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A survey on numerical methods of
unconstrained optimization (1)

*

K7 Y 3PN & X

1) Introduction
When we estimate statistical model parameters, he needs to optimize

some kind of objective function . As an example , least square estimates
are obtained by minimizing a sum of squares , but in many situations it is
not possible to obtain a closed form for the estimates as a function of the
sample values , this occurs , when sum of squares can not be transformed
so that the normal equations are linear .

Now , let G(a) be an objective function , given that is to be minimized

with respect to the r x1 parameter « . Generally, the minimization
methods are iterative and follow the following steps,

(i) We try to find a sequence ¢,,a,,...,a, of vectors such that ¢
minimizes G(a)
approximately.
(i) Starting with initial vector ¢, and a vector step 3 to ¢, inorder
to obtain o

Zn+l 1

that is,
Qn+1:Qn+§ ____(1)
(iii) A step that meets the condition G(a,)>G(a,,) is called

acceptable.
(iv) If no further reduction of the objective function can be obtained,
the procedure should terminate .

There are some common troubles may occur when we apply one of
numerical optimization method,
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The minimum is not unique.

No minimum exists.

3. Search in a region of the parameter space for a way from a
minimum.

4. The algorithm used does not approach the existing minimum for

some reason.

N

In this research we enlarge to study gradient methods as a survey, and
then compare among them according to simulation experiment results.

2) Gradient methods
Given a point «, , we have to choose an appropriate step length t

and a step direction n such that,
G(gn +tn)< G(gn) ____(2)
In fact , we are looking for 7 such that G(a, +tn) is a decreasing

function of t for t close to zero . Consequently , for 7 [11],

/ /
0Glan+tn) _[ac| |(oGlan+tn) o
ot | laal, [T ot | e, |79
t=0 2l t=0 | “%la,
. . 0G

Has to be less than zero . If we substitute the gradient of . by ,Bn :
o lud
= gn

we can choose,
n=-Qup, -4
Where is any positive definite matrix . we can [11] get from (1) ,
Qpy1 = —thQn B, Where t, is the step length in the nth iteration .

Since there are many of positive definite matrices , there are many
downhill directions ,

(a) If we choose [5],
=l ===
In all iterations , where r is the dimension of the parameter space ,
then this method is called steepest descent (SD) method . It may
converge very slowly if the minimum is in a long and narrow valley [5]

(2)
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(b) If we choose Q, to be the inverse of the Hessian matrix ,
-1
0% G
6g8g/ o

Qn =

)

n

Then , the method is called Newton-Raphson (NR) method [8] .

(c) If we choose Qp to be

Qn+l = Qn + I:)n T _(7)
Where P, is the correction matrix to approximate Q,, to the inverse

of the Hessian matrix of the objective function in each iteration. This
method called variable metric , and if we choose [3],

/
Y.Y

—n=—_n

P, =7(,§——ﬁ) -———(8)

Where y =(a,., —an)—Qn@m1 —é’n) , then the resulting algorithm is
called the rank one correction (ROC) method .

(d) Another member of the family of variable metric algorithms is the
Davidon-Powell (DFP) method [4,6] , for which ,

5,3 Qlp.-8)8..-8)Q

P = -———09
n §:1(£n+1_£n) (éml_én)/Q”(éml_én) ( )
(e) If we have a statistical model ,
y=1fla'Jre  ——--00)

Then the objective function is the sum of squared errors,

Gla)=(y-fxa) (y-f(xa)= () (€a) ----a1

And then after some mathematical operations, Bard 1974 gets [1] ,
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The above method is called the Gauss-Newton (GN) method .

() Maddala (1977) [9] suggests the method of scoring (MOS) , which
can be used for maximum likelihood estimation , with the following
direction matrix ,

-1

| o%LnL

agag/

Qn = (13

ap

Where L is the likelihood function .

(9) Brown and Dennis (BD) (1971) [2] suggests combining the rank
one correction method with a Gauss-Newton method . They
approximate the Hessian of f;(«) iteratively , that is , they choose ,

Dt n+1=Dtn+Ron -———(14)

th

; . The correction
oaoa “

Where Dy |, is the approximate to

matrix of rank one is [2] ,

Pn = ——-5)
(Qn+l_gn)/(gn+1_gn)
of of
Where Qt,nzéa _éa _Dtn(Qn+1 an)

The direction matrix for this algorithm is ,

]
- 2 (- filag)oy ————(16)

tt* =1

o€

/
oa’ |,

“n “%n

(4)
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(h) Marquardt (M) (1963) [10] , modifies procedures that do not
guarantee a positive definite direction matrix Q,, by using the fact

that Q,, + 5n6n is always positive definite if Qn is positive definite
and oy, is sufficiently large . The direction matrix for this
algorithm is ,

/ -1

+3nQp ———-(Q17)

Where |, can be used as Qn :

(i) We could modify the Hessian matrix of the objective function and
use,
-1
022G

86{805/
- — la

Qn = +0nly -—--—(18)

n
As the direction matrix . This algorithm is usually referred to as the

guadratic hill-climbing (QHC) method . It is derived by Goldfield ,
Quandt and Trotter (1966) [7] .

3) An empirical study
A simulation experiment was conducted to compare among the
gradient methods performance from the speed and the number of
iterations points of view , according to the following assumptions ,
1. we consider the non linear statistical model ,
2

* * * *3
Vi =1 +ap Xg+apXp+ay Xp+e ————(19)
t=12,..,t
2. three different sample sizes were selected ,small one (T=10) ,
moderate (T=30) and large (T=100) .
3. the runsize R is equal to 1000 .
4. the error term €; random variable chosen to distribute as

standard normal .

5. two sets of parameter values o =-1,a5=2 and

o =1, a; =—1 have been considered .

(5)
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6. we allow of 0.00001 as absolute error between «; and ¢; (i=12).

7. the values of initial points is equal to zero for any of a7 and a5 .

8. the following two criterions of comparison are considered ,
(i) the speed of reach to the real parameter value from the initial
point .
(i) the number of iterations needed to reach to the real parameter
value, starting from the initial point .

The results of simulation was recorded in table (1) and table (2) . Our
conclusions are as follows

1. The reach time to the real parameter value, starting from the initial
point considered does not effect by the change of sample sizes or
the change of real parameter values . It is appear that the sample
size value cover the precision and vice versa .

2. The performance of Marquardt (M) , Quadratic hill-climbing
(QHC) and Gauss-Newton (GN) methods respectively , better than
the other methods .

3. The number of iterations needed to reach to the real parameter
value, starting from the initial point ,increases if one increase the
sample size , but it is not effect by the change of real parameter
values .

(6)
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Table (1) : The average reach time (in minutes) to the real parameter
value from the initial point .

e wup=-1 ay=2 aj =1 . a@a=-1

=10 T=30 T=100 T=10 | T=30 T=100

SD 18.336 | 18.822 19.091 17.667 17.917 17.018
NR 6.323 6,947 7.092 6.113 6121 | 6221
ROC 7.839 7.621 7,934 3093 8111 8.211
DEP 12,118 12.001 12.139 1814 11.808 11827
"GN 3.617 3814 3.615 3.022 3927 384
MOS FRE 4.321 4444 4. +.004 4118
“BD 4008 4128 1.821 4.0 3312 3.969
M| 2817 2714 2.776 2.869 2819 21.886
QHC 2.989 2.817 3.000 2.949 2,958 1018

Table (2) : The number of iterations needed to reach to the real
parameter value, starting from the initial point .

methad a; =—1 ay=2 ay=1 , @a>3=-i
T=10 | T=30 T=100 =10 | T=30 | T=100
SD 139 286 47 116 69 e
NR 131 158 226 130) 155 | 28
ROC 161 187 283 150 93
DFP 203 a7 Wl 200 110 anr
GN 106 20 | 164 1% s 169
[ MOS 125 146 198 127 152 22 |
BD 118 136 200 12 120 A7
M (S %6 127 81 9 136
‘QHC ol 109 130 ) 112 146
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