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Abstract
In this paper, a full finite volume method is studied for the

two-dimensional linear convection- diffusion problem.  A linear
convection term is approximated by the upwind finite element
method considered over a mesh to the triangular grid, whereas the
linear diffusion term is approximated by using divergence
theorem and approximate the direction derivative by difference
quotient.  The elliptic property, the discrete conservation law  and
local truncation error of this method are proved under some
assumption on the numerical fluxes.

Key words. Finite volume method, convection-diffusion problem,
elliptic property, local truncation error.

1. Introduction
In this paper we consider the following two-dimensional linear

convection-diffusion initial boundary problem:− ∆ + ⋅ ∇ + = ( , , ) ∈ Ω × (0, ] = ;
(1.1)( , , ) = 0 ( , , ) ∈ Γ × (0, ];
(1.2)( , , 0) = ( , ) ( , ) ∈ Ω.
(1.3)
Where Ω ⊂ is a bounded domain with polygonal boundary Γ. The
positive parameter is called diffusion coefficient, the vector : is
called convection coefficient and , : are given functions.
Whereas : Ω is given function.
Convection-diffusion processes appear in many areas of science and
technology. For example, fluid dynamics, heat and mass transfer
hydrology and so on. This is the reason that the numerical solution of
convection-diffusion problem attracts a number of specialty. From an
extensive literature devoted to linear problems, let us mentioned some
papers [1], [10] and the reference therein, few approaches to the solution
of nonlinear problems mentioned in the papers [5], [6], and [11].



It is a well-known fact that the use of classical Galerkin method with
continuous piecewise linear finite elements leads to spurious oscillations
when the local Peclet number is large. To obtain an effective scheme in
the case of that convective term is dominate or the Peclet number is large,
it is required to consider a suitable approximation for the convective
term ⋅ ∇ . The partial upwind finite element scheme is known as the
method solve linear  convection-diffusion problem when the convection
term is dominated [3], [9] and [10]. In [7], [11] and [13] the partial
upwind finite element scheme for two dimensional nonlinear convection-
diffusion problem is studied. In [5] and [6] investigates a combined finite
volume-finite element method for two dimensional nonlinear convection-
diffusion problem which the convection term only is nonlinear.

The purpose of this paper is to investigate a full finite volume method
working on unstructured meshes and preserving elliptic (coercivity)
property. The paper starts with a detailed derivation of the full finite
volume scheme. Firstly; we used the divergence theorem to the diffusion
term on the control domain and approximate direction derivative by
difference quotient. Secondary, we used the upwind finite volume scheme
(see [12],[15]). The elliptic property and local truncation error of the
method are proved. This paper consists sex section. In section 2,
formulation of the problem and some notations. The finite volume space
is defined, and the full finite volume scheme in section 3. The discrete
elliptic property is proven in section 4. In section 5, the discrete mass
conservation law is proven. Finally, in section 6, the local truncation error
of the scheme is shown.

2. Formulation of the Problem and Some Notations
Throughout this paper, we will use (with or without subscript or

superscript) to denote generic constant independent of discrete parameter.(Ω) denotes usual Sobolev spaces, where , are nonnegative integer.
The corresponding norm and semi-norm are ∥ ⋅ ∥ , , and | ⋅ | , , [14].
Particular, for = 2, (Ω) = (Ω), the corresponding norm and semi-
norm are ∥ ⋅ ∥ , , and | ⋅ | , , respectively. Let (⋅,⋅) denote the inner
product of (Ω), then ( , ) = .
As usual (Ω) = { ∈ (Ω); | = 0} denote the subspaces of (Ω).

We assume the coefficient of problem (1.1)-(1.3) satisfied the
following conditions:
(A1) = ( , ) ∈ [ ∞ (Ω)] , ∈ ∞ (Ω), ∈ (Ω) with some > 2,
(A2) − ∇ ⋅ ≥ > 0 on , where does not depend on and ∈ Ω.



The  weak form of  problem (1.1)-(1.3)  is, find : [0, ] (Ω) such
that( , ) + ( , ) = ( , ), for all ∈ (Ω),
(2.1)(0) = ,
(2.2)
where( , ) =

Ω

, ( , ) = [ ∇
Ω

⋅ ∇ + ( ⋅ + ) ] ,
( , ) = .

Ω
We assume that the weak solution of problem (1.1)-(1.3) satisfied

the following conditions:
(A3) ∈ 0, ; (Ω) 0, ; (Ω) , , , ∈ 0, ; (Ω) .
3. The Finite Volume Space and Full Finite Volume Scheme

Let us consider a family of regular triangulation { } in Ω (see [4]).
For a fixed triangulation we defined the mesh parameter by =max ∈ , where is the diameter of the triangle .

We assume that the triangulation family { } is regular and weakly
acute type, i.e.
(A4) There exists ∈ (0, ) independent of , such that all interior
angles of the triangles are bounded as follows:∈ [ , 2],

For a given triangulation with nodes { } ∈ Ω (1 ≤ ≤ ), where
is positive integer dependent on the triangulation, we construct a
secondary partition. Namely, we introduce regions

Ω = : ∈ , | − | ≤ − for all ∈ ,
where | − | is the distance of node and node . We consider the dual
decomposition = {Ω }, where Ω is circumcentric domain associated
with nodal point [ 9]

Ω = Ω , ∈
We say that two nodes , are adjacent if and only if Γ = Ω ∩

Ω ≠ ∅. The set of indices of all interior nodes ∈ Ω is denoted by
whereas the set Λ contain the indices of all nodal points in Ω adjacent to∈ Ω. Moreover, we defined = | − | and = ( + ). The
area of Ω is denoted by = (Ω ) and for the length of the straight-
line segment Γ ( ∈ Λ ) we use the notation = (Γ ). If > 0,
then Γ has a uniquely defined unit outward normal with respect to Ω .



The elements of this partition are defined as follows. Obviously, the
straight-line segment Γ and the node can be regarded as an edge and
the corresponding opposite vertex, respectively, of some triangle .
Now, an element of the partition is defined by = ∪ .
Furthermore, the triangle can be represented as the union of two
triangles ( )( = 1,2), the common boundary  of which is part of the edge
connecting the node with the node (see figure(1)). We set

Γ( ) = Γ ∩ ( ) and ( ) = (Γ( )).
It is not difficult to see that can also be decomposed as = ( ) ∪( ),
where ( ) = ( ) ∪ ( )( = 1,2).

( ) ( )
( ) ( )

Γ( )
Γ( )

Figure (1) The auxiliary triangles ( )and ( )
We mention the following relation:( ( )) = 2 ( ( )) = ( ) .
(3.1)

For ℓ = {0,1,2, … }, ∈ we denote by ℓ( ) the space of all
polynomials on of    degree ≤ ℓ. In what follows the following  finite
element spacesX = { | ∈ (Ω); | ∈ ( ) , ∀ ∈ } ⊂ (Ω) ,= { | ∈ X ; = 0 on } ⊂ (Ω),
and the finite volume space= { | ∈ (Ω) ; | ∈ (Ω ), ∀Ω ∈ }.



By making use of the characteristic function ̂ of circumcentric domainΩ , the mass lumping operator is now defined by : ∈ (Ω)∈ , such that( )= ( ) ̂ ( ),
where ( ) = ( ) = .

Then we have some important lemmas:
Lemma (1) [9]. If is regular triangulation of weakly acute type we
have | | , ,Ω ≤ ∥ ∥ , ,Ω , ∀ ∈ X ,
where = min ; ∈ , = minimum perpendicular length of .
Lemma (2) [9]. For all ∈ X with ≥ 1and all ∈ (Ω) with > 2∥ − ∥ , ,Ω ≤ | | , ,Ω.
Lemma (3) [9].  For all ∈ X(∇ , ∇ ) = − (∈ − ) , 1 ≤ ≤
where is base  function of finite element space X .

We turn to the derivation of the discrete scheme. We start by
integrating the equation (1.1) over Ω and using the relation⋅ ∇ = ∇ ⋅ ( ) − (∇ ⋅ )
Ω

− ∇ ⋅
Ω

( ∇ ) + ∇ ⋅
Ω

( ) − (∇ ⋅
Ω

) +
Ω=

Ω

. (3.2)
We  approximate by the forward difference

Ω≈ ( − ) , (3.3)
where > 0 is time step, for =0,1,…, -1 with = T .
Applying Gauss's theorem in second term of equation (3.2) we obtain∇ ⋅

Ω
( ∇ ) = ⋅ ( ∇ ) ,

where is the unit outer normal on Ω . Then, using the concrete
structure  of the boundary of Ω , we can write∇ ⋅

Ω
( ∇ ) = ∈ ⋅ ( ∇ ) .

we approximate the direction derivatives by difference quotients



⋅ ∇≈ − , (3.4)
then,∇ ⋅

Ω
( ∇ ) ≈ (∈Λ− ) . (3.5)

To approximate the third term∇ ⋅
Ω

( ) = ∈ ⋅
≈ ∈Λ+ 1 − , (3.6)

where ⋅ |Γ ≈ is constant, and | ≈ ( ) + (1 − ) ( )∈ [0,1] is a parameter and depends on , and .
It remains in the left-hand side of equation (3.2), we approximate as
follows:(∇ ⋅

Ω
) = ∈Λ

∇
Ω

⋅
= ∈ ν ⋅
≈ ∈ , (3.7)

and

Ω≈ . (3.8)
The approximation of the right-hand side in equation (3.2) is as follows

Ω≈ . (3.9)
Thus, we obtain the following discrete version of equation (3.2) :( − ) + ∈Λ

1 − 1 − − += . (3.10)



Taking an arbitrary function ∈ ⊂ (Ω) multiplying equation (3.10)
by and summing all these expression over ∈ Λ, the resulting discrete
problem can be written in the form( , ) + ( , ) = ( , ) for all ∈ ,
(3.11)
where( , ) = ∈Λ

( − ) ,( , ) = ∈Λ

{ ∈Λ

(1 − (1 − ) )( − ) + },
, = ∈Λ

.
Moreover, we introduce the following norm [2].∥ ∥ = ( , ) =∥ ∥ , ,Ω ,
(3.12)∥ ∥ = | | , , +∥ ∥ , , .
(3.13)
The  scheme (3.11) can also be defined for control functions : [0,1],
where the control function is defined as [1]( ⁄ ) = (z) = 1 − 1z + 1− 1.
However, we have that  these  functions satisfy the following properties:
(P1) lim (z) = 0 , lim (z) = 1,
(P2) 1+z (z) ≥ 0 for all ,
(P3) [1 − (z) − (−z)]z = 0 for all ,
(P4) [ − (z)]z ≤ 0 for all .
For example, we can take the function (z) = [sign z + 1],  (see [3])

4. Discrete Elliptic Property

Lemma (4)
Let condition (A1),(A2) and (A4) be fulfilled. Then, for sufficiently

small > 0 there exists a constant > 0 such that for all ∈ (0, ] and∈ the relation. ( , ) ≥ ∥ ∥ ,
hold, where can be chosen independently of ,  and does not depend
on and .
Proof

We decompose ( , ) into three parts as follows :



( , ) = ( )( , ),
where( )( , ) = ∈Λ ∈Λ ( − ) ,

( )( , ) = ∈Λ

[(1 − ) − ( − ) ]∈Λ

,
( )( , ) = ∈Λ

− ∈Λ ∈Λ

.
The first term, apply lemma(3) we get ( )( , ) ≥ | | , , .

(4.1)
The second term, we use a symmetry argument. Namely, changing the
succession of summation and taking into consideration the boundary
values of , ( )( , ) that can be written in the following manner:( )( , ) = ∈Λ

{[(1 − ) − ( − ) ]∈Λ+ [ 1 − − ( − ) ] }= ∈Λ

{[(1 − ) + (1 − ) ] − [( − )∈Λ+ ( − ) ]} .
Since + = 1 and = − , in view of the relations(1 − ) = − ,
(4.2)
and ( − ) = ( − ) ,
we get( )( , ) = ∈ ∈ {(1 − 2 ) − ( − )( + ) }

= − ∈ ∈ {( − ) ( − 2 + )}
= − ∈ ∈ {( − ) ( − ) } .

Now,  using the property (P4) then ( )( , ) ≥ 0.
(4.3)

To estimate the remaining expression,( )( , ) = ∈ − ∈ ∈ + ∈ − ∈



= ̂ − 12 ∇ ⋅ + −
= ( ̂ − ) + ( − ∇ ⋅ ) .

Thus, we can write.( )( , ) = ( ̂ − ) , + (( − ∇ ⋅ ) , )= ( )( , ) + ( )( , ).
To estimate ( )( , ), we use Lemma (2)| ( )( , )| ≤ ∥ ̂ − ∥ , , ∥ ∥ , ,≤ | | ,∞,Ω ∥ ∥ , ,Ω
(4.4) To estimate ( )( , ), we have in view of (A2)( )( , ) = (( − ∇ ⋅ ) , ) ≥ ∥ ∥ , ,Ω.
(4.5)

It follows, from equation (4.1), (4.3), (4.4) and (4.5)  we obtain( , ) ≥ | | , , + − | | , , ∥ ∥ , , .
Now, it remains to choose such that for all ∈ (0, ], the term− | | ,∞,Ω becomes positive. Then,( , ) ≥ ∥ ∥ .
5. The Discrete Conservation Law
Theorem (1)

The numerical solution of equation (3.11) satisfies the discrete
conservation law Ω = Ω.
Proof:

Let the test function = , where is a basis function of and let= 0 then, we can write( , ) = ( )( , ) + ( )( , ),
(5.1)
where( )( , ) = ∈Λ ∈Λ

− ,
( )( , ) = ∈Λ

(∈Λ

+ (1 − ) ) .
We have shown in the proof that both ( )( , ) and ( )( , ) have
vanished. In the first term of equation (5.1), we apply a symmetry
argument in the following manner:



( )( , ) = ∈ ∈ −
= − ∈ ∈ − .

That is ( )( , ) = 0,
(5.2)
applying again a symmetry argument to ( )( , ) and use equation (4.2)
we have( )( , ) = ∈Λ

(∈Λ

+ (1 − ) )
= − ∈Λ

((1 − )∈Λ

+ ) .
Consequently, this term vanishes, too. Therefore,( , ) = 0,

(5.3)
it follows that

Ω
Ω

= Ω
Ω

.
6.  Local truncation error

Let us suppose that the exact solution : (0, ) of problem (2.1)-
(2.2) satisfies the conditions (A3), where and denote the first and
second derivative of the mapping : (0, ) . In what follows we will
denote = ( ) = (⋅, ).
Theorem (2)

Under condition (A3), for ∈ [0, ), if = Ο( ) then,L. T. E ≤ Ο(τ ) , > 0
(6.1)
Proof:

n equation (2.1), the exact solution satisfies at = ,  we have( , ) + ( , ) = ( , ),     for all ∈ = (Ω)
(6.2)
where( , ) = ( ∇ , ) + ( ⋅ ∇ , ) + ( , ).
Adding and subtracting ( , ) to the above equation we get :( − , ) + ( , ) + ( , ) = ( , ) + ( − , ), ∀ ∈
setting now = ∈ and multiplied by , we find that



( − , ) + ( , ) = ( , ) − ( , ) + ( − , ).
(6.3)

Now, the discrete formula from equation (3.11), we can be written at= and multiplied by :( − , ) + ( , ) = , , for all ∈
(6.4)
where( , ) = ∈ ( −∈ )

+ ∈ (1 − )( −∈ ) + ∈ .
By subtracting equation (6.3) from (6.4) and using Lemma (3) we get( − , ) − ( − , ) + [( ∇ , ∇ )
+ ∈ (1 − )( −∈ ) + ( , ) − ( ∇ , ∇ )−( ⋅ ∇ , ) − ( , )] = [( , ) − ( , )]+ ( , ) − ( − , ),
(6.5)

adding and subtracting ( ⋅ ∇ , ) to the equation (6.5) we have( − , ) − ( − , ) + [( ∇( − ), )]+ [( ⋅ ∇( − ), )] + [( ( − ), )] = ( ) ,
where( ) = − , ,( ) = ( , ) − ( − , ),( ) = [( ⋅ ∇ , ) − ∈ (1 − )( −∈ ) .
To estimate ( ),  we use Lemma (2)| ( )| = | ( − , )|≤ ∥ − ∥ , , ∥ ∥ , ,| | , , ∥ ∥ , , ∥ ∥ , , .
(6.6)
To estimate ( ),| ( )| = |( − , ) − ( , )|= |( ( ) − ( ), ) − ( ( ), )|.
Using  Taylor's Theorem with integral remainder, such that



( ) = ( ) + ( )( − ) + ( )( − ) ,
Put = + 1,( ) = ( ) + ( )( − ) + ( )( − ) ,( ) − ( ) + ( )( − ) = − ( )( − ) ,
since = −( ) − ( ) − ( ) = ( ) ,( ( ) − ( ), ) − ( ( ), ) = ( ( ) − ( ), ),( ( ) − ( ), ) − ( ( ), ) = ( ( ) − ( ) , ).
Taking into account that( ( ) − ( ), ) = ( ( ), ) ,
we see that( ( ) − ( ), ) − ( ( ), ) = ( ( ), ).
Then( ) ≤ ∥ ( ) ∥ , , ∥ ∥ , ,

C ∥ ∥ , , .
(6.7)
To estimate ( ),  we use the proof of ( ) and ( ) in (Theorem 2,
[8]), we get| ( )| ≤ C | | , ,Ω ∥ ∥ , ,Ω

C ∥ ∥ , ,Ω.
(6.8)
Now,  from equation (6.6), ( 6.7) and (6.8) we have
L.T.E C ∥ ∥ , ,Ω+ C ∥ ∥ , ,Ω≤ Ο( ) , > 0.

7. conclusion

In this paper we saw that the bilinear form ( , ), represent the
full finite volume scheme of the convection-diffusion problem satisfied
the important property so-called elliptic property, and also satisfied the
discrete conservation law of the scheme. Another issue the local
truncation error coincide with error estimate(Theorem 2,  [8]) of order( ).

المستخلص 



ذات ةفي ھذا البحث قمنا بدراسة طریقة الحجم التام المحددة لمسألة الحمل والانتشار الخطی
للعنصر المحدد على ) upwind(ة أبوند حد الحمل الخطي تم تقریبھ بواسطة طریق0البعدین

divergence(تم تقریبھ بواسطة استخدام نظریة التباعد يشبكة التثلیث بینما حد الانتشار الخط
theorem (ثم برھنا الخاصیة الاھلیجیة 0وتقریب المشتقة الاتجاھیة بواسطة الفروقات المحددة

.   تحت بعض الشروط للفیض العددييالمحللنظام التقطیع وخاصیة الحفظ المتقطع وخطأ البتر
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