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Abstract.

Let T be 2n-periodic bounded 1 -measurable function, thatis f Lp(y) ,1< p<oo. in this paper, we

discuss the approximation of f by using Trigopnometric polynomial and g, ; operator. Also, we will estimate

the best approximation by Weighted Ditzian-Totik modulus o

f smoothness.

where X =% ,1=012,....2n
+

1. Introduction
It is easy to get the following

Let Lp (1) , 1< p< oo consists of all zz— (1.3)
. 1
measurable function f for which | f|| o <O Si(F3%) = ;J F(x+1) D, (t) du(t)
' X
where
Such that, D, (x) is Dirchlet Kernel of degree n,
(1.1) || f || - (H f | pdﬂ)% where n=0,1,..., which defined as
P4 !

Also, let f be 2n-periodic bounded -

measurable function , Key words : D. T modulus of smoothness
,Trigonometric polynomial, Best Approximation
Let us consider S, ( f;X) be Trigopnometric

polynomial which has the representation
(1.2)
1 2n
S,(F: =—2F(X) D, (x-x), Created with
i=1
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(14)

Dn(x):1+22n:cos(ix) , XeR.

Now, we define the following operator ,that
dependent on Dirchlet Kernel, where

o L
qr(t)—?ZD (t) where r =2n.

i=1

We construct the following polynomial of function
f e L,(x),such that

(15)
f 2 J-f h
qr,j( ’t)_mg ()ﬂ)qr(x_)ﬂ) » Where

=2n, j=3n

and

(1.6)
6, (F,0 =2 (W g (x-U) du(u).
ﬂX

Since f isbounded « —measurable function and
1< p < oo, then we have

7 Itl, =clf],,

Let us consider the family of locally global norms
for ©>0and 1< p< oo, then

(1.8)

|f ||5’p = {I(sup{j f(u):ue N(x,5)})pdx} ’ ,

also if f e Lp(,u) ,then we define the locally

global norms of f and ¢ by a function such

that , ¢(u,8) = op(X) + 5°

no.3 vol.2

AS(F,%) =

Aug/2012
(1.9)
1

15, ,.. = { j sup{ f (u)|:ue N(x,5)]) dﬂ(x)}

where ,
N(x,6)={ue X:|x-u<s},5eR"

also see [1].

We will use the modulous of smoothness which
are connected with difference of higher order,

that is the rth symmetric difference of f which
is given by

(1.10)

K (k K- kh . kh
;(ij(—l) f(x—E+|h), X+EEX

0 , O.W.

Then the rth usual modulus of smoothness of
f e L, (u) is defined by

(1.12)
o (f,0),,=sup

0<p<go

A (f x)H

and the Ditzian-Totik modulus of smoothness of
f is defined by

(1.12)

g (f,0),, = Of‘iggHAkm»o (f 'X)Hp,y ’

where ,in this applications the ¢ usually used

#() = #(x) = (x(1— x))? for xe[0]].

The weighted Ditzian-Totik modulus of
smoothness of f is defined by

(1.13)
of (£,6),, =

"8 (F )]

where , K, I denote to the nonnegative integers
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By [4] for a function f eL (X), 1< p<oo,

so we have
(1.14) of (f,6),= K, ,(f,5),
where , IZKW is the weighted Ditzian-Totik

R - functional defined by

(1.15)
Kiro(1,8), = inf {
B

"(X)(f -FR,

+5kH k
P

Let C"(X) denoted the set of £ —times

continuously differentiable functions on [01].

Also , for 1< p < oo, the Sobolev space ng isa

collection of all functions f on X ,such that,

D s absolutely continuous and

f9 el (X).
2. Auxiliary Results

In this section we mention some basic results
,which will be used to prove the main results.

Lemma 2.1 [1]

Let u be a non-decreasing functionon R,
satisfying: (y) — 1(X) = constant, and
1< p<oo, We put:

©,(0)= sup (u(y)—u(¥)).6>0 and

O<y—x<6

( Zmax‘P‘j <C(P)R)| whereP, i

— Xel

algebraic polynomials of degree at most N and

| - {k’k+l} then
n n

)

no.3 vol.2 Aug/2012

2.1)

1

., <o no, 2R,

Lemma 2.2 [3]

Let f be @ bounded x —measurable

function then for 1< p <o, we have.

2.2)
a’g,r (f,9) pu S Cék” f (k)Hp,ﬂ

Lemma 2.3 [3]

Let f be abounded z —measurable function
on X and g, € IT N L () thenwe have

(2.3)

|- gen 5o SCLK PN @ (£,6),,

Lemma 2.4 [1]

Let f be @ bounded x —measurable

function then for 1< p <o, we have.

0|, <cmlf

5o’

@ [t scmlf],,-

Lemma 2.5 [3]

Let f and g be bounded g —measurable
functions for 1< p < «, then we have

(2.4)

a)kr(f 5)

_a)kr(f 915)p,y+wlf,r(g15)p,ﬂ

Lemma 2.6 [2]
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Let T € T, ,then we have

25 YTHD,(x-%)=T(X.

Lemma 2.7 [5]

Let feLp(X) , 1< p<w,a,f>0,heR

,then we have

() AN (f,X)) =A% (f,x) foralmost
every o,

(ii)

AP (F, x)Hp < C(a)|Mi(f, x)Hp .

Lemma 2.8 [1]

Let f and g be two functions defined on the
same domain ,then we have

(i) a,;(f+9)=q ;(f)+q (9),

(i) q (f)=aq (f).

' : 1 — c
where « is a constant K|:f,;|-p,\N]b1Wp1:|£
n n

Lemma 2.9

Let f be @ bounded x — measurable convex

function then for 1< p <o, we have

(2.6) B (f)p. <c(pKn o, (1,5),,

Proof:-

Let f el (#) "A°and T €T, then we have

no.3 vol.2 Aug/2012

EP(f),, = ITg” f —T||M ;then by using

Lemma 2.1, and the formulas (1. 13) and (1.7) we
get

EP(f),, <c( p)n‘liTQIn”f —T||p
<c(p)nEX(f),

<c(p)ax, (f.0),

-1

<c(p,

<c(p.k)n e, (f,8),,.

Lemma 2.10 [7]

Let f be a 27 -periodic bounded 1 —

measurable function then for 1< p<oo, we

have.
2.7)
ES(f) 1 p+Es(f) 1 p=lp=w
s+l s+1’
50 |C(p)Es () 1 1< p<oo
a’

Lemma 2.11 [1]

f be a 27 -periodic bounded 1 —measurable

function for 1< p< o

28 Q.0 <cl|f] ..

p.u
Lemma 2.12

Let f be abounded x —measurable function

then Herit< gk o, we have:
" nitro™ profewona|
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(2.8)
of, (f,6),, <c(p,kyn™

Proof :-

By using (1.13) ,then we have

a)kr(f §)py_ S'Ip

oo () X)H

Then by Lemma 2.1 Lemma 2.6 and (1.7), we
have

-1

a)f’r(f,é')p’y_

oo (F X)H

0<h<o

-1

ACHE

<c(p,k)n™*

Now, we finished the proof.

Lemma 2.13 [1]

Let f and g be two functions defined on the
same domain , It follows that

() S(f+gx)=S5,(f;%)+5,(9:%),
(i) S,(of)=aS,(f).

where ¢ is a constant.

Lemma 2.14 (Minkowsk’s Inequality) [6]

If
pxland f,gel (u), thenf+gel (u)
and

no.3 vol.2 Aug/2012

(2.9)

froses] {prra] {fore]

3.Main Results

We are review the main results and the
following Theorem 3.1 and Theorem 3.4 represent
the direct theorems for best approximation .On
the other hand Theorem 3.2 and Theorem 3.3
represent the inverse Theorems.

Theorem 3.1

Let f be 2n-periodic bounded x -measurable
function for 1< p < oo .then we have

(3.1)
|f —qr,j(f)uw <en?2 @l (1,5),,

with the equivalence constants depending only on
K,r and p.
Theorem 3.2

Let f be 2n-periodic bounded 1 -measurable
function ,then we have

(3.2)

of (f,5),, SC““Z;OH“ —qr,,-(f)Hl1 y

with the constants dependingonlyon r and p.
Theorem 3.3

Let S,(f;X) be Trigonometric polynomial and f
be 2n-periodic bounded g -measurable function,
then
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(3.3)

a)lf,r (S(£:%),0),, < Cé_rpi‘Ji‘rp“f —a,; (1 )Hw
=

where, € depending on k,r and p.

Theorem 3.4

Let S,(f;X) be Trigonometric polynomial and f

be 2n-periodic bounded y -measurable function,

for 1< p < oo then we have
(3.4)
|f - Sn(f;x)||p'ﬂ <c

2nn+1wf(f 5)

p.u?

with the constants dependingonly p.

4.Proof of The Main Results

Proof of Theorem 3.1

We may assume the Trigonometric polynomial
T T, ,and we introduce

|f —T||p’ﬂ <EP(f),, where

p.u

fel, (v NA

Also, by using Lemma 2.8 (i) (ii) ,Lemma 2.11 and
Lemma 2.9, then we have

[t =a, (0, =t -T+T-a, 0],

p.u

<|t-T| ,+IT ‘qr,i(f)up,ﬂ

<[|f-7] ,+

o, (M-a;(H)]

no.3 vol.2 Aug/2012
<[t =T, +la, =),
<df-7],,

since the best approximation
@) —i
EP(f),, = 49}‘”1‘ —T||p’ﬂ then by (2.6) we have

|f —T||w <cEP(f),, <cnwf (f,9),,.
where the constant ¢ depends only on p and K.

Now we complete proof (3.1)

Proof of Theorem 3.2

Suppose that any polynomial h eW,f NL,(w)
,1< p<oo, 0 >0 then by using

Lemma 2.5 and Lemma 2.1, we have

ol (f 1) p.u <wf (f -h,0),, +a),f'r(h,5)p’ﬂ

< of

], +' ], )

< cn”p{

h)”p +65¢

LN
p

<en'’K,, ,(,5),

By using Lemma 2.10 and Lemma 2.4(i) , we get

f _'qrj

0<r<n

E(f), =inf
mv
then we have
Ky (F16), zc(mE (),

T+l
<CZ Hf _qu

[ |--11'-—:| I"'ll
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From (1.7) it follows that
0l (£,0),, sen®Y|f —a (D)1
r=0 r+1

with the constants dependingonlyon r and p
and this complete the proof Theorem 3.2 &

Proof of Theorem 3.3

We assume that S, (f;X) is Trigonometric

polynomialand f e L () and let
H(X) =V x> —1.

Now, using Lemmas 2.1, 2.7 , 2.13 and the
formula (3.1) , we get the following

# ()] W)(sn(f X))

<cn?P o0 (Sh(F3%); x)H
# 0) Ky (S (F1%))]
<cn'®s iy (S (F%) =0k x,)]

<cnVPs”

oo (Si(F1%) =50, %)

< oS rp( j ‘J‘ HA sy (Sh(F = qr,),x)H

<5 (] j Sl -a,

<[f-a],

no.3 vol.2 Aug/2012

so( L jzp\ =

where, for 0 < ¢(x;) < 1 and by using sup to the
n
right and left inequality and O<h< ¢,

then we have

o (S(12.0),.,
so( L jzp\ =

The constant C dependson k,p and r #

Proof of Theorem 3.4

We assume that S, (f;X) is a Trigonometric
polynomialand f e L (x), 1< p<ooand by

using Lemmas 2.14 ,2.14, 2.1, 2.3 and the
formula,(1.1). Also, suppose that g, ; € L, () it

follows that

; Yo
[f-s.(F:%), :(I|f(x)—8n(f;x)| d,uJ

.V
s[ﬂf(x)—qr,ﬁqr,j—sn(f;x)\ dﬂj

Jo
S[Hf(X)—qr'j pd,u)
J{J. Qi —Sn(fix)‘pdﬂ] p
1 p }/P
+[Iqr,,—EZf(x])Dn(x_x]) d'uJ
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where, D, is Dirichlet Kernel of degree n and
since D, (x—x;)<2n+1 , Vj and using (1.1)

then we have

|f —Sn(f;x)||pyﬂ
2n 12n p
SHf —q ‘MJF n+ ,Z-; [;[ Q- f(xj)‘pdﬂj

<|t-q.], + 251 —q,
j=1

‘p,ﬂ n ‘p,u
Furthermore, by using Theorem 3.1 and (1.7) then

we have

‘p,u -

2n
ZHf G
j=1

2n
cn‘pZ“Zw,f‘r(f ,n‘l)p’#

i=1

Now we complete the proof for r >1, k>1 and
the constant depending on

kK,rand p &
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