استخدام المحاكاة للتحري عن حصانة اختبار الاستقطاب

د. صلاح حمزة عبد *

|- المقدمة

يعتبر التوزيع متعدد الحدود (The Multinomial Distribution) أحد أهم التوزيعات متعددة المتغيرات من النوع المتقطع ، وهو يمثل الحالة العامة لتوزيع ذي الحدين ، إذ يقال بان المتغيرات x_1, x_2, \dots, x_k ، التي تمثل عناصر في المتجه العشوائي x_1 ، تخضع للتوزيع متعدد الحدود ، إذا تمثلت دالة كتلة الاحتمال المشتركة لها على النحو التالي x_1, x_2, \dots, x_k

$$p(\underline{x}) = p(x_1, x_2, ..., x_k) = \frac{n! \prod_{i=1}^k p_i^{x_i}}{\prod_{i=1}^k x_i!} , \quad 0 < p_i < 1 , \quad x_i = 0, 1, ..., n$$

$$i = 1, 2, ..., k , \quad \sum_{i=1}^k p_i = 1 , \quad \sum_{i=1}^k x_i = n \quad ----(1)$$

ويشار لذلك بالشكل ، $M\left(\underline{x};p_{1},p_{2},...,p_{k},n\right)$ ، ويشار لذلك بالشكل . [3] فتكون الدالة المولدة لعزوم هذا التوزيع بالشكل

$$M_{\underline{X}}(t) = E\left(e^{t/\underline{X}}\right) = \left\{\sum_{i=1}^{k} p_i e^{t_i}\right\}^n \qquad ----(2)$$

 $\underline{t} = (t_1, t_2, ..., t_k)^{\prime}$ حيث أن

و $\mu_{x_i}=n~p_i$ متوسط وتباين أي متغير في المتجه العشوائي في فهما على التوالي متغير في المتجه العشوائي و $\mu_{x_i}=n~p_i$ ، في حين إن التباين المشترك ما بين (i=1,2,...,k) ، $\sigma_{x_i}^2=n~p_i~q_i$

مقبول للنشر بتاريخ 2005/10/30

^{*} استاذ/ الجامعة المستنصرية/كلية الادارة والاقتصاد/قسم الاحصاء

أي متغيرين مثل x_j و x_j يتمثل بالشكل p_j بالشكل p_j ، لينتج عن ذلك إن الارتباط ما بين المتغيرين مثل $p_{ij}=-\sqrt{p_ip_j/q_iq_j}$ ، هو عبارة عن ، $p_{ij}=-\sqrt{p_ip_j/q_iq_j}$ ، هو عبارة عن ، $p_{ij}=-\sqrt{p_ip_j/q_iq_j}$ ، هو عبارة عن ، $p_{ij}=-\sqrt{p_ip_j/q_iq_j}$. يمكن كتابة مصفوفة التباين والتباين المشترك للمتجه العشوائي $p_{ij}=-\sqrt{p_ip_j/q_iq_j}$

$$V = \begin{pmatrix} np_1q_1 & -np_1p_2 & \dots & -np_1p_k \\ -np_1p_2 & np_2q_2 & \dots & -np_2p_k \\ \vdots & \vdots & \ddots & \vdots \\ -np_1p_k & -np_2p_k & \dots & np_kq_k \end{pmatrix} ----(3)$$

ومصفوفة الارتباطات مابين كل زوج من عناصر المتجه العشوائى \underline{x} لتكون ،

$$R = \begin{pmatrix} 1 & -\sqrt{p_1 p_2/q_1 q_2} & \dots & -\sqrt{p_1 p_k/q_1 q_k} \\ -\sqrt{p_1 p_2/q_1 q_2} & 1 & \dots & -\sqrt{p_2 p_k/q_2 q_k} \\ \vdots & \vdots & \ddots & \vdots \\ -\sqrt{p_1 p_k/q_1 q_k} & -\sqrt{p_2 p_k/q_2 q_k} & \dots & 1 \end{pmatrix} \qquad ----(4)$$

(Singular distribution) التوزيع متعدد الحدود هو عبارة عن توزيع شاذ (Singular distribution) ، [3] الكون رتبة أي من المصفوفتين V و V تساوي درجتها التي هي V ، بل إن رتبة أي منهما هي V . V . V . V . V . V . V . V . V . V . V . V . V . V . V . V . V . V .

، x_j على بان انحدار x_i بان انحدار x_i على على Johnson لقد لاحظ كل من Johnson عام الحداد ، هو انحدار خطي ، يمكن تمثيله على وفق المعادلة ، $i\neq j$ $E(x_i/x_i)=(n-x_i)p_i\left(1-p_i\right)^{-1}$

كما لاحظا أيضا" إن انحدار x_i على x_b على x_i على x_b ،..., على وفق الصيغة ، انحدار خطى متعدد ، يمكن تمثيله على وفق الصيغة ،

$$E(x_i / x_{b_1}, x_{b_2}, ..., x_{b_r}) = \left(n - \sum_{j=1}^r x_{b_j}\right) p_i \left(1 - \sum_{j=1}^r p_{b_j}\right)^{-1} ----(6)$$
(121)

إن تطبيقات التوزيع متعدد الحدود واسعة ، بل هي أوسع من تطبيقات توزيع ذي الحدين ، الشهير ، لكون التوزيع متعدد الحدود ، كما أسلفنا ، عبارة عن الحالة العامة لتوزيع ذي الحدين ، وذلك عند وجود أصناف متعددة من الحوادث ، بدلا" من اثنتين كما هو الحال للظواهر التي تخضع لتوزيع ذي الحدين . إن ابرز تطبيقات التوزيع متعدد الحدود تتمثل في :

1) النظرية الحركية في الفيزياء [3] ، إذ تحتل الجزيئات ، وفي بعض الدراسات الذرات ، خلايا معينة (أصناف) في حيز حالة الظاهرة ، بمعنى أن كل جزيئه تقع ضمن خلية في حيز ذي ستة أبعاد ، ثلاثة منها للموقع ، الطول والعرض والارتفاع ، وثلاثة أخرى للسرعة .

2) عند كون البيانات مأخوذة كعينة عشوائية ، يمكن تصنيفها على وفق مجاميع محددة ، على أن تكون المشاهدات مستقلة عن بعضها البعض ، فيكون تطبيق متعدد الحدود ممكنا" لجداول التوافق التي تنطبق عليها هذه المواصفات .

(i,j) التوزيع متعدد الحدود ذي أهمية بالغة في تحليل استطلاعات الرأي (i,j) التي تسبق الانتخابات ، فلو أن (i,j) من الأحزاب السياسية تشترك في انتخابات برلمانية ، وإن (i,j) عبارة عن نسبة الناخبين المصوتين لصالح الحزب (i,j) في استطلاع للرأي قبل الانتخابات الفعلية ، فإن المتجه الذي يحتوي على متغيرات تمثل أعداد المصوتين لهذا الحزب أو ذاك ، كعناصر ، سيخضع للتوزيع متعدد الحدود .

4) عند دراسة التغيرات التي تطرأ على كثافة مجتمع من الحيوانات المهاجرة [1] ، كأحد جوانب الدراسة في علم البيئة ،فعلى سبيل المثال ، مجتمع الأسماك في بحيرة ، إذ يلاحظ تجمع الأسماك في جيوب معينة في أوقات محددة من السنة بينما تنتشر في أرجاء مختلفة في أوقات أخرى ، فلإغراض الصيد يكون من المفيد تحديد الوقت الذي تبتدئ فيه الأسماك بالحركة خارجة" من تلك الجيوب . والحالة أعلاه تنظيق أيضا" على بعض أصناف الطيور المهاجرة .

(The Polarization) اا- الاستقطاب

يقال للتوزيع متعدد الحدود ، ذي k من المتغيرات بأنه مستقطب (Polarized) ، إذا تمركزت كتلته الاحتمالية إجمالا" في عدد من المتغيرات اقل من k . ففي سنة 1981 قدم كلّ من مركزت كتلته الاحتمالية إجمالا" في عدد من المتغيرات اقل من k . واختبارا" لتحديد فيما إذا كانت مجموعة المتغيرات k تخضع لتوزيع متعدد حدود مستقطب بقيمة معيار استقطاب معينة أم لتوزيع متعدد حدود بقيمة معيار استقطاب اكبر .

إن ما قدمه كلٌ من Alam و Mitra يستند على الترتيب الجزئي لمتجهات مثل \underline{p} ، هذا الترتيب الذي يتم بناء" على علاقة البروز [1] ، (Majorization relation) التالية ، إذ $\sum_{i=1}^{j} p_{(i)}^* \geq \sum_{i=1}^{j} p_{(i)}^*$ يقال بأن \underline{p} أكثر بروزا" من \underline{p} إذا كان $\underline{p}^* < \underline{p}$ ، أو بمعنى آخر إذا كان \underline{p} تكثر القيمة ذات الترتيب \underline{i} بعد ترتيب قيم \underline{p} , \underline{p} . \underline{p} تنازليا" .

ومما ورد أعلاه ، فأنه يقال $[\ 1\]$ ، للتوزيع متعدد الحدود ذي المتجه الاحتمالي \underline{p} بأنه أكثر أو $\underline{p}^* < \underline{p}$ أو $\underline{p}^* < \underline{p}$ أو $\underline{p}^* < \underline{p}$ أو $\underline{p}^* < \underline{p}$ على التوالي . فعلى سبيل المثال يمكن على وفق الوصف أعلاه كتابة ،

$$\left(\frac{1}{k}, \frac{1}{k}, \dots, \frac{1}{k}\right) < \left(\frac{1}{k-1}, \frac{1}{k-1}, \dots, 0\right) < (1, 0, \dots, 0)$$

لقد عرّف كلّ من Hardy و Littewood عام 1952 [2] ، صنفا من الدوال القد عرّف كلّ من Hardy و Littewood و Littewood و الدوال الدالية المتماثلية المتماثلية المحديد (Schur-Convex function) ، إذ يقال بان الدالية المتماثلية و المحديد محديد و المحديد و المثال الدالية الدالية المثال الدالية الدالية المثال الدالية الدال

إن التطوير البالغ الاهتمام ، وذي الأهمية الكبيرة في بحثنا هذا ، هو ذاك الناجم عن بحثين متسلسلين أعد أولهما كلّ من Proschan و Sethuraman عام 1977 [8] ، بينما أشترك مع من أعدا البحث الأول في ذات العام الباحث Nevius

 $f(\underline{p})$ أيضا" [5] ، بينوا فيهما أن الشرط الضروري والكافي للدالة المتماثلة القابلة للاشتقاق التكون دالة شور محدبة ، هو أن يكون ،

$$\left(\frac{\partial f(\underline{p})}{\partial p_{i}} - \frac{\partial f(\underline{p})}{\partial p_{j}}\right) (p_{i} - p_{j}) \ge 0$$

 $i \neq j$ لكل قيم

فإذا افترضنا أن $\frac{1}{2}(x_1,x_2,...,x_k)$ عبارة عن متجه عناصره عبارة عن التكرارات في عينة مسحوية من مجتمع يخضع للتوزيع متعدد الحدود ، إذ أن ، $\frac{1}{2}(x_1,x_2,...,x_k)$ ، وإنه يراد اختبار الفرضية مسحوية من مجتمع يخضع للتوزيع متعدد الحدود ، إذ أن $\frac{1}{2}(x_1,x_2,...,x_k)$ ، وإنه يراد اختبار الفرضية $\frac{1}{2}(x_1,x_2,...,x_k)$ ، إذ أن $\frac{1}{2}(x_1,x_2,...,x_k)$ ، وانه يراد اختبار القيم . لقد الفرضية ، $\frac{1}{2}(x_1,x_2,...,x_k)$ ، إذ أن $\frac{1}{2}(x_1,x_2,...,x_k)$ ، وانه يراد اختبار القيم . لقد الفرضية ، $\frac{1}{2}(x_1,x_2,...,x_k)$ ، إذ أن $\frac{1}{2}(x_1,x_2,...,x_k)$ ، وانه يراد اختبار القيم . لقد الفرضية ، المختبار التالية ،

$$T(\underline{x}) = \sum_{i=1}^{k} x_i^2 / n = \left(\sum_{i=1}^{k} (x_i - n/k)^2 + n^2/k \right) / n \qquad ----(7)$$

التي هي عبارة عن دالة شور محدبة ، وبينا بأن اختبار الفرضية H_o أعلاه ضد الفرضية c أن $\{x:T(\underline{x})>c\}$ ، على أن $\{x:T(\underline{x})>c\}$ ، على أن ثابت يحدد من خلال العلاقة التالية ،

$$p\left\{T(\underline{x}) > c \mid \underline{p} = \underline{p_o}\right\} = \alpha$$
 $---(8)$

كما وذكر هذان الباحثان بأن احصاءة الاختبار في (7) المقترحة من قبلهما تؤول إلى أقل قيمة لها والبالغة $n \to \infty$ عندما n^2/k عندما تتمركز كتلة احتمال التوزيع متعدد الحدود في خلية واحدة .

ويما أن $T(\underline{x})$ هي دالة شور محدبة بدلالة \underline{x} ، فقد برهن كلّ من Marshal و Olkin عام 1979 من دالة قوة الاختبار ستكون هي الأخرى دالة شور محدبة ولكن بدلالة \underline{p} ، بأن دالة قوة الاختبار غير متحيز .

لقد عمل Alam و Mitra عام 1981 [1] ، على إيجاد توزيع لاحصاءة اختبار الاستقطاب $T(\underline{x})$ تحت فرضية العدم H_o لغرض تحديد قيمة $T(\underline{x})$ بموجب المعادلة (8) ، فافترضا بأن x عبارة عن أقل عدد صحيح غير سالب اكبر من أو يساوي x وإن x هو اكبر عدد صحيح اقل من او يساوي x .

T وبافتراض أن $D_k(t;p_1,p_2,...,p_k,n)=p(T\leq t)$ وبافتراض أن ، وبافتراض أن ، وفتراض أن ،

$$C_{jr} = C_r^n p_j^r (1 - p_j)^{n-r}$$

$$a_j = \frac{n}{j} - \{n(t - n/j)(1 - 1/j)\}^{1/2}$$

$$b_j = \frac{n}{j} + \{n(t - n/j)(1 - 1/j)\}^{1/2}$$

فقد حصل هذان الباحثان على صيغة لدالة التوزيع التجميعية مستندين على خاصية الإرجاع(recursively property) التي تميز التوزيع متعدد الحدود ، وذلك بالشكل ،

$$D_{2}(t; p_{1}, 1-p_{1}, n) = \begin{cases} 0 & , & t < n/2 \\ \sum_{r=a_{2}^{+}}^{b_{2}^{-}} C_{1r} & , & n/2 \le t \le n \\ 1 & , & t > n \end{cases}$$

$$D_{k}(t; p_{1}, p_{2}, ..., p_{k}, n) = \begin{cases} 0 & , & t < n/k \\ \sum_{r=a_{k}^{+}}^{b_{k}^{-}} C_{kr} D_{k-1} \left(\frac{nt-r^{2}}{n-r}; \frac{p_{1}}{1-p_{k}}, ..., \frac{p_{k-1}}{1-p_{k}}, n-r \right) & , & n/k \le t \le n, ---- (11) \\ 1 & , & t < n \end{cases}$$

إن علاقة الإرجاع المستخدمة للحصول على الصيغ أعلاه ، تستند [$\mathbf{1}$] في الواقع على x_k حقيقة ان التوزيع الشرطي للمتجه العشوائي $\underline{u}=\left(x_1\,,x_2\,,...,x_{k-1}\right)'$ على كون $M\left(\underline{u}\,;\frac{p_1}{1-p_k}\,,\frac{p_2}{1-p_k}\,,...,\frac{p_{k-1}}{1-p_k},n-x_k\right)$ ، معلومة ، هو عبارة عن توزيع متعدد حدود ، $M\left(\underline{u}\,;\frac{p_1}{1-p_k}\,,\frac{p_2}{1-p_k}\,,...,\frac{p_{k-1}}{1-p_k}\,,n-x_k\right)$

أما التوزيع التقريبي للاحصاءة $T(\underline{x})$ عند قيم n الكبيرة ، فقد توصلا له أيضا" ، بأن افترضا أن $D = n \sum = n$ عبارة عن مصفوفة التباين والتباين المشترك للمتجه $D = n \sum = n$

$$\varphi = \underline{p}' \underline{p} = \underline{\delta}' \underline{\delta} = \sum_{i=2}^{k} \delta_i^2 + 1/k \qquad ----(12)$$

وان

$$\underline{\delta}' G \Sigma G' \underline{\delta} = \sum_{i=2}^{k} \lambda_i \, \delta_i^2 = \underline{p}' \Sigma \, \underline{p} = \varphi_1 - \varphi^2 \qquad \qquad ----(13)$$

. **[1]**،
$$\varphi_1\!\geq\!\varphi^2$$
 وان $\varphi_1=\sum_{i=1}^kp_i^3$ حيث أن

 $\underline{\mu}=n\,\underline{p}$ ويما أن \underline{x} تتقارب [1] من التوزيع الطبيعي متعدد المتغيرات بمتجه المتوسطات \underline{x} ومصفوفة التباين والتباين المشترك $n\Sigma$ ، فان Alam و Mitra ومصفوفة التباين والتباين المشترك من توزيع ،

$$\frac{n}{k} + \sum_{i=2}^{k} \lambda_i \ z_i \qquad \qquad ----(14)$$

. $n\,\delta_i^2/\lambda_i$ يخضع لتوزيع مربع كاي اللامركزي بدرجة حرية واحدة ومعلمة لامركزية z_i . وحيث ان z_1 متغيرات مستقلة عن بعضها البعض [1] ، فقد افترض Alam وحيث ان $z_2, z_3, ..., z_k$ بان $z_3, z_4, ..., z_6$ بان z_4 بان و z_5 على التوالي عبارة عن متوسط وتباين المتغير في (14) ، فكتبا ،

$$\eta = 1 + (n-1)\varphi$$

$$\upsilon = 2(\varphi^2 + \varphi - 2\varphi_1) + 4n(\varphi_1 - \varphi^2)$$

ويما أن العزم المركزي ، $\chi^2_{m,\lambda}$ من الدرجة r لتوزيع مربع كاي اللامركزي ، κ_r هو κ_r ويما أن العزم المركزي .

$$\kappa_r = 2^{r-1} \{ m + r\lambda \} (r-1)!$$

فان $\chi^2_{m,\lambda}$ سيتقارب من التوزيع الطبيعي عندما $\infty \to \infty$. وعلى وفق ذلك [3] سيتقارب توزيع $\chi^2_{m,\lambda}$ من التوزيع الطبيعي القياسي .

: هما وفي الواقع [1] ، فان هناك حالتان ستكونا قائمتين ، ذلك عند كون $arphi_1 = arphi_2$ هما

، $\lambda_2=\lambda_3=...=p_k=1/k$ وفي هذه الحالة سيكون . $p_1=p_2=...=p_k=1/k$ (1 الخصل من (13) على . $b_i=0$ لقيم $\delta_i=0$ القيم كاي اللامركزي بدرجة حرية واحدة ، وبالتالي من (14) فان توزيع kT-n سيتقارب من توزيع مربع كاي ب kT-n من درجات الحرية .

. وفي هذه الحالة سيكون T=n باحتمال مقداره واحد . i
eq j باحتمال مقداره واحد . $p_i \, p_j = 0$

ولغرض المقارنة بين الصيغة التقريبية والصيغة المضبوطة ، لتوزيع الاحصاءة T ، ليكن ولغرض المقارنة بين الصيغة التقريبية والصيغة المئين الأكبر من الدرجة α للتوزيع الطبيعي القياسي ، $T_{\alpha}=\eta+\sqrt{\upsilon}\,Z_{\alpha}$ فمن خلال توزيع T التقريبي فان قوة اختبار الاستقطاب التقريبية ماهي إلا ،

$$\Phi\left(\frac{\sqrt{n}(\varphi-\varphi_o)}{2(\varphi_1-\varphi^2)} - \left(\frac{\varphi_{1o}-\varphi_o^2}{\varphi_1-\varphi^2}\right)^{1/2} Z_\alpha\right) \qquad ----(17)$$

 ϕ_1 و ϕ_0 و ϕ_{1o} و القياسي ، وإن ϕ_0 و التجميعية للتوزيع الطبيعي القياسي ، وإن ϕ_0 و ϕ_0 تمثل قيم ϕ_0 على التوالي عند ϕ_0 على التوالي عند ϕ_0

ااا- هدف البحث

بعد العرض المقدم في أعلاه لاختبار الاستقطاب واحصاءته ، والذي تتأتى أهميته من أهمية التوزيع متعدد الحدود ، قيد الاستخدام فيه ، وأهمية التطبيقات الواسعة جدا" التي يتميز بها هذا

التوزيع ، وفي مختلف حقول العلم ، ارتأينا دراسة حصانة هذا الاختبار فيما لو تم توليد البيانات على وفق توزيعات متقطعة أخرى غير التوزيع قيد الاهتمام ، هذه التوزيعات سيتم ذكرها في الفقرة اللاحقة . وذلك على وفق حجوم عينات مختلفة ، منها ما هو صغير ومنها ما هو متوسط ومنها ما هو كبير ، ويعدد متغيرات مختلف ، ومتجه معالم \underline{p} مختلف .

VI- وصف تجربة المحاكاة

لغرض تحقيق ما نصبو إليه من هدف فقد تم بناء تجربة محاكاة ، مستعملين لاستخلاص نتائجها برنامجا" مكتويا" من قبل الباحث بلغة فجوال بيزك ، وذلك على وفق الفروض التالية ،

- s=125 ومتوسطة s=35 ومتوسطة عينات ، صغيرة s=10 ومتوسطة عينات ، صغيرة عينات ، صغيرة المتات عبيرة s=125
 - 2. تم افتراض عدد المحاولات ، n=20 مرة , وافتراض n=30 ، مرة أخرى .
 - 3. تم افتراض عدد المتغيرات k مساوي مرة للثلاثة وأخرى للخمسة .
- 4. تم افتراض خضوع $\underline{x} = (x_1, x_2, x_3, x_4, x_5)'$ و $\underline{x} = (x_1, x_2, x_3)'$ للتوزيعات المتعددة المتغيرات المتقطعة التالية ، إضافة" للتوزيع متعدد الحدود ، لغرض مقارنة الحصانة معه ، كونه أساس بناء معيار الاختبار ،
- (a) <u>التوزيع متعدد الحدود السالب</u> (Negative Multinomial): ويتمثل بدالة كتلة الاحتمال ذات الصيغة [6] ،

$$p(x_{1}, x_{2},...,x_{k}) = \frac{\Gamma\left(\xi + \sum_{i=1}^{k} (x_{i} - 1)\right)}{\left(\prod_{i=1}^{k} (x_{i} - 1)!\right)\Gamma(\xi)} q^{-\xi} \prod_{i=1}^{k} \left(\frac{p_{i}}{q}\right)^{x_{i} - 1} ----(18)$$

$$x_{j} \ge 1, \quad j = 1, 2, ..., k, \quad \xi > 0$$

$$q - \sum_{i=1}^{k} p_{i} = 1$$

الوصول عدد حالات الفشل حتى الوصول x_j وإن كل x_j يمثل عدد حالات الفشل حتى الوصول إذ أن x_j عبارة عن عدد صحيح موجب ، وإن كل النجاح .

ولغرض التوفيق مع التوزيع متعدد الحدود تماما" ، وحتى تكون المقارنة صائبة ، فقد تم بتر التوزيع أعلاه عند n من المحاولات بقدر عدد تلك التي ستؤخذ للتوزيع متعدد الحدود ، كما وأُخذت $\xi=3$ كتنفيذ فعلي عند إجراء تجربة المحاكاة .

- (b) <u>التوزيع الهندسي متعدد المتغيرات</u>، وهو على نفس الصيغة في (18) أعلاه ولكن بقيمة على مساوية للواحد . إن نفس ما ذُكر في التوزيع متعدد الحدود السالب ، الذي يكون التوزيع الهندسي متعدد المتغيرات ، حالة خاصة منه ، سينطبق هنا أيضا" .
- () التوزيع الهندسي الزائدي متعدد المتغيرات (طلق الهندسي الزائدي متعدد المتغيرات (المورد المتعدد المتغيرات الصيغة [9] المورد المتمال دات الصيغة [9] المورد ا

$$p(x_1, x_2, ..., x_k) = \frac{\prod_{j=1}^k C_{x_j}^{M_j}}{C_n^M} ----(19)$$

$$\sum_{j=1}^k x_j = n , j = 1, 2, ..., k , 0 \le x_j \le M_j$$

إذ لو افترضنا أن هناك مجتمع مؤلف من M من المفردات ، وفي هذا المجتمع تقع الأصناف ، M_1 من مفردات المجتمع تقع في الصنف الأول ، و M_2 من مفردات المجتمع تقع في الصنف الأاني ، وهكذا .. فإن .. فإن M_k من مفردات المجتمع تقع في الصنف M_k ، فيكون بالطبع في الصنف الثاني ، وهكذا .. فإذا سحبنا عينة عشوائية بحجم M_k من هذا المجتمع فإن التوزيع المشترك للمتغيرات العشوائية M_k ، التي تمثل عدد المفردات المأخوذة ضمن العينة من كل صنف من أصناف المجتمع على التوالى ، سيكون هو المذكور في الصيغة (19) .

لقد تم افتراض أن $M_j=n$ ، كما تم بتر التوزيع عند $x_j=1$ عند إجراء المحاكاة لغرض التوافق مع خصائص التوزيع متعدد الحدود ، لأجل أن تكون المقاربة معه صائبة .

(Multivariate Logarithmic <u>توزيع المتسلسلة اللوغارتمية متعدد المتغيرات</u> (d ، [7] ، بالمعلمات بالمعلمات ، $\theta_1, \theta_2, ..., \theta_k$ ويتمثل بدالة كتلة الاحتمال ذات الصيغة [7]

$$p(x_{1}, x_{2}, ..., x_{k}) = \frac{(n-1)! \prod_{j=1}^{k} \theta_{j}^{x_{j}}}{\left(\prod_{j=1}^{k} (x_{j})\right) \left\{-Log\left(1 - \sum_{j=1}^{k} \theta_{j}\right)\right\}}$$

$$\sum_{j=1}^{k} x_{j} = n > 0, \quad 0 \le x_{j}, \quad 0 < \sum_{j=1}^{k} \theta_{j} < 1$$

لقد تم بتر هذا التوزيع من الجانبين ، عند القيمة واحد من الحد الأدنى وعند القيمة n من الحد الأعلى ، عند إجراء المحاكاة وذلك لغرض التوافق مع خصائص التوزيع متعدد الحدود أساس إنشاء الاختبار ومعياره ، لأجل أن تكون المقارنة معه صائبة .

- 5. تم اعتماد مستويات المعنوية الشائعة لإغراض الاختبار 0.01 و 0.05 و 0.10 .
 - 6. تم استخدام حجم مكرر مقداره 1000 لكل من التوافيق المذكورة في أعلاه .
- 7. تم الاستناد على مستوى المعنوية التجريبي وقوة الاختبار التجريبية للحكم على مدى حصانة الاختبار ، اذ أن مستوى المعنوية التجريبي ، يتمثل بنسبة عدد مرات رفض الفرضية وهي واقعا" صحيحة ، وإن قوة الاختبار التجريبية ، تتمثل بنسبة عدد مرات قبول الفرضية وهي وإقعا" خطأ ، مطروحة" من الواحد .

٧- استعراض النتائج

بعد تنفيذ تجربة المحاكاة المشار إليها في الفقرة (IV) السابقة ، تم الحصول على النتائج الواردة في الجدول رقم (1) أدناه :

جدول رقم (1) : يمثل نتائج مستوى المعنوية التجريبي \hat{lpha} وقوة الاختبار التجريبية $1-\hat{eta}$ ، لعدد متغيرات k مختلفة ، وحدوم عينات s مختلفة ، وقيم n مختلفة ، ومستويات معنوية فعلية α

	α		k = 3							k = 5					
	u		s = 10		s=3		s =		s = 10		s = 35		s = 125		
			n=20	n=30	n=20	n=30									
		α̂	0.0084	0.0092	0.0088	0.0094	0.0092	0.0098	0.0085	0.0094	0.0090	0.0096	0.0093	0.0101	
٠.	0.01	$1-\hat{\beta}$	0.7162	0.7231	0.7222	0.7658	0.7610	0.8083	0.7214	0.7333	0.7303	0.7668	0.7989	0.8465	
		α̂	0.0432	0.0449	0.0441	0.0462	0.0453	0.0472	0.0436	0.0452	0.0450	0.0466	0.0459	0.0485	
1	0.05	$1-\hat{\beta}$	0.8065	0.8149	0.8094	0.8222	0.8144	0.8337	0.8118	0.8372	0.8294	0.8441	0.8366	0.8764	
	0.1	α̂	0.0833	0.0924	0.0876	0.0965	0.0925	0.0967	0.0877	0.0944	0.0929	0.0963	0.0938	0.0973	

		$1-\hat{\beta}$	0.8818	0.9202	0.9087	0.9432	0.9237	0.9543	0.9109	0.9431	0.9199	0.9448	0.9348	0.9765
متعدد الحده د السالب	0.01	α̂	0.0077	0.0085	0.0081	0.0087	0.0085	0.0091	0.0078	0.0087	0.0083	0.0089	0.0086	0.0094
		$1-\hat{\beta}$	0.6155	0.6224	0.6215	0.6651	0.6603	0.7076	0.6207	0.6326	0.6296	0.6661	0.6982	0.7458
		α̂	0.0425	0.0442	0.0434	0.0455	0.0446	0.0465	0.0429	0.0445	0.0443	0.0459	0.0452	0.0478
	0.05	$1-\hat{\beta}$	0.7058	0.7142	0.7087	0.7215	0.7137	0.7330	0.7111	0.7365	0.7287	0.7434	0.7359	0.7757
		α̂	0.0826	0.0917	0.0869	0.0958	0.0918	0.0960	0.0870	0.0936	0.0922	0.0956	0.0931	0.0968
	0.10	$1-\hat{\beta}$	0.7811	0.8195	0.8080	0.8425	0.8230	0.8536	0.8102	0.8424	0.8192	0.8441	0.8341	0.8759
		α̂	0.0074	0.0081	0.0078	0.0083	0.0081	0.0087	0.0075	0.0083	0.0079	0.0085	0.0082	0.0090
	0.01	$1-\hat{\beta}$	0.5890	0.5956	0.5948	0.6365	0.6319	0.6772	0.5940	0.6054	0.6025	0.6375	0.6682	0.7137
=	0.05	α̂	0.0407	0.0423	0.0415	0.0435	0.0446	0.0445	0.0411	0.0426	0.0424	0.0439	0.0432	0.0457
هندسر		$1-\hat{\beta}$	0.6755	0.6835	0.6782	0.6905	0.6830	0.7015	0.6805	0.7048	0.6974	0.7114	0.7043	0.7423
, متعدد متغد ات		α̂	0.0790	0.0878	0.0832	0.0917	0.0879	0.0919	0.0833	0.0896	0.0882	0.0915	0.0891	0.0926
	0.10	$1-\hat{\beta}$	0.7475	0.7843	0.7733	0.8063	0.7876	0.8169	0.7754	0.8062	0.7840	0.8078	0.7982	0.8382
. فندسب زانده، متعدد		α̂	0.0068	0.0075	0.0072	0.0076	0.0075	0.0079	0.0069	0.0076	0.0073	0.0078	0.0075	0.0082
	0.01	$1-\hat{\beta}$	0.5399	0.5459	0.5484	0.5834	0.5792	0.6207	0.5444	0.5548	0.5522	0.5843	0.6124	0.6541
		α̂	0.0373	0.0387	0.0380	0.0399	0.0409	0.0408	0.0376	0.0390	0.0388	0.0402	0.0396	0.0419
	0.05	$1-\hat{\beta}$	0.6191	0.6265	0.6215	0.6329	0.6260	0.6430	0.6237	0.6459	0.6391	0.6520	0.6455	0.6803
		α̂	0.0724	0.0805	0.0763	0.0840	0.0806	0.0842	0.0764	0.0822	0.0808	0.0838	0.0817	0.0849
	0.10	$1-\hat{\beta}$	0.6851	0.7189	0.7087	0.7390	0.7219	0.7512	0.7107	0.7389	0.7186	0.7404	0.7315	0.7682
متسلسلة لوغار تعمة متعدد	0.01	α̂	0.0073	0.0080	0.0077	0.0082	0.0080	0.0085	0.0074	0.0082	0.0078	0.0084	0.0081	0.0088
		$1-\hat{\beta}$	0.5796	0.5861	0.5888	0.6263	0.6218	0.6664	0.5845	0.5957	0.5929	0.6273	0.6575	0.7023
		α̂	0.0400	0.0416	0.0408	0.0428	0.0439	0.0438	0.0404	0.0419	0.0417	0.0432	0.0425	0.0450
	0.05	$1-\hat{\beta}$	0.6647	0.6726	0.6673	0.6795	0.6721	0.6903	0.6696	0.6935	0.6862	0.7000	0.6930	0.7304
		α̂	0.0777	0.0864	0.0819	0.0902	0.0865	0.0904	0.0820	0.0882	0.0868	0.0900	0.0877	0.0911
	0.10	$1-\hat{\beta}$	0.7355	0.7718	0.7609	0.7934	0.7750	0.8065	0.7630	0.7933	0.7715	0.7949	0.7854	0.8248
1				i .				i		i .	i	i		

ومن هذه النتائج يمكن القول بالحصانة النسبية لاختبار الاستقطاب ، على أن أجود النتائج هي تلك العائدة لحالة التوزيع متعدد الحدود لمتجهات البيانات ، وهذا متوقع كون التوزيع المذكور هو أساس بناء معيار الاختبار ، على أننا ينبغى أن نأخذ بنظر الاعتبار ما يلى ،

- 1) تدرجت حصانة الاختبار نسبيا" على وفق التوزيعات المفترضة لمتجهات البيانات ، من أفضلها إلى اقلها ، وكما يلي ، التوزيع متعدد الحدود السالب ، ومن ثم التوزيع الهندسي متعدد المتغيرات ومن ثم توزيع المتسلسلة اللوغارتمية متعدد المتغيرات ومن ثم التوزيع الهندسي الزائدي متعدد المتغيرات .
- 2) هناك علاقة طردية ما بين حصانة الاختبار و حجم العينة 3 ، إذ تزداد الحصانة بزيادة حجم العينة ، لأن الأقيام التجريبية لمستوى المعنوية تقترب من نظائرها الفعلية ، كما أن أقيام قوة الاختبار التجريبية تأخذ بالزيادة بزيادة حجم العينة .
- 3) تزداد حصانة الاختبار بزيادة عدد المحاولات n ، حيث تزداد أقيام قوة الاختبار التجريبية بزيادة عدد المحاولات ، كما أن الأقيام التجريبية لمستوى المعنوية تأخذ بالاقتراب من نظائرها الفعلية.
- 4) لعدد متغيرات k ، تأثير طردي هو الآخر على الحصانة ، إذ تزداد الحصانة بزيادة عدد متغيرات، لأن الأقيام التجريبية لمستوى المعنوية تأخذ بالاقتراب من نظائرها الفعلية بزيادة عدد متغيرات ، كما أن أقيام قوة الاختبار التجريبية تأخذ بالزيادة هي الأخرى بزيادة عدد متغيرات .

المصادر

- 1) Alam, K. and Mitra, A. (1981) "Polarization test for the multinomial distribution", JASA, Vol. 76, No. 373, march, pp. 107-109.
- 2) Hardy, G. & Littlewood, J. and Polya, G. (1952) "Inequalities", Cambridge university press.
- 3) Johnson, N. and Kotz, S. (1976) "Distributions in statistics: Discrete Distributions", wiley series, USA.
- 4) Marshal, A. and Olkin, I. (1979) "Inequalities: Theory of majorization and its applications", Academic press, New York, USA.
- 5) Nevius, S. & Proschan, F. and Sethuraman, J. (1977) "Schur Functions in statistics: II, stochastic majorization", Annals of statistics, 5, pp. 263-273.

- 6) Neyman, J. (1963) "Certain chance mechanisms involving discrete distributions" proceedings of the international symposium on discrete distributions, USA.
- 7) Patil ,G. and Bildikan , S. (1976) "Multivariate logarithmic series distribution as a probability model in population and community ecology and some of its statistical properties", JASA , 62 , pp. 655-674 .
- 8) Proschan, F. and Sethuraman, J. (1977) "Schur Functions in statistics: I, The preservation theorem", Annals of statistics, 5, pp. 256-262.
- 9) Steyn , H. (1955) " On discrete multivariate probability functions of hypergeometric type " , Annals of mathematical statistics , 8 , pp. 621-633 .

 •••••