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ABSTRACT 

This paper proposes multi-neural networks structure for solving the inverse kinematic 

problem of the robot manipulator end-effector position. It offers an opportunity to reduce 

substantially the error of the solution. This error frequently arises when only one neural network 

is used. In this structure, each neural network is a multilayer perceptron (MLP) trained by the 

back propagation algorithm. The proposed approach verified by including it within an overall 

Cartesian trajectory planning system. This structure could produce the robot joint variables that 

are not included in the training data with an average error ±0.06º, and ±0.15º, ±0.05º for joint 

angles    ,    and    respectively. From the simulation results, the proposed structure of multi-

neural network has superior performance for modeling the complex robot kinematics.  
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INTRODUCTION 
here has been much interest in the last years in applying neural network algorithms to 

research topics in the field of robotics. One attractive area of application is the 

calculation of the inverse kinematics solution for robot manipulators, which is a difficult 

theoretical problem in robotics due to the nonlinearity of the mapping between the joint space 

and Cartesian space and also due to the multiple solutions. Analytical solutions can be found 

only for simple robot configurations, and even in such cases the solution is a very complex 

process. There are several published researches applying neural networks to both the forward 

and inverse kinematics problem of planar manipulators and 3D manipulators [1]. Researches 

referred in [2-11] deal with giving different approaches to design or to learn different types of 

the neural networks to solve the problem under study. Two neural network structures are 

suggested by [2]; one for finding the inverse kinematics of the position of the robot end-effector 

and the other to find the inverse kinematics of the orientation of the end-effector. From the 

graphic analysis [2], the error gives approximately 3.6° for the position inverse kinematics and 

8.5° for the orientation inverse kinematics. A method which suggested in [3] depends on the 

final matrix structure of the forward kinematics yields approximately the same errors as that 

indicated in [2]. Reference [4] has suggested three-layer partially recurrent neural network to 

perform trajectory planning and to solve the inverse kinematics and dynamics problems in a 

single processing stage. A non-algorithmic method is presented for the solution to the inverse 

kinematics problem of a robot [5]. This method is robot independent and involves a hybrid 
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approach, whereby a neural solution is augmented with an iterative procedure which provides 

the final solution within some specified tolerance. A neural network is employed to analyze the 

inverse kinematics of PUMA 560 type robot. The neural network is designed to find exact 

kinematics of the robot. The neural network is a feed-forward neural network trained with 

different types of learning algorithm for designing exact inverse model of the robot [6]. A study 

on generalization ability of neural network for manipulator inverse kinematics including the 

determination of optimal unit number in the hidden layer using three layered neural network is 

the interest subject of [7]. The work in [8] presented the performance comparison of two 

artificial neural networks; radial basis function and multi-layered with back propagation, both 

trained to learn data obtained from the kinematics model of a robotic arm. Solving the inverse 

kinematics using learning method of neural network represents the relations of both positions 

and velocities from the task space coordinate to the joint space coordinate simultaneously has 

been performed in [9]. While dividing one neural network into several neural networks has been 

presented in [10]; the first network represent the main network and the others are a secondary 

networks to estimates the possible errors. The use of multiple cooperating networks for the 

overall modeling of inverse kinematics was explored in [11], where radial basis function (RBF) 

neural networks were chosen. Training multiple neural networks for a specified path trajectory 

could minimize maximum position error to a 7°. 

 

Reis Robot– RV12L 

The inverse kinematics of the Reis Robot RV12L shown in Fig. (1) is not different from any 

6 DOF robot manipulators. In this type of robot we can divide the 6 angles into two groups; the 

first comprises 3 angles for the position and the second has 3 angles for the orientation of the 

robot end effector. Therefore, the schematic shown in Fig. (2), represents the usual first 3 DOF 

of the robot end-effector position. Generally, there are two major inverse kinematic techniques 

[10]: 
 

 Explicit, with exact solution (as for the 3 link manipulator); 

 Iterative, for use when an infinite number of solutions exist. 
 

Problems that one may encounter when performing inverse kinematics with these methods are: 

 Both methods require a computer capable of mathematical calculations; 

 The methods do not adapt to compensate for damage, calibration errors; 

 Iterative solutions may be slow; 

 Solutions are valid only for a specific robot. 

Such reasons made designing neural network for solving this problems is very important. 

After modeling the forward kinematics according [12] and obtaining the final transformation 

matrix, the process of minimizing the kinematic equations to a position set and orientation 

matrix will result the following robot end-effector equations: 

                     [                     ] 
                         [                     ]                                        (1) 

                                            
Where       and    represent the position point of the robot end-effector.    can be eliminated 

by transferring the point of analysis for the first link in the center of connection between    and 

  . Usual analytical solution given in [12] for such type of robots leads the following equations 

of   ,    and    for left, right robot arm and for elbow up, elbow down robot arm: 

               (     )               (     )                                    (2) 

                     
  

    
         

    
    

 

     
                                                                

        (  √    )              (   √    ) ‒ for elbow down and elbow up 

robot arm respectively. 

The two solutions of   , which depends on   , will be given by; 
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Where the radius    √  
    

  and       . 

From the manual of Reis Robot RV12L:                          ,            and 

the range of angles is                 for                  for    and                 for 

  . 

Methodology and Design 

 For a successful neural network design, there are important problems needs to be solved: 

 How to find a suitable multi-neural networks structure; 

 How to determine an appropriate representation of input/output data; 

 How to create a well-structured learning data set, and 

 How to train the network successfully. 

It is worthy to notify that a unique structure of neural network could not cope with entire 

robot work-space. Therefore, it is suggested to divide the workspace into eight sub-workspaces 

and then assign one neural structure for each subspace. This would permit to enlarge data base of 

the full work-space. Therefore, one may expect to reach near exact learning process and decrease 

the error to a large extent. 

For       plane, the data file can be generated by representing     as circles. Similarly, the 

data needed for    and    can be represented as circles in       plane. Increasing the number 

of circles means increasing the accuracy of training of every neural network in the entire neural 

network scheme. This will give an effective multi-neural networks design trained by the data 

file and would allow    to be divided into four parts according the following ranges: (0° to 90°), 

(90° to 165°), (0° to -90°) and (-90° to - 165°). On the other hand, the data files for    and    

would be divided according to the four inverse kinematics solutions of the end-effector position 

(left arm with elbow up and elbow down) and (right arm with elbow up and elbow down). The 

final structure will consist of eight large trained neural networks supplied with a unit of 

addressing control; responsible for choosing the proper set of angles for every robot 

configuration. Every neural network in the structure has simple and fixed construction with 

well-training; and this is one of the main advantages of the suggested design. In order to make 

the results obtained from every neural network very closed to the real and desired results, the 

input will not rely on the point (        ) but also would depends on another component 

derived from the point. These components will work as index for the neural network and would 

increase the speed of training for every neural network. The suggested structure for each sector 

is illustrated in Fig.(3). It is evident from the figure that the inputs of the neural networks of 

every joint variable (  ,    and   ) will be different from each other. The distances P and r 

indicated in the figure are given by   √  
    

    
  and   √  

    
 . 

The entire multi-neural networks system is depicted in Fig. (4). Solution of    includes four 

neural networks with the control addressing unit responsible for choosing the proper neural 

network as shown in Fig. (5). The inputs of    are   ,     and  . Fig. (6) shows the internal 

structure of the four neural networks; two networks are for    and the other for    which trains 

only for range of joint limit angles of Reis Robot. The inputs of    are            and  , where 

the solution of   is fed as input to find the solution of   .  

Fig. (7) exemplifies the proposed neural network internal structure to solve the inverse 

kinematics of    specifically. By trial and error design approach, the structure consists of four 

layers: input layer, two hidden layers and one output layer. Four inputs  ,   ,  , and   are used 

in the input layer for finding   , twelve neurons in the first hidden layer, six neurons in the 

second hidden layer and finally one neuron in the output layer. The hyperbolic tangent function 

is used as the activation function in the hidden layers, while the linear activation function is 

employed in the output layer. 
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Results and Analysis 

All the neural networks in the structure are trained by a relatively large data file which 

covers the robot workspace using the back-propagation algorithm. The performance index of all 

these neural networks is the mean square error that used to indicate the convergence error 

during the training process. Figure (8) shows the mean square error graph during training of    

where the goal was      . 

The results after training the neural networks of the    and    are better than those with   ; 

because for every value of    there is a corresponding range of θ3 and there is dependency 

between the errors of    and   . Figure (9) and (10) shows the after-training errors of    and   , 

respectively.  

The main difficulties with the neural training are the singular robot configurations which 

lead to singular forward kinematic matrix. From the analysis of the robot, the point (      ) of 

end-effector position is considered the main singular configuration for   , since there is no 

offset shoulder in Reis Robot RV12L to prevent this singular configuration. At this case the 

value of    will not affect the robot position, while    and    will give the desired robot 

configuration. The table below shows joint angles based on classical geometrical solution and 

those obtained using suggested multi-neural networks structure. 
 

Verification Model 

A Cartesian space trajectory planning system based on cubic polynomial Bezier curve design 

has been implemented using Matlab-Simulink software. In Cartesian space schemes, the path 

shape is described in terms of functions which compute Cartesian positions of the Robot End-

Effector as a function of time. Thus the trajectory generation is performed in Cartesian space 

and is converted into corresponding joint space variables at time of executing the trajectory. 

Bezier curves are useful to design trajectories with certain roundness properties and defined by 

series of control points with associated weighting factors. During the motion of the robot end 

effector an Inverse Kinematics process is needed to convert the points in the Cartesian path to 

the proper joint angles which represent the same path and realize it [13, 14]. The Bezier curve 

design for Cartesian trajectory planning of robot manipulator end-effector can be described by 

the following Equations: 
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Where t = time parameter (second), to = starting time (second), tf = final time (second). The 

Bezier equations x(t), y(t) and z(t) represents the robot Cartesian trajectory between the start (xo, 
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yo, zo) and the goal (x3, y3, z3) points. Other trajectory parameters x1, y1, z1, x2, y2 and z2 can be 

calculated using the following equations: 
 

    
oxxAx  31
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The parameters (A, B, C, D, E and F) are related to the control point’s calculations and have 

been chosen to achieve appropriate curvature of Bezier curve. Also its easy to differentiate the 

equations of x(t), y(t), and z(t) with respect to time to find the velocity and the acceleration, 

where Vx(t) and  Ax(t) are x-component linear velocity and acceleration of Bezier trajectory, 

respectively;  
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The velocities and accelerations in y and z-axes are similarly computed. The desired trajectory 

has been simulated for  tf = 5 (second), the start and the goal points are (0.7, -0.7, 1.5) and (-0.6, 

0.6, 1.6), respectively. For the comparison purposes, the overall trajectory planning system 

shown in Fig. 11 includes the classical inverse kinematic solution and the solution resulting 

from suggested approach. The simulated Bezier trajectory is shown in Fig. (12), while the 

produced joint variables   ,    and    are shown in Fig. (13). The error traces of different joint 

variables between the classical computation and multi-neural structure is shown in Fig. (14).  
 

CONCLUSIONS 

Multi-neural networks structure trained using back-propagation algorithm has been applied 

to inverse kinematic problem. As a case study Reis Robot RV12L were used for testing this 

model. Dividing the workspace of the robot into eight neural networks gives the ability to 

increase the size of the data file and, then, to increase the accuracy of the solution. However, a 

trade-off of training time would appear. The training process may take a long time that may 

reaches to 2 hours and many epochs number up to 10000. On the other hand the feed-forward 

mode of this model can give a very fast results comparing with classic analytical (mathematical) 

methods. Results showed that    and    are better than   . The accuracy of    deeply depends 

on   ; since    is one of the dependent input of    neural networks. This approach was tested in 

a Bezier trajectory planning system. The comparison between the inverse kinematic classical 

solution and the proposed multi-neural network solution shows that the overall 8-neural 

networks structure was able to predict robot joint angles that were not included in the training 

data with an approximate average joint errors ±0.06º, ±0.15º, and  ±0.05º for   ,    and   , 

respectively. 
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Table (1): 

   

desired 

   

neural 

   

desired 

   

neural 

   

desired 

   

neural 

45 45.00177 -12.3842 -12.3807 100.5398 100.5399 

56.3099 56.3109 -44.5798 -44.5695 71.3369 71.3367 

123.6901 123.6892 1.7165 1.708 52.6273 52.6275 

29.0546 29.0555 -16.1804 -16.1748 73.1458 73.1459 

99.8226 99.8212 13.8448 13.8542 2.3804 2.3573 

100 99.9977 14.6664 14.7171 0.693 0.60354559 

129.9976 129.9969 105.0035 105.0023 134.9986 134.9977 
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        Figure (1) Reis Robot RV12L                    Figure (2) The first 3 DOF representation 

                                                                                             of the Reis Robot 
 

 

 

 

 

 

 

 

 

 Figure (3) Inputs design of the neural                Figure (4) Overall system for multi-neural 

            networks of θ1, θ2 and θ3                                              inverse kinematics 

 

 

 

 

 

 

 

 

 

 

 Figure (5) Four neural-networks for                Figure (6) Four neural-networks for inverse 

            inverse kinematics of θ1                                              kinematics of θ2 and θ3 
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Figure (7) Neural network structure                      Figure (8) Mean square error graph during  

      for inverse kinematics of                                                             training θ3 

 

 

 

 

 

 

 

 

Figure (9) Error of θ2 (degree) after training       Figure (10) Error of θ1 (degree) after training 
 

 

 

 

 

 

 

 

 

 

 

Figure (11) Overall planning system for testing the multi-neural solution 

of the inverse kinematics 
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Figure (12) The resulted Bezier Robot Trajectory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (13) Joint variables θ1, θ2, and θ3 (degrees) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (14) Computation Error of θ1, θ2, and θ3 (degrees) 


