
Eng. &Tech.Journal, Vol.34,Part (A), No.7, 2016

0631
https://doi.org/10.30684/etj.34.7A.9

 2412-0758/University of Technology-Iraq, Baghdad, Iraq

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

Inverse Kinematics Solution of Robot Manipulator End-Effector

Position Using Multi-Neural Networks

Dr. Firas A. Raheem

Control and Systems Control Engineering Department, University of Technology /Baghdad

Email: dr.firas7010@yahoo.com

Dr. Azad R. Kareem

Control and Systems Control Engineering Department, University of Technology /Baghdad

Email: drazadnarj@hotmail.com

Dr. Amjad J. Humaidi

Control and Systems Control Engineering Department, University of Technology /Baghdad

Email: aaaacontrol2010@yahoo.com

Received on:28/3/2013 & Accepted on: 6/4/2014

ABSTRACT

This paper proposes multi-neural networks structure for solving the inverse kinematic

problem of the robot manipulator end-effector position. It offers an opportunity to reduce

substantially the error of the solution. This error frequently arises when only one neural network

is used. In this structure, each neural network is a multilayer perceptron (MLP) trained by the

back propagation algorithm. The proposed approach verified by including it within an overall

Cartesian trajectory planning system. This structure could produce the robot joint variables that

are not included in the training data with an average error ±0.06º, and ±0.15º, ±0.05º for joint

angles , and respectively. From the simulation results, the proposed structure of multi-

neural network has superior performance for modeling the complex robot kinematics.

Keywords: Robot Manipulator, Inverse Kinematics. Neural Networks.

INTRODUCTION
here has been much interest in the last years in applying neural network algorithms to

research topics in the field of robotics. One attractive area of application is the

calculation of the inverse kinematics solution for robot manipulators, which is a difficult

theoretical problem in robotics due to the nonlinearity of the mapping between the joint space

and Cartesian space and also due to the multiple solutions. Analytical solutions can be found

only for simple robot configurations, and even in such cases the solution is a very complex

process. There are several published researches applying neural networks to both the forward

and inverse kinematics problem of planar manipulators and 3D manipulators [1]. Researches

referred in [2-11] deal with giving different approaches to design or to learn different types of

the neural networks to solve the problem under study. Two neural network structures are

suggested by [2]; one for finding the inverse kinematics of the position of the robot end-effector

and the other to find the inverse kinematics of the orientation of the end-effector. From the

graphic analysis [2], the error gives approximately 3.6° for the position inverse kinematics and

8.5° for the orientation inverse kinematics. A method which suggested in [3] depends on the

final matrix structure of the forward kinematics yields approximately the same errors as that

indicated in [2]. Reference [4] has suggested three-layer partially recurrent neural network to

perform trajectory planning and to solve the inverse kinematics and dynamics problems in a

single processing stage. A non-algorithmic method is presented for the solution to the inverse

kinematics problem of a robot [5]. This method is robot independent and involves a hybrid

T

https://orcid.org/0000-0002-9059-5874
https://orcid.org/0000-0002-9059-5874

Eng. &Tech.Journal, Vol.34,Part (A), No.7, 2016 Inverse Kinematics Solution of Robot Manipulator

 End-Effector Position Using Multi-N. Networks

1361

approach, whereby a neural solution is augmented with an iterative procedure which provides

the final solution within some specified tolerance. A neural network is employed to analyze the

inverse kinematics of PUMA 560 type robot. The neural network is designed to find exact

kinematics of the robot. The neural network is a feed-forward neural network trained with

different types of learning algorithm for designing exact inverse model of the robot [6]. A study

on generalization ability of neural network for manipulator inverse kinematics including the

determination of optimal unit number in the hidden layer using three layered neural network is

the interest subject of [7]. The work in [8] presented the performance comparison of two

artificial neural networks; radial basis function and multi-layered with back propagation, both

trained to learn data obtained from the kinematics model of a robotic arm. Solving the inverse

kinematics using learning method of neural network represents the relations of both positions

and velocities from the task space coordinate to the joint space coordinate simultaneously has

been performed in [9]. While dividing one neural network into several neural networks has been

presented in [10]; the first network represent the main network and the others are a secondary

networks to estimates the possible errors. The use of multiple cooperating networks for the

overall modeling of inverse kinematics was explored in [11], where radial basis function (RBF)

neural networks were chosen. Training multiple neural networks for a specified path trajectory

could minimize maximum position error to a 7°.

Reis Robot– RV12L

The inverse kinematics of the Reis Robot RV12L shown in Fig. (1) is not different from any

6 DOF robot manipulators. In this type of robot we can divide the 6 angles into two groups; the

first comprises 3 angles for the position and the second has 3 angles for the orientation of the

robot end effector. Therefore, the schematic shown in Fig. (2), represents the usual first 3 DOF

of the robot end-effector position. Generally, there are two major inverse kinematic techniques

[10]:

 Explicit, with exact solution (as for the 3 link manipulator);

 Iterative, for use when an infinite number of solutions exist.

Problems that one may encounter when performing inverse kinematics with these methods are:

 Both methods require a computer capable of mathematical calculations;

 The methods do not adapt to compensate for damage, calibration errors;

 Iterative solutions may be slow;

 Solutions are valid only for a specific robot.

Such reasons made designing neural network for solving this problems is very important.

After modeling the forward kinematics according [12] and obtaining the final transformation

matrix, the process of minimizing the kinematic equations to a position set and orientation

matrix will result the following robot end-effector equations:

 []
 [] (1)

Where and represent the position point of the robot end-effector. can be eliminated

by transferring the point of analysis for the first link in the center of connection between and

 . Usual analytical solution given in [12] for such type of robots leads the following equations

of , and for left, right robot arm and for elbow up, elbow down robot arm:

 () () (2)

 (√) (√) ‒ for elbow down and elbow up

robot arm respectively.

The two solutions of , which depends on , will be given by;

Eng. &Tech.Journal, Vol.34,Part (A), No.7, 2016 Inverse Kinematics Solution of Robot Manipulator

 End-Effector Position Using Multi-N. Networks

1362

Where the radius √

 and .

From the manual of Reis Robot RV12L: , and

the range of angles is for for and for

 .

Methodology and Design

 For a successful neural network design, there are important problems needs to be solved:

 How to find a suitable multi-neural networks structure;

 How to determine an appropriate representation of input/output data;

 How to create a well-structured learning data set, and

 How to train the network successfully.

It is worthy to notify that a unique structure of neural network could not cope with entire

robot work-space. Therefore, it is suggested to divide the workspace into eight sub-workspaces

and then assign one neural structure for each subspace. This would permit to enlarge data base of

the full work-space. Therefore, one may expect to reach near exact learning process and decrease

the error to a large extent.

For plane, the data file can be generated by representing as circles. Similarly, the

data needed for and can be represented as circles in plane. Increasing the number

of circles means increasing the accuracy of training of every neural network in the entire neural

network scheme. This will give an effective multi-neural networks design trained by the data

file and would allow to be divided into four parts according the following ranges: (0° to 90°),

(90° to 165°), (0° to -90°) and (-90° to - 165°). On the other hand, the data files for and

would be divided according to the four inverse kinematics solutions of the end-effector position

(left arm with elbow up and elbow down) and (right arm with elbow up and elbow down). The

final structure will consist of eight large trained neural networks supplied with a unit of

addressing control; responsible for choosing the proper set of angles for every robot

configuration. Every neural network in the structure has simple and fixed construction with

well-training; and this is one of the main advantages of the suggested design. In order to make

the results obtained from every neural network very closed to the real and desired results, the

input will not rely on the point () but also would depends on another component

derived from the point. These components will work as index for the neural network and would

increase the speed of training for every neural network. The suggested structure for each sector

is illustrated in Fig.(3). It is evident from the figure that the inputs of the neural networks of

every joint variable (, and) will be different from each other. The distances P and r

indicated in the figure are given by √

 and √

 .

The entire multi-neural networks system is depicted in Fig. (4). Solution of includes four

neural networks with the control addressing unit responsible for choosing the proper neural

network as shown in Fig. (5). The inputs of are , and . Fig. (6) shows the internal

structure of the four neural networks; two networks are for and the other for which trains

only for range of joint limit angles of Reis Robot. The inputs of are and , where

the solution of is fed as input to find the solution of .

Fig. (7) exemplifies the proposed neural network internal structure to solve the inverse

kinematics of specifically. By trial and error design approach, the structure consists of four

layers: input layer, two hidden layers and one output layer. Four inputs , , , and are used

in the input layer for finding , twelve neurons in the first hidden layer, six neurons in the

second hidden layer and finally one neuron in the output layer. The hyperbolic tangent function

is used as the activation function in the hidden layers, while the linear activation function is

employed in the output layer.

Eng. &Tech.Journal, Vol.34,Part (A), No.7, 2016 Inverse Kinematics Solution of Robot Manipulator

 End-Effector Position Using Multi-N. Networks

1363

Results and Analysis

All the neural networks in the structure are trained by a relatively large data file which

covers the robot workspace using the back-propagation algorithm. The performance index of all

these neural networks is the mean square error that used to indicate the convergence error

during the training process. Figure (8) shows the mean square error graph during training of

where the goal was .

The results after training the neural networks of the and are better than those with ;

because for every value of there is a corresponding range of θ3 and there is dependency

between the errors of and . Figure (9) and (10) shows the after-training errors of and ,

respectively.

The main difficulties with the neural training are the singular robot configurations which

lead to singular forward kinematic matrix. From the analysis of the robot, the point () of

end-effector position is considered the main singular configuration for , since there is no

offset shoulder in Reis Robot RV12L to prevent this singular configuration. At this case the

value of will not affect the robot position, while and will give the desired robot

configuration. The table below shows joint angles based on classical geometrical solution and

those obtained using suggested multi-neural networks structure.

Verification Model

A Cartesian space trajectory planning system based on cubic polynomial Bezier curve design

has been implemented using Matlab-Simulink software. In Cartesian space schemes, the path

shape is described in terms of functions which compute Cartesian positions of the Robot End-

Effector as a function of time. Thus the trajectory generation is performed in Cartesian space

and is converted into corresponding joint space variables at time of executing the trajectory.

Bezier curves are useful to design trajectories with certain roundness properties and defined by

series of control points with associated weighting factors. During the motion of the robot end

effector an Inverse Kinematics process is needed to convert the points in the Cartesian path to

the proper joint angles which represent the same path and realize it [13, 14]. The Bezier curve

design for Cartesian trajectory planning of robot manipulator end-effector can be described by

the following Equations:

3

3

2

2

1

23

13131)(

x
tt

tt

x
tt

tt

tt

tt
x

tt

tt

tt

tt
x

tt

tt
tx

of

o

of

o

of

o

of

o

of

o
o

of

o





























































































































































3

3

2

2

1

23

13131)(

y
tt

tt

y
tt

tt

tt

tt
y

tt

tt

tt

tt
y

tt

tt
ty

of

o

of

o

of

o

of

o

of

o
o

of

o





























































































































































3

3

2

2

1

23

13131)(

z
tt

tt

z
tt

tt

tt

tt
z

tt

tt

tt

tt
z

tt

tt
tz

of

o

of

o

of

o

of

o

of

o
o

of

o





























































































































































Where t = time parameter (second), to = starting time (second), tf = final time (second). The

Bezier equations x(t), y(t) and z(t) represents the robot Cartesian trajectory between the start (xo,

Eng. &Tech.Journal, Vol.34,Part (A), No.7, 2016 Inverse Kinematics Solution of Robot Manipulator

 End-Effector Position Using Multi-N. Networks

1364

yo, zo) and the goal (x3, y3, z3) points. Other trajectory parameters x1, y1, z1, x2, y2 and z2 can be

calculated using the following equations:

oxxAx  31

,
oyyBy  31

,
ozzCz  31













 

o

o
xy

xx

yy

3

31tan    23
2

3 oo yyxxzz 








 
 

zz

zz o
z

31tan   xyxxDx  cos132

   xyyyEy  sin132
   zzzFz  sin132

The parameters (A, B, C, D, E and F) are related to the control point’s calculations and have

been chosen to achieve appropriate curvature of Bezier curve. Also its easy to differentiate the

equations of x(t), y(t), and z(t) with respect to time to find the velocity and the acceleration,

where Vx(t) and Ax(t) are x-component linear velocity and acceleration of Bezier trajectory,

respectively;

 

 
 
 

 
  33

2

23

2

22

121

22

3316

161
3

13)(

x
tt

tt
x

tt

tt
x

tt

tt

tt

tt

x
tt

tt

tt

tt
x

tt

tt

tttt

x

tt

tt
tVx

of

o

of

o

of

o

of

o

of

o

of

o

of

o

ofof

o

of

o




































































































     

      332322

13122

6121
6

61
12

16)(

x
tt

tt
x

tt

tt
x

tt

tt

tt

x
tt

tt
x

tt

tt

tttt

x

tt

tt
tAx

of

o

of

o

of

o

of

of

o

of

o

ofof

o

of

o















































































The velocities and accelerations in y and z-axes are similarly computed. The desired trajectory

has been simulated for tf = 5 (second), the start and the goal points are (0.7, -0.7, 1.5) and (-0.6,

0.6, 1.6), respectively. For the comparison purposes, the overall trajectory planning system

shown in Fig. 11 includes the classical inverse kinematic solution and the solution resulting

from suggested approach. The simulated Bezier trajectory is shown in Fig. (12), while the

produced joint variables , and are shown in Fig. (13). The error traces of different joint

variables between the classical computation and multi-neural structure is shown in Fig. (14).

CONCLUSIONS

Multi-neural networks structure trained using back-propagation algorithm has been applied

to inverse kinematic problem. As a case study Reis Robot RV12L were used for testing this

model. Dividing the workspace of the robot into eight neural networks gives the ability to

increase the size of the data file and, then, to increase the accuracy of the solution. However, a

trade-off of training time would appear. The training process may take a long time that may

reaches to 2 hours and many epochs number up to 10000. On the other hand the feed-forward

mode of this model can give a very fast results comparing with classic analytical (mathematical)

methods. Results showed that and are better than . The accuracy of deeply depends

on ; since is one of the dependent input of neural networks. This approach was tested in

a Bezier trajectory planning system. The comparison between the inverse kinematic classical

solution and the proposed multi-neural network solution shows that the overall 8-neural

networks structure was able to predict robot joint angles that were not included in the training

data with an approximate average joint errors ±0.06º, ±0.15º, and ±0.05º for , and ,

respectively.

REFERENCES:

Eng. &Tech.Journal, Vol.34,Part (A), No.7, 2016 Inverse Kinematics Solution of Robot Manipulator

 End-Effector Position Using Multi-N. Networks

1365

[1] Glazkov V.P., Egorov I.V., Pchelintseva C.V. Iterational Checking for the Inverse

Kinematic Solution of the Robot Manipulator Using Neural Network // Mechatronics,

Automation, Control. 2005. No. 4. P. 15-17.

[2] Kozakiewicz K., Ogiso T., and Miyake N. (1991). Partitioned Neural Network Architecture

for Inverse Kinematic Calculation of a 6 DOF Robot Manipulator, IEEE Conference.

[3] Bingul Z., Ertuc H.M., and Oysu C. (2005). Comparison of Inverse Kinematics Solutions

Using Neural Network for 6R Robot Manipulator with Offset, IEEE Conference .

[4] Araujo A.F., and D’Arbo H. (1998). A Partially Recurrent Neural Network to Perform

Trajectory Planning, Inverse Kinematics, and Inverse Dynamics, IEEE Conference.

[5] Ahmad Z., and Guez A. (1990). On the Solution to the Inverse Kinematic problem, IEEE

Conference.

[6] Yildirim S., and Eski I. A PQ Artificial Neural Network Inverse Kinematic Solution for

Accurate Robot Path Control. Journal of Mechanical Science and Technology. July 2006,

Volume 20, Issue 7, pp. 917-928.

[7] Watanabe E., and Shimizu H.A. (1991). Study on Generalization Ability of Neural Network

for Manipulator Inverse Kinematics, IEEE Conference.

[8] Yang S.S., Moghavvemi M., and Tolman J.D. (2000). Modeling of Robot Kinematics Using

Two ANN Paradigms, IEEE Conference, 2000.

[9] Kuroe Y., Nakai Y., and Mori T. (1993). A New Neural Network Approach to the Inverse

Kinematics Problem in Robotics, IEEE Conference.

[10] Hugh Jack, Neural Network Calculation of Inverse Kinematics, Lecture Notes,

http://hughjack.com/V2/notes/engineeronadisk-1542.html.

[11] Driscoll A.J. (2000). Comparison of Neural Network Architectures for the Modeling of

Robot Inverse Kinematics. IEEE Conference, 2000.

[12] Spong M.W., Hutchinson S. and Vidyasagar M. (2006). Robot Modeling and Control /

Mark W. Spong, M. Vidyasagar. John Wiley&Sons. P. 478.

[13] Bazaz, S.A. and Tondu, B. (1998). “3-Cubic Spline for On-Line Cartesian Trajectory

Planning of an Industrial Manipulator”, IEEE Conference, 1998.

[14] Hwang, J.H., Arkin, R.C. and Kwon, D.S. ”Mobile robots at your Fingertip: Bezier Curve

On-line Trajectory Generation for Supervisory Control, IEEE Conference, 2003.

Table (1):

desired

neural

desired

neural

desired

neural

45 45.00177 -12.3842 -12.3807 100.5398 100.5399

56.3099 56.3109 -44.5798 -44.5695 71.3369 71.3367

123.6901 123.6892 1.7165 1.708 52.6273 52.6275

29.0546 29.0555 -16.1804 -16.1748 73.1458 73.1459

99.8226 99.8212 13.8448 13.8542 2.3804 2.3573

100 99.9977 14.6664 14.7171 0.693 0.60354559

129.9976 129.9969 105.0035 105.0023 134.9986 134.9977

Eng. &Tech.Journal, Vol.34,Part (A), No.7, 2016 Inverse Kinematics Solution of Robot Manipulator

 End-Effector Position Using Multi-N. Networks

1366

Theta1 (2)

Theta 3 (2)

Theta 3 (1)

Theta 2 (2)

Theta 2 (1)

Theta 1 (1)

1

Pz

0.9

Py

-0.1

Px

radius

Pz

Theta 3(1)

Theta 2(1)

Theta 3(2)

Theta 2(2)

Neural Networks

for Theta 2 & Theta 3

Px

Py

Theta 1

radius

Neural Networks

for Theta 1

2
radius

1
Theta 1

MATLAB

Function

final_op_theta1

In1 Out1

Neural Network

Theta 1 (90 _ 165)

In1 Out1

Neural Network

Theta 1 (0 _ 90)

In1 Out1

Neural Network

Theta 1 (0 _ -90))

In1 Out1

Neural Network

Theta 1 (-90 _ -165)

Px

Py

op1

op 2

op 3

op 4

Input_vector

radius

Control to choose

 Neural Network

 Theta 1

2
Py

1
Px

4

Theta 2(2)

3

Theta 3(2)

2

Theta 2(1)

1

Theta 3(1)

radius

pz

input_vector

position vector

subsystem1

p{1} y{1}

Theta3_2

In1

In2

In3

In4

Out1

Out2

Out3

Out4

Normalization

p{1} y{1}

Neural Network

Theta3_1

p{1} y{1}

Neural Network

Theta2_2

p{1} y{1}

Neural Network

 Theta2 _1

2

Pz

1

radius

MLP Neural

Network

θ1

θ1

Px

Py

r

MLP Neural

Network

θ3

θ3

r
Pz

D
P

MLP Neural

Network

θ2

θ2

r
Pz

θ3

P

 Figure (1) Reis Robot RV12L Figure (2) The first 3 DOF representation

 of the Reis Robot

 Figure (3) Inputs design of the neural Figure (4) Overall system for multi-neural

 networks of θ1, θ2 and θ3 inverse kinematics

 Figure (5) Four neural-networks for Figure (6) Four neural-networks for inverse

 inverse kinematics of θ1 kinematics of θ2 and θ3

Eng. &Tech.Journal, Vol.34,Part (A), No.7, 2016 Inverse Kinematics Solution of Robot Manipulator

 End-Effector Position Using Multi-N. Networks

1367

Figure (7) Neural network structure Figure (8) Mean square error graph during

 for inverse kinematics of training θ3

Figure (9) Error of θ2 (degree) after training Figure (10) Error of θ1 (degree) after training

Figure (11) Overall planning system for testing the multi-neural solution

of the inverse kinematics

Eng. &Tech.Journal, Vol.34,Part (A), No.7, 2016 Inverse Kinematics Solution of Robot Manipulator

 End-Effector Position Using Multi-N. Networks

1368

Figure (12) The resulted Bezier Robot Trajectory

Figure (13) Joint variables θ1, θ2, and θ3 (degrees)

Figure (14) Computation Error of θ1, θ2, and θ3 (degrees)

