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Abstract
In this paper, a full finite volume method is studied for the
two-dimensional linear convection- diffusion problem. A linear
convection term is approximated by the upwind finite element
method considered over a mesh to thetriangular grid, whereasthe
linear diffusion term is approximated by using divergence
theorem and approximate the direction derivative by difference
guotient. The elliptic property, the discrete conservation law and
local truncation error of this method are proved under some
assumption on the numerical fluxes.
Key words. Finite volume method, convection-diffusion problem,
elliptic property, local truncation error.

1. Introduction

In this paper we consider the following two-dimensional linear
convection-diffusion initial boundary problem:

%—gﬂu+b u+cu=f (x,y,t) Qx(0,T]=D;
(1.1)
u(x,y,t) =0 (x,y,t) T[x(0,TI
(1.2)
u(x,y,0) =u°(x,y) xy) Q
(1.3)

Where Q R?is a bounded domain with polygona boundary . The
positive parameter ¢ is called diffusion coefficient, the vector b: D — R? is
called convection coefficient and ¢,f:D— R are given functions.
Whereas u°: Q — R isgiven function.

Convection-diffusion processes appear in many areas of science and
technology. For example, fluid dynamics, heat and mass transfer
hydrology and so on. This is the reason that the numerical solution of
convection-diffusion problem attracts a number of specialty. From an
extensive literature devoted to linear problems, let us mentioned some
papers [1], [10] and the reference therein, few approaches to the solution
of nonlinear problems mentioned in the papers [5], [6], and [11].



It is awell-known fact that the use of classical Galerkin method with
continuous piecewise linear finite elements leads to spurious oscillations
when the local Peclet number is large. To obtain an effective scheme in
the case of that convective term is dominate or the Peclet number islarge,
it is required to consider a suitable approximation for the convective
termb u. The partial upwind finite element scheme is known as the
method solve linear convection-diffusion problem when the convection
term is dominated [3], [9] and [10]. In [7], [11] and [13] the partid
upwind finite element scheme for two dimensional nonlinear convection-
diffusion problem is studied. In [5] and [6] investigates a combined finite
volume-finite element method for two dimensional nonlinear convection-
diffusion problem which the convection term only is nonlinear.

The purpose of this paper isto investigate a full finite volume method
working on unstructured meshes and preserving élliptic (coercivity)
property. The paper starts with a detailed derivation of the full finite
volume scheme. Firstly; we used the divergence theorem to the diffusion
term on the control domain and approximate direction derivative by
difference quotient. Secondary, we used the upwind finite volume scheme
(see [12],[15]). The dliptic property and loca truncation error of the
method are proved. This paper consists sex section. In section 2,
formulation of the problem and some notations. The finite volume space
is defined, and the full finite volume scheme in section 3. The discrete
elliptic property is proven in section 4. In section 5, the discrete mass
conservation law is proven. Finally, in section 6, the local truncation error
of the scheme is shown.

2. Formulation of the Problem and Some Notations

Throughout this paper, we will use ¢ (with or without subscript or
superscript) to denote generic constant independent of discrete parameter.
w;(Q) denotes usual Sobolev spaces, where m, p are nonnegative integer.
The corresponding norm and semi-norm are 0 and | |0 [14].
Particular, for p =2, H™(Q) = wJ*(Q), the corresponding norm and semi-
norm are .. and | |,.q respectively. Let (,) denote the inner
product of 22(Q), then

(w,v) = | uvdx.

0
Asusua H}(Q) ={v HYQ); v|sq = 0} denote the subspaces of H'(Q).
We assume the coefficient of problem (1.1)-(1.3) satisfied the
following conditions:
(A1) b= (by,b) WX, ¢ WHQ), f WH(Q) withsomegq > 2,
(A2) ¢c—=7 b=a,>00n0, wherea, doesnot dependons andx Q.



The weak form of problem (1.1)-(1.3) is, find u:[0,T] — H3(Q) such
that

(upt,v) + a.,(u™,v) = (f",v), for al v HI(Q),
(2.1
u(0) = u°,
(2.2)
where
(upv) = ’ utvdx, a.(u"v)=| [Vu v+ (b Vu+ cu)v]dx,
Q Q

(fmuv) = ' f™u dx.

Q
We assume that the weak solution u of problem (1.1)-(1.3) satisfied
the following conditions:
(A3) u L=(0,T; HX(Q) N L2(0,T; WA(Q), up, e, teee  L=(0,T; L7(Q)).

3. The Finite Volume Space and Full Finite Volume Scheme

Let us consider a family of regular triangulation {7} in Q (see [4]).
For a fixed triangulation 7, we defined the mesh parameter h by h =
max r ;, hy, Where hy is the diameter of the triangle T.

We assume that the triangulation family {7} is regular and weakly
acutetype, i.e.
(A4) There exists a, (0,) independent of k, such that al interior

angles «a of the triangles are bounded as follows:
a [amg]:

For agiven triangulation 7;, with nodes {x;} Q (1 <i=<K), wherek
IS positive integer dependent on the triangulation, we construct a
secondary partition. Namely, we introduce regions

Qf ={x:x Tlx—x|<|x—x]|foralx; T}
where |x — x;| is the distance of node x and node x;. We consider the dual
decomposition 7, = {Q;}, where Q; is circumcentric domain associated
with nodal point x; [ 9]
Q=UQqQl, T 7,

We say that two nodes x;, x; are adjacent if and only if ;; =0Q; n
0Q; # . The set of indices of all interior nodesx; Q is denoted by A
whereas the set A; contain the indices of all nodal pointsinQ adjacent to
x; Q. Moreover, we defined d;; = |x; — x| andx;; = X(x; + x;). The
area of Q; isdenoted by m; = meas,(Q;) and for the length of the straight-
linesegment ;;(i A;) weusethenotation m;; = meas,(I';;). If m;; >0,
then ;; has a uniquely defined unit outward normal v;; with respect to Q;.



The elements of this partition are defined as follows. Obviously, the
straight-line segment I;; and the node x; can be regarded as an edge and
the corresponding opposite vertex, respectively, of some triangle T;;.
Now, an element @;; of the partition isdefinedby Q;; =T;; Tj:.
Furthermore, the triangle T;; can be represented as the union of two
triangles TEj.‘)(k = 1,2), the common boundary of which is part of the edge
connecting the node x; with the node x; (see figure(1)). We set

I'Eff) =TI n TS.‘) and mfj‘) = measz(rﬁc)).
It is not difficult to see that ;; can also be decomposed as Q;; = Q;}’
0,
where oY =T TS ™ (k=12).

Xk

Xi F'l.(jl)

@
B

Figure (1) The auxiliary triangles T{;and T’

We mention the following relation:
measl(Qg.‘)) =2 measl(’[l‘ﬁ.‘)) = %mg.‘)d”.
(3.1)

For €={012..}, T 7, we denote by P,(T) the space of all
polynomials on T of  degree< ¢. In what follows the following finite
element spaces
Xp={valvn  CQsvnly P(T), T T} HYQ),

Vi ={vplvy  Xp;vp, =0 0NN}  Hy(Q),
and the finite volume space
Yo ={vplvn  L2(Q) ;upla, Po(Q), @ Th}



By making use of the characteristic function j; of circumcentric domain
Q;, the mass lumping operator ais now defined by A:w, C€(@Q) —
Wy, € Yy,, such that

W (x)

K
= ) wylx)a(x),
=1
Where Wh(x) = Wh(xi) = Wy;.
Then we have some important lemmas:
Lemma (1) [9]. If Thisregular triangulation of weakly acute type we
have
| Whlfo0 < % n W 1§20 YWy Xp,
where k = min{kr; T 7}, ky = minimum perpendicular length of T.
Lemma (2) [9]. Forallw X, with p=1anddlw W;'(Q) with p>2
W—=w llgpa = Chlw|ypa.
Lemma (3)[9]. Foralw X,
(w, 'p)=—) (wj— wl) 1<i<K
J i U
where ¢; isbase function of finite element space X,,.
We turn to the derivation of the discrete scheme. We start by
integrating the equation (1.1) over Q; and using the relation

b u*= ((Bbu™)—-( bu"
9
;: dx— | V-(¢ u)dx+ | V- (bumydx— | (V-byurdx+ | cudx
S)(' Q( Q( Q{ Q{
= | frdx. (32)

Q;

We apprOX|mate 5; by theforward difference

[

;(u{H—l - U?)mi, (33)
where 1 > 0 istime step, for n =0,1,...,N.-1 with N, = T/ .
Applying Gauss's theorem in second term of equation (3.2) we obtain
] V-(e u)dx=| v-(¢ u"ds,
a9,
where v isthe unit outer normal on 9Q;. Then, using the concrete
structure of the boundary of Q;, we can write

] V (e u™)dx= ) J Vu (¢ u™)ds.
J A
we apprOX| mate the di rectlon derivatives by difference quotients



Vij u
. 3.4)
d; |
then,
| V-(e u™)dx
Q;
£
=B v &
FEnii
—u;)my;. (3.95)

To approximate the third term
| v-(undx=) J vij bu"ds
Q;

jac Ty
=) Yij (?’UH?
J N
+ (1= r)uf)my;, (3.6)
where v;; blr, =y isconstant, and u™|r,; = ry;u"(x;) + (1 — ri)u™(x)
r;; [0.1] isaparameter and dependson ¢, y;; and d;;.
It remainsin the left-hand side of equation (3.2), we approximate as
follows:
| (V-burdx= ) ul| V-bdx
& J N %

= > H?J VU' b dx

Jj A Fij
= ) uj' Yijmij, @7)
J i
and
' cu™ dx
Q;
= cyu;m;. (3.8)
The approximation of the right-hand side in equation (3.2) is as follows
' fMdx
Q;
= fi'm;. (3.9)

Thus, we obtain the following discrete version of equation (3.2) :

1 Yijd;;
;(uﬂgl —up)m; + ) aiu( I rij)T”) (uhi — u;fj)mij + ciupm;
J A



Taking an arbitrary function v, vV, H(Q) multiplying equation (3.10)
by v,; and summing all these expression over i A, the resulting discrete
problem can be written in the form

(Dyupt ,vp) + ap(up ,vp) = (F%v,)  foralv, V,,

(3.11)

where

(Dzup ,vp) = ) vpi(

u}:?l—u&)m_
(Bl
[
ap(up ,vp) = ) vpi{) diu(l_ Q-7
[ J A

(fAn;Uh) = _> Uni fi" My

(AN
Moreover, we introduce the following norm [2].

U =V, = Onllg2a,

(3.12)

Yijd;;
) (Up; — up)my; + cupmi},

U = [elunlizat Vn {20
(3.13)
The scheme (3.11) can also be defined for control functions R — [0,1],

where the control function r is defined as [1]
1

et—1

r(yijdij~e) =r(2) =1— % + :
However, we have that these functions satisfy the following properties:
(P1) lim,_,_, r(2) =0, lim,_,,7(2) =1,

(P2) 1+zr(z) = 0 for all =,

(P3)[1 —7(z) — r(—2)]z = o0 for all z,

(P4 -r@]z <0 forallz

For example, we can take the function r(z) = > [sign z + 1], (see[3)])

4. Discrete Elliptic Property

Lemma (4)

Let condition (A1),(A2) and (A4) be fulfilled. Then, for sufficiently
small h, >0 there exists a constant 2 > 0 such that for al » (0, h,] and
Up Vh the I’el ation.

ap(vp, )= 1 v, 2
hold, where h, can be chosen independently of ¢, and A does not depend

on ¢ and h.

Pr oof
We decompose a,( vy, ,vy) into three parts as follows :



3
k
ap(vy ,vp) = ) afl )(Uh \Up),
k=1
where

€
(1)(11;1 ) =) ) ?(Uhi — Upj)UpiM;j,
L

(2)(11;1 vp) = ) ) [A—rj)uy— (% — Tij)Vhil VijUnimij,
PN TN

(3)(vh Up) = ) Cupim; — —) ) VR Vi M.
i A PN TN
Thefirst term, apply lemma(3) we get
Wy vn) = € ol 5.0
(4.2
The second term, we use a symmetry argument. Namely, changing the
succession of summation and taking into consideration the boundary

values of vy, a(z)(vh ,v,) that can be written in the following manner:
(2)(Uh Up) = ) Y Al —1ij)up — (% — i) VnilVijVnimy;j
PN N
+[(1=r)vp - (% — 150)Vn;1VjiVnjmij}
= % Y ) AlA —1))vij+ A= 15)Vilvnivnj — [(% — 13j)VijV5
i A JEA;
1
+ (5 = 10)Vjivh; 1} myj.
Sincer;j +r; = 1and y;; = —y;;, in view of therelations
(L —1)vji = —1ijij,

(4.2)
and
G =5 = G = 1V,
we get
a;? (vy ,vp) = 2 =) ) {1 = 2r)Yijvnivn; — G — i) Wi + Vi Vidmy;

TE

A
1 E 1 2 2
R ) {(5 = 1ij)Vij(Vii = 2UniUn; + Ujj )}my;

bl

o~
=
“-'l

=—2 ) {G— ri)dvyi —vi)my;.
J il

=

J'. :

Now, using the property (P4) then
(2)(Uh up) = 0.
4.3
To estimate the remaining expression,

(3 — 2 1 2 2 2
ay (Uh ,Uh) = ) Ci Uy my s ) ) Uhi }/U mU + ) Cu,ym;— ) Cu,m
A A J A 1A 1A



eo2d —1 V-botdx+ | cOidx— | cOidx
2

fy) Q fy)

l

(6—c)ﬁhdx+, (c—1 b)oEdx.

0 0
Thus, we can write.

ay? (v, vy) = ((¢ = )0y, 03) + ((c = 2V - b) Dy, B)

= a;?l] (vp,vp) + 0(32)(% » Up)-
To estimate a” (v, ,v,), We use Lemma (2)
125 (W ) S 11E = ¢ Ngeon Il O 120
< Chclymn Il On "3,2,9

(4.4) To estimate a(m (vn ,vp), we have in view of (A2)

ay’® Wy vp) = ((c = 2V Y0, ) = a, | O 13500

(4.5)
It follows, from equation (4.1), (4.3), (4.4) and (4.5) we obtain

ap(vp V) = € |upl3o0 +{ao — Chlcliwa) O 1§20
Now, it remainsto choose h, such that for all h (0, h,], the term
a, — Chy|cly0q becomes positive. Then,

ap(vp,vp) = 4 v, 2

5. The Discrete Conservation Law

Theorem (1)
The numerical solution of equation (3.11) satisfies the discrete
conservation law

| DaupdQ = | frdq.

Q Q
Proof:

Let the test function v, = ¢;, where ¢, is abasis function of v, and let
¢ = 0 then, we can write
an(up, 1) = ap (@t 9p) + P (it 9),

(5.1
where

(1)(%1(91) = ) ) ”(u}?i _'u}?:j)mijy
i .

a? @l ¢;) = ) ) (rij up; + (1 = mip)up;)yim;.
PN J N
We have shown in the proof that both a’(u?,¢,) and a{® @}, ¢;) have
vanished. In the first term of equation (5.1), we apply a symmetry
argument in the following manner:



TA jin
"~ &
= - ) ) E(um u}?:j)mu
TAjn Y
That is
1), n —
a,’ (up, ) =0
(5.2)

applying again a symmetry argument to a'” (u}*, ¢;) and use equation (4.2)
we have

(@) (n - — — YU )Y
a,”’ (up, @) = ) ) (3 Upj + (1 = 1) up)Viim

N
== ) (A —ry)up; + rjup)vymy.
PN TN
Consequently, this term vanishes, too. Therefore,
an(up, ¢:;) =0,
(5.3)

it follows that

DuldQ = | frdQ.
l l
Q

6. Local truncation error

Let us suppose that the exact solution u: (0,7) — V of problem (2.1)-
(2.2) satisfies the conditions (A3), where u, and u,, denote the first and
second derivative of the mapping u:(0,T) — V. In what follows we will
denote u™ = u(t,) = u(,t,).

Theorem (2)
Under condition (A3), for t, [0,T), if T = O(h) then,
L.T.E <0(t?) ,T>0
(6.1)
Pr oof:

In equation (2.1), the exact solution u satisfies at t = t,,,, We have
WP v) + a,(utv) = (f*v), fordlv V=H}Q)
(6.2)
where
a,(u™tv)=(c vt v)+ (b u"ttv)+ (cu™ ).

u11+1_un

Adding and subtracting ( ,v) to the above equation we get :
un+1 — N n+1 _ un

——— v+ @) +a o) =) (———), vV

settingnow v=v, V, and multiplied by 7, we find that



(@ — " vy ) + T vp) = O ) — TG v + W =t vy),

(6.3)

Now, the discrete formula from equation (3.11), we can be written at
t = t,+1and multiplied by t:

(un+‘l _uh ) + rah(u"“ vp) = f(f”+1,vh), for all v, Vy

(6.4)
where
1

ap(upttvg) = ) ) U (up * — up; 7. Mij

o ij

iAo

+ ) ) up (1 — ru)(un+1 - uhil)]ﬁjmu + ) Umflugfrlmi-
J'.T E j_ fAl' J'. 1"\

By subtracting equation (6.3) from (6.4) and using Lemma (3) we get

(un+1 — up, vp) — @@t —ut v, ) + (e 'u;f"Ll, Vp)

+> ) Up (1 — rt))(unJrl_uh;Ll)yL;mtJ+(Cuh+l vp) — (e U™ vy)
TR

—(b uh v ) = (cu )] = (P ) = (P )]

+r(upttvy) — W@ = ut ),

(6.5)

adding and subtracting r(b Yuptt v,) to the equation (6.5) we have
(up*t —u™ vp) — (U —u™ v, ) + (N (uptt — u™ ), vp)]
3

+l(b Gt —uwt) )]+ (et -t vl = ) M@,
k=1
where
M(l) — T(f"n+1 fn+1 Uh)
M@) = 1.(un+1 Uh) _ (un+1 um Uh)
M® =1[(b upttv,)— ) ) vpi (1= 1)) (Uit —upf yiymy;.
i€A jeh;
To estimate MY, we use Lemma (2)
IMO] = |g(fn+ — ¥t g
=<l gl 1 ity ol PRI  PEOSN)
S C'Eh|fﬂ+1|1;q,(} " Uh "0,2J_0_ S CTh Uh 0,2,Q

(6.6)
To estimate M@,
IMP| = |W™ = u™, v,) — TP, vy

= [(u(tns1) — u(tn), vy) — T(ue(tns1), VR

Using Taylor's Theorem with integral remainder, such that



U(tar) = 1(t) + U(t) (boy — t) + f e (Ot — ),
Put n=n+1, "
U(t) = Ultnsr) + Ueltss) (b — tags) + j " e (6)(tn — ),

tn+1
Cn.

U(tner) — Ute) + e(tnar) (b — trss) = — f et (8)(n — D),
th+1
since T =t —t,
tn+1

U(tnsr) — ult) — TUe(tss) =7 f we (Ddt,

(u(tn1) — u(tn), vp) — r(ut(tn+1):nvh) = T(ue (tns1) — ue(£), Up),
U (tns1) ~ Ue(ty)

(u(tns1) —ulty), vp) — T(ue(ts1),vp) = Tz( = Up).
Taking into account that

Uetnsn) = wetd o) = [ ()00t

we see that '

(u(tns1) —ulty) vp) — t(ue(tnsg),vp) = Tz(utt(t)avh)-

Then

IM®P| <12 wy(t) 920 Un o020

=Ct% v, g20
(6.7)
To estimate M®, we usethe proof of AG? and AG® in (Theorem 2,
[8]), we get
|IM®| < Cthlup™ 120 Un o020

=Cth v, g20
(6.8)
Now, from equation (6.6), ( 6.7) and (6.8) we have
LTE=Cth vy 20+ C1?% vy 020
< 0(7?) , 7> 0.

7. conclusion

In this paper we saw that the bilinear form a,(u} ,v,), represent the
full finite volume scheme of the convection-diffusion problem satisfied
the important property so-called elliptic property, and also satisfied the
discrete conservation law of the scheme. Another issue the locad
truncation error coincide with error estimate(Theorem 2, [8]) of order

(72).
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