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A survey on numerical methods of 

unconstrained optimization (I) 

 

د.صلاح حمزة عبد           


 

 

1) Introduction  
        When we estimate statistical model parameters, he needs  to optimize 

some kind of objective function . As an example , least square  estimates 

are obtained by minimizing a sum of squares , but in many situations it is 

not possible to obtain a closed form for the estimates as a function of the 

sample values , this occurs , when sum of squares can not be transformed 

so that the normal equations are linear . 

   Now , let  G   be an objective function , given that is to be minimized 

with respect to the 1r  parameter   . Generally, the minimization 

methods are iterative and follow the following steps, 

 

       (i) We try to find a sequence  s ,...,, 21  of vectors such that s  

minimizes   G   

            approximately. 

       (ii) Starting with initial vector 1  and a vector step    to n   in order 

to obtain 1n   ,  

             that is, 

                        )1(1  nn   

 

       (iii) A step that meets the condition     1 nn GG     is called 

acceptable. 

       (iv) If no further reduction of the objective function can be obtained, 

the procedure should terminate . 

 

There are some common troubles may occur when we apply one of 

numerical optimization method, 

 

                                                 


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1. The minimum is not unique. 

2. No minimum exists. 

3. Search in a region of the parameter space for a way from a 

minimum. 

4. The algorithm used does not approach the existing minimum for 

some reason. 

 

   In this research we enlarge to study gradient methods as a survey, and 

then compare among them according to simulation experiment results. 

 

 

2) Gradient methods  
      Given a point n   , we have to choose an appropriate step length t    

and a step direction    such that , 

                           )2( nn GtnG   

  In fact , we are looking for   such that   tnG n   is a decreasing 

function of t for t close to zero . Consequently , for    [11] , 
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Has to be less than zero . If we substitute the gradient of 

n

G




by 

n
  , 

we can choose ,  

                )4(
nnQ   

   Where is any positive definite matrix . we can [11] get from (1) , 

nnnnn Qt  1  where nt  is the step length in the nth iteration . 

    Since there are many of positive definite matrices , there are many 

downhill directions , 

 

(a) If we choose [5] , 

                                     )5( rn IQ   

      In all iterations , where r is the dimension of the parameter space , 

then this method is called steepest descent (SD) method . It may 

converge very slowly if the minimum is in a long and narrow valley [5]   
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(b) If we choose nQ  to be the inverse of the Hessian matrix , 

       )6(
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     Then , the method is called Newton-Raphson (NR) method [8] . 

 

(c) If we choose  nQ  to be 

         )7(1  nnn PQQ  

      Where nP   is the correction matrix to approximate nQ  to the inverse 

of the Hessian matrix of the objective function in each iteration. This 

method called variable metric , and if we choose [3] , 
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 Where    
nnnnnn

Q  
 11   , then the resulting algorithm is 

called the rank one correction (ROC) method . 

 

(d) Another member of the family of  variable metric algorithms is the 

Davidon-Powell (DFP) method [4,6] , for which , 
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(e) If we have a statistical model , 

             )10(, 


xfy  

   

    Then the objective function is the sum of squared errors , 

                        )11(,,
//

  xfyxfyG  

 

And then after some mathematical operations, Bard 1974 gets [1] , 
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The above method is called the Gauss-Newton (GN) method . 

(f) Maddala (1977) [9] suggests the method of scoring  (MOS) , which 

can be used for maximum likelihood estimation , with the following 

direction matrix , 
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   Where L  is the likelihood function . 

 

(g) Brown and Dennis (BD)  (1971) [2] suggests combining the rank 

one correction method with a Gauss-Newton method . They 

approximate the Hessian of  tf  iteratively , that is , they choose , 

                                  )14(,,1,  ntntnt PDD  

       Where ntD ,  is the approximate to  

n
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matrix  of rank one is [2] ,  
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 The direction matrix for this algorithm is ,  

                                           

   )16(
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(h) Marquardt (M) (1963) [10] , modifies procedures that do not 

guarantee a positive definite direction matrix nQ  by using the fact 

that nnn QQ
~

  is always positive definite if nQ
~

 is positive definite 

and n  is sufficiently large . The direction matrix for this 

algorithm is ,  

              )17(
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    Where rI  can be used as nQ
~

 . 

(i) We could modify the Hessian matrix of the objective function and 

use , 
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   As the direction matrix . This algorithm is usually referred to as the 

quadratic hill-climbing (QHC) method . It is derived by Goldfield , 

Quandt and Trotter (1966) [7] . 

 

3) An empirical study 
      A simulation experiment was conducted to compare among the 

gradient methods performance from the speed and the number of 

iterations points of view , according to the following assumptions , 

1. we consider the non linear statistical model , 

    
tt

xxxy ttttt

,...,2,1

)19(2

3

2221

2

11



            

2. three different sample sizes were selected ,small one (T=10) , 

moderate (T=30) and large (T=100) . 

3. the run size R is equal to 1000 . 

4. the error term t  random variable chosen to distribute as 

standard normal . 

5. two sets of parameter values 2,1 21     and 

1,1 21     have been considered . 
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6. we allow of 0.00001 as absolute error between 
i  and  )2,1( ii .  

7. the values of initial points is equal to zero for any of  
1  and 

2  . 

8. the following two criterions of comparison are considered , 

(i) the speed of reach to the real parameter value from the initial 

point . 

(ii) the number of iterations needed to reach to the real parameter 

value, starting from the initial point . 

 

       The results of simulation was recorded in table (1) and table (2) . Our 

conclusions are as follows  , 

1. The reach time to the real parameter value, starting from the initial 

point considered does not effect by the change of sample sizes or 

the change of real parameter values . It is appear that the sample 

size value cover the precision and vice versa . 

2. The performance of Marquardt (M) , Quadratic hill-climbing 

(QHC) and Gauss-Newton (GN) methods respectively , better than 

the other methods . 

 

3.  The number of iterations needed to reach to the real parameter 

value, starting from the initial point ,increases if one increase the 

sample size , but it is not effect by the change of real parameter 

values . 
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