapping which

defined on G-metric space:

Definition (4.1):

Let (X, G) be a G-metric space and f be a self-mapping on X.

Then, f is called expansive mapping if there exists a constant q > 1, such

that:

G(fx, fy, fz)  qG(x, y, z)

…(4.1)

for all x, y, z  X.

Theorem (4.2):

Let (X, G) be a G-metric space and f be an expansive and

surjective self-mapping on X. If there exist x0  X, such that ni 0{f x } be a

convergent sequence in X. Then f has a unique fixed point in X.

Proof:

Suppose that f is a surjective on X

To show that f is injective mapping on X

Let x, y  X, such fx  fy

Then, G(fx, fx, fy)  0

Since, f is an expansive mapping, we have:



G(fx, fx, fy)  qG(x, x, y)

Thus, qG(x, x, y)  0

Hence, G(x, x, y)  0 and x  y

Then, f is an injective mapping, but f is a surjective mapping

Thus, f is a bijective mapping

Therefore, f is an invertible mapping

Suppose that g is the inverse mapping of f

Hence:

G(x, y, z)  G(f(gx), f(gy), f(gz))  qG(hx, hy, hz)

Then, we get:

G(hx, hy, hz)  pG(x, y, z)

for all x, y, z  X, where p  1
q

< 1.

Now, we have the inverse mapping g satisfies all these conditions in

Theorem (3.7)

By Theorem (3.7), g has a unique fixed point u in X, gu  u

But, u  f(gu)  fu

Thus, u is also a fixed point of f in X.

Uniqueness. Suppose that v is another fixed point of f in X, f(v) 

v, v  u

Then:

fv  v  f(g(v))  g(f(v))



Thus, fv is another fixed point of g in X

By uniqueness of fixed point, we get:

v  fv  u

Thus, u is a unique fixed point of f in X

Therefore, f has a unique fixed point in X. 

Corollary (4.3):

Let (X, G) be a G-metric space, and f be a surjective self-mapping

on X. If there exists

x0  X, such that ni 0{f x } be a convergent sequence in X, where:

G(fx, fz, fz)  qG(x, z, z) …(4.2)

for x, z  X and for some q > 1. Then f has a unique fixed point in X.

Proof:

Suppose that f is a surjective mapping on X

To show that f is injective mapping on X

Let x, y  X, such that fx  fy

Then, G(fx, fy, fy)  0

By using inequality (4.2), we have:

G(fx, fy, fy)  qG(x, y, y)

Thus, qG(x, y, y)  0

Hence, G(x, y, y)  0 and x  y

Then, f is an injective mapping, but f is a surjective mapping



Thus, f is a bijective mapping

Therefore, f is invertible mapping, i.e., f has inverse mapping, say, g is

inverse mapping of f.

By using inequality (4.2), we see:

G(x, z, z)  G(f(gx), f(gz), f(gz))  qG(gx, gz, gz)

Thus:

G(gx, gz, gz)  pG(x, z, z)

for all x, y, z  X, where p  1
q

< 1.

By using Corollary (3.8) of Theorem (3.7), we have g has a unique fixed

point, say w, in X, g(w)w

But, w  f(g(w))  fw

Thus, w is also a fixed point of f in X.

For the uniqueness, suppose that v another fixed point of f in X,

such f(v)  v, v  w

Then, fv  v  f(g(v))  g(f(v))

Thus, fv is another fixed point of g in X

By uniqueness of a fixed, we get v  fv  w

Thus, w is a unique fixed point of f in X

Therefore, f has a unique fixed point in X. 

Corollary (4.4):



Let (X, G) be a G-metric space, and f be a surjective self-mapping

on X. If there exists

x0  X, such that ni 0{f x } be a convergent sequence in X, where:

G(fx, fy, fz)  q{G(x, y, y) + G(z, y, y)} …(4.3)

for x, y, z  X and for some q > 1. Then f has a unique fixed point in X.

Proof:

The proof follows from corollary (4.3), by taking y  z in

inequality (4.3). 
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