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1. INTRODUCTION 

In 19th century, the French mathematician, J. Fourier, 

showed that any periodic function can be expressed as an 

infinite sum of periodic complex exponential functions. 

Many years after this remarkable property of periodic 

functions was discovered, the ideas were generalized to non-

periodic functions, and then to periodic or non-periodic 

discrete time signals. After that, Fourier transform (FT) 

became a very famous tool for computer calculations  [1 ,2  .]  

Note that in the Fourier Transform equation, the integration 

is from minus infinity to plus infinity over time. So, no matter 

when the component with frequency appears in time, it will 

affect the result of the integration equally as well. The lack of 

time information in the spectrum is one serious weakness of 

Fourier Transform. That is why Fourier transform is not 

suitable if the signal has time varying frequency, i.e., the non-

stationary signals  [3 .]  

To solve the above problem, the Windowed Fourier 

Transform is used. The basic idea is to divide the signal into 

small enough segments, where these segments can be 

assumed to be stationary. The width of this window must be 

equal to the segment of the signal where this assumption is 

valid . 

The Windowed Fourier Transform has several problems. 

Using a window of infinite length will result in Fourier 

Transform with good frequency resolution, but no time 

information. On the other hand, in order to obtain a stationary 

sample, a small enough window is required in which the 

signal is stationary. The narrower is the window, the better is 

the time resolution, and better the assumption of stationary, 

but the poorer the frequency resolution. However, the 

Wavelet transform solves the dilemma of resolution to a 

certain extent [4]. Notice that a wavelet at a scale occupies 

only part of the length of the signal being analyzed. To cover 

the full length, additional wavelets have to be added and, at 

level 3, there are 23=8 wavelets at equally spaced intervals 

along the horizontal axis. 

 

2. WAVELET EQUATIONS 

The discrete wavelet transform (DWT) operates on a data 

vector whose length is an integer power of 2, transforming it 

into a numerically different vector of the same length. Like 

the Discrete Fourier Transform (DFT), the wavelet transform 

is invertible and in fact orthogonal, the inverse transform, 

when viewed as a big matrix, is simply the transpose of the 

transform. Both DFT and DWT, therefore, can be viewed as 

a rotation in function space, from the input space (or time) 

domain. The basis functions are the unit vectors ei, or Dirac 

delta functions in the continuum limit, to a different domain. 

For the DFT, this new domain has basis functions that are the 

familiar sines and cosines. In the wavelet domain, the basis 

functions are somewhat more complicated and have the 

fanciful names mother functions and wavelets  [5 .]  

Wavelet functions generated from one single function ψ, 

which is called mother wavelet, by the dilation, the factor a 

and the translation factor b: 

Abstract A novel fast and efficient algorithm was proposed that uses the Fast Fourier Transform (FFT) 

as a tool to compute the Discrete Wavelet Transform (DWT) and Discrete Multiwavelet Transform. The 

Haar Wavelet Transform and the GHM system are shown to be a special case of the proposed algorithm, 

where the discrete linear convolution will adapt to achieve the desired approximation and detail 

coefficients. Assuming that no intermediate coefficients are canceled and no approximations are made, 

the algorithm will give the exact solution. Hence the proposed algorithm provides an efficient complexity 

verses accuracy tradeoff.   The main advantages of the proposed algorithm is that high band and the low 

band coefficients can be exploited for several classes of signals resulting in very low computation. 

 

10.36371/port.2020.2.7 

https://www.jport.co/index.php/jport/index
https://www.jport.co/index.php/jport/index
https://www.jport.co/index.php/jport/index
https://www.jport.co/index.php/jport/index
https://portal.issn.org/api/search?search%5B%5D=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://www.jport.co/index.php/jport/peer_review
https://doi.org/10.36371/port.2021.2.7
mailto:Profwaleed54@gmail.com
https://www.crossref.org/members/prep/22164
https://doi.org/10.36371/port.2020.3.4


 

 

Journal port Science Research 

Available online www.jport.co 

Volume 4, No:2. 2021 
 

  

Mahmoud, W.A., (2021). Computation of Wavelet and Multiwavelet Transforms Using Fast Fourier Transform. Journal port Science Research, 4(2). PP 

111-117  https://doi.org/10.36371/port.2021.2.7  

112 

𝜑𝑎,𝑏(𝑥) = ⋮ 𝑎 ⋮−
1

2   𝜑(
𝑥−𝑏

𝑎
)   …  (1)     

The fundamental idea behind wavelets is to analyze the signal 

at different scales or resolutions, which is called multi-

resolution analysis. Wavelets are a class of functions used to 

localize a given signal in both space and scaling domains. A 

family of wavelets can be constructed from a mother wavelet. 

Compared to Windowed Fourier analysis, a mother wavelet 

is stretched or compressed to change the size of the window. 

In this way, big wavelets give an approximate image of the 

signal, while smaller and smaller wavelets zoom in on details. 

Therefore, wavelets automatically adapt to both the high-

frequency and the low-frequency components of a signal by 

different sizes of windows. Any small change in the wavelet 

representation produces a correspondingly small change in 

the original signal, which means local mistakes will not 

influence the entire transform. The wavelet transform is 

suited for non-stationary signals (signals with interesting 

components at different scales) [6]. 

For best performance in some applications, wavelet 

transforms require filters that combine a number of desirable 

properties, such as orthogonally and symmetry. However, the 

design possibilities for wavelets are limited because they 

cannot simultaneously possess all these desirable properties 

[7]. The relatively new field of Multiwavelets shows promise 

in removing some of the limitations of wavelets [8]. 

WAVELET THEORY 

Wavelets are functions that satisfy certain requirements. The 

very name wavelet comes from the requirement that they 

should integrate to zero, “waving” above and below the x-

axis. The diminutive connotation of wavelet suggests the 

function has to be well localized. Other requirements are 

technical and need mostly to insure quick and easy 

calculations of direct and inverse wavelet transform [6]. 

Wavelet novices often search for the reason of not using 

traditional Fourier methods. There are some important 

differences between Fourier analysis and wavelets. Fourier 

basis functions are localized in frequency but not in time. 

Small frequency changes in the Fourier transform will 

produce changes everywhere in the time domain. Wavelets 

are local in both frequency/scale (via dilations) and in time 

(via translations). This localization is an advantage in many 

cases [8].  

Second, many classes of functions can be represented by 

wavelets in a more compact way. For example, functions with 

discontinuities and functions with sharp spikes usually take 

substantially fewer wavelet basis functions than sine-cosine 

basis functions to achieve a comparable approximation. This 

sparse coding makes wavelet excellent tools in data 

compression [9].  

Wavelet analysis provides an alternative way of breaking the 

signal down into its constituent parts [4]. The shapes of the 

components of the decomposed signal depend on the shape of 

the analyzing wavelet. There are an infinite number of 

possibilities for this, but only a small subset of these meets 

the conditions that are necessary if the wavelets are to give an 

accurate decomposition and also be orthogonal to each other. 

In other words, the analyzing wavelet determines the shape 

of the building blocks from which the signal f is constructed 

(the basis functions into which the signal f can be 

decomposed) [3]. For Haar Wavelet with bases functions Fig. 

(1) Gives the values of these functions h(n)and g(n), and three 

levels of decompositions. The implementation of Wavelet 

equations are illustrated in Fig. (1). In this figure, three levels 

of decomposition are depicted. h and g are low-pass and high-

pass filters corresponding to the coefficients respectively. 

The down-pointing arrows denote a decimation or down-

sampling by two. 

 

Fig. (1) Three level Haar Wavelet Decompositions 

The following steps can view the computation of 1-D single level DWT: 

1) Compute the linear convolution between the input x and the filters h & g. 

2) Apply Decimation by 2 by taking only the odd sequence values of the results of the linear convolution. 
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3) Compute the linear convolution between the a’s and the filters h &  g  for more than one level  of decomposition. 

The resultant a’s and b’s are the Wavelet Coefficients.

 

Fig. (2) Wavelet Decompositions of an image. 

 

3. DISCRETE FOURIER TRANSFORM (DFT) 

A Fourier Transform will break apart a time signal and 

will return information about the frequency of all sine 

waves needed to simulate that time signal. It converts a 

sequence of N equally spaced real or complex sample x0 

x1 ….etc, of a  function x(t) of time (or another variable, 

depending on the application) into a sequence of N 

complex numbers xk by the following summation: 

Let 𝑊𝑁 = 𝑒−𝑗2𝜋/𝑁, hence 

𝑋(𝑘) = ∑ 𝑥𝑛𝑊𝑁
𝑛𝑘𝑁−1

𝑛=0    ......  (2) 

With the numbers Xk known, the inverse 

DFT exactly recovers the sample values xn through the 

following summation 

𝑥(𝑛) =
1

𝑁
∑ 𝑋(𝑘)𝑁−1

𝑘=0 𝑊𝑁
−𝑛𝑘   ….  3) 

[

𝑋(0)

𝑋(1)

𝑋(2)

𝑋(3)

] = ||

1 1     

1
1
1

𝑊4
1 

𝑊4
2

𝑊4
3

 

1 1
𝑊4

2

 𝑊4
4

𝑊4
6

𝑊4
3

𝑊4
6

𝑊4
9

||   ∗  [

𝑥(0)

𝑥(1)

𝑥(2)

𝑥(3)

]      …. (4) 

Decimation-In-Time FFT Algorithm is simplified in Fig. (2). 

 

Fig. (3)  Flow graph for an 8-points DIT-FFT algorithm. 
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The Fourier matrix GF can be expressed in terms of the 

separated matrix SM [4]: 

SM=[

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

]          … (5) 

𝐺𝐹𝑁 = 𝐺𝐹𝑁  𝑆𝑀𝑁
𝑇𝑆𝑀𝑁         … (6) 

 

𝐺𝐹𝑁 = [
𝐼𝑁/2 𝐷𝑁/2

𝐼𝑁/2 −𝐷𝑁/2
] [

𝐺𝐹𝑁/2 0

0 𝐺𝐹𝑁/2
]  𝑆𝑀𝑁  ... (7) 

 

Where DN
2

 is diagonal matrix with wN
i  on the diagonal. 

4. THE PROPOSED METHOD OF 

COMPUTING DWT USING FFT: 

Concerning with discrete wavelet analysis and the signal to 

be analysed is assumed to have been sampled at equally 

spaced intervals. The shapes of the components of the 

decomposed signal depend on the shape of the analysing 

wavelet. There are an infinite number of possibilities for this, 

but only a small subset of these meets the conditions that are 

necessary if the wavelets are to give an accurate 

decomposition and also be orthogonal to each other. In other 

words, the analysing wavelet determines the shape of the 

building blocks from which the signal f is constructed (the 

basis functions into which the signal f can be decomposed). 

The longer the original sequence, which must be a power of 

2, the more levels there are in the transform. For a given time 

duration, increasing the number of sampling points increases 

the amount of detail available. 

The discrete wavelet transform (DWT) operates on a data 

vector whose length is an integer power of 2, transforming it 

into a numerically different vector of the same length. Like 

the Discrete Fourier Transform (DFT), the wavelet transform 

is invertible and in fact orthogonal, the inverse transform, 

when viewed as a big matrix, is simply the transpose of the 

transform. Both DFT and DWT, therefore, can be viewed as 

a rotation in function space, from the input space (or time) 

domain. The basis functions are the unit vectors ei, or Dirac 

delta functions in the continuum limit, to a different domain. 

For the DFT, this new domain has basis functions that are the 

familiar sines and cosines. In the wavelet domain, the basis 

functions are somewhat more complicated and have the 

fanciful names mother functions and wavelets. 

A particular set of wavelets is specified by a particular set of 

numbers, called wavelet filter coefficients. Here, we will 

largely restrict ourselves to wavelet filters in a class 

discovered by Daubechies. This class includes members 

ranging from highly localized to highly smooth. The simplest 

(and most localized) member, often called DAUB4 or D4, has 

only four coefficients, c0,… ,c3. For the moment we 

specialize to this case for ease of notation. 

The calculation of Haar Wavelet transform can be expressed 

in matrix representation 〖WH〗_N in the following form: 

WHN = 1/√2 [

1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

]          …  (8) 

WHN =    [

WN/4 

IN/4 

IN/4

] [  
WN/4

IN/4

]    …  (9) 

It can be shown that due to the orthogonality of the bases 

functions that: 

IN  =   WHN
T WHN      … (10) 

WHN = WHNGFN
TGFN SMN

T SMN   … (11) 

 

Hence it can be seen that the Wavelet transform can be 

computed using FFT using the above equation (11). This can 

be expressed in terms of following equation: 

WHN = [
JN/2 KN/2

LN/2 MN/2
] [

GFN/2 0

0 GFN/2
] SMN …  (12) 

Where,  𝐽𝑁/2, 𝐾𝑁/2, 𝐿𝑁

2

 𝑎𝑛𝑑 𝑀𝑁/2 are all diagonal matrices. 

  This splitting, filtering and decimation can be repeated on 

the scaling coefficients to give the two-scale structure. The 

first stage of two banks divided the spectrum of   into a low-

pass and high-pass band, resulting in the scaling coefficients 

and wavelet coefficients at lower scale. The second stage then 

divides that low-pass band into another lower low-pass band 

and a band-pass band and so on. Equation (12) can be 

summarized for the computation of the discrete wavelet 

transform (DWT) using FFT through the following proposed 

algorithm:  

Step -1- computes the FFT of the input signal (x(n)) which 

gives X(k). 

Step -2- computes the FFT of the g filter which results in 

G(k). 

Step -3- compute the FFT of the h filter which produce H(k). 

Step -4- Obtain the dot product between X(k) and G(k) to get 

GX(k). 

Step -5- Obtain the dot product between X(k) and H(k) to get 

HX(k). 

Step -6- Calculate the low band Wavelet coefficient after 

taking the inverse FFT of GX(k). 

Step -7- Calculate the high band Wavelet coefficient after 

taking the inverse FFT of HX(k). 

Fig. (4) Shows a demonstrated example on the above 

procedure applied to the signal 𝑥(𝑛) = [1, −1, 2, 1]. After 

taking the FFT of the signal and the high pass filter of the 

wavelet transform ℎ(𝑛) = [−1, 1, 0, 0], the multiplication of 

the results was performed. Next, the inverse FFT of the result 

of the multiplication was achieved. The Decimation of the 

results gives the high band values of 𝐻 = [2, 1].  

Fig. (5) Demonstrate the algorithm to obtain the 

approximation coefficients for the same input function which 

results in G=[2,1
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Fig (4) Computation of the DWT Detail Coefficients 

 

Fig (5) Computation of the DWT approximation Coefficients 
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Fig. (6) The values of the orthogonal matrices of Multiwavelet transform. 

 

The algorithm for the computation of DMWT using FFT 

algorithm summarized in the following steps which are the 

same as for Wavelet transform: 

Step -1- computes the FFT of the input signal (x(n)) which 

gives X(k). 

Step -2- computes the FFT of the g filters which results in 

G0(k), …, G3(K). 

Step -3- compute the FFT of the h filters which produce 

H0(k), …, H3(K). 

Step -4- Obtain the dot product between X(k) and G0(k), …, 

G3(K) to get GX(k). 

Step -5- Obtain the dot product between X(k) and H0(k), …, 

H3(K). to get HX(k). 

Step -6- Calculate the low band Wavelet coefficient after 

taking the inverse FFT of GX(k) and HX(k). . 

Step -7- Calculate the high band Wavelet coefficient after 

taking the inverse FFT of HX(k). 

 

 

5. CONCLUSIONS 

The proposed algorithm for the computation of DWT and 

DMWT using the FFT proposed here have the following 

characteristics: 

1) It was shown that the proposed method computes the 

exact results. 

2) Due to the implementing of FFT in its realization its 

computation complexity is on the same order of that for 

the FFT i.e. (O(log2N)). 

3) The signals are made spares that can be used to speed up 

the proposed algorithm through the dropping of the 

insignificant data. 

4) Using section pruning of the algorithm that corresponds 

to the significant twiddle factors, the magnitudes will be 

decreased those results in speeding up the proposed 

algorithm. 

5) 5- The algorithm is very efficient and can result in a 

building denoising capability which can be used in 

several applications in future for this purpose. 
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