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Abstract.

Let f be 2-periodic bounded  -measurable function, that is  pLf p 1,)( . in this paper, we

discuss the approximation of f by using Trigonometric polynomial and jrq , operator. Also, we will estimate

the best approximation by Weighted Ditzian-Totik modulus o

f smoothness.

1. Introduction

Let  p1,)(pL consists of all 

measurable function f for which ,p
f ,

where
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Also , let f be 2-periodic bounded  -

measurable function ,

Let us consider );( xfSn be Trigonometric

polynomial which has the representation
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It is easy to get the following
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Such that, )(xDn is Dirchlet Kernel of degree n ,

where ,...,1,0n which defined as
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(1.4)
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Now, we define the following operator ,that
dependent on Dirchlet Kernel, where
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We construct the following polynomial of function
)(pLf  , such that
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Since f is bounded  measurable function and

 p1 , then we have

(1.7)
,)(
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fpCf  .

Let us consider the family of locally global norms
for 0 and  p1 , then
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also ,if )(pLf  ,then we define the locally

global norms of f and  by a function such

that , 2)(),(   xu

(1.9)
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where ,

   RuxXuxN  ,:),( ,

also see [1].

We will use the modulous of smoothness which
are connected with difference of higher order,
that is the rth symmetric difference of f which

is given by

(1.10)
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Then the rth usual modulus of smoothness of
)(pLf  is defined by

(1.11)
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and the Ditzian-Totik modulus of smoothness of
f is defined by

(1.12)
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where ,in this applications the  usually used

2

1

))1(()((.) xxx   for  1,0x .

The weighted Ditzian-Totik modulus of
smoothness of f is defined by

(1.13)
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where , rk, denote to the nonnegative integers

and 0 rk .
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By [4] for a function )(XLf p ,  p1 ,

so we have

(1.14) pprk ff ),(K
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where , r,k,K
~

is the weighted Ditzian-Totik

-K
~

functional defined by

(1.15)
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Let )(XC  denoted the set of  times

continuously differentiable functions on  1,0 .

Also , for  p1 , the Sobolev space 

pW is a

collection of all functions f on X ,such that ,
)1( f is absolutely continuous and

)()1( XLf p .

2. Auxiliary  Results

In this section we mention some basic results
,which will be used to prove the main results.

Lemma 2.1 [1]

Let  be a non-decreasing function on R ,

satisfying:  )()( xy  constant,  and

 p1 , We put:
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,where nP is

algebraic polynomials of degree at most n and
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Lemma 2.2 [3]

Let f be a bounded  measurable

function then for  p1 , we have:

(2.2)
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Lemma 2.3 [3]

Let f be a bounded  measurable function

on X ,and )(pnn Lg  ,then we have

(2.3)
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Lemma 2.4 [1]

Let f be a bounded  measurable

function then for  p1 , we have:
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Lemma 2.5 [3]

Let f and g be bounded  measurable

functions for  p1 , then we have

(2.4)
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Lemma 2.6 [2]
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Let nT  ,then we have

(2.5) 
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Lemma 2.7 [5]

Let RhpXLf p  ,0,,1,)( 

,then we have

(i) ),()),(( xfxf hhh
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Lemma 2.8 [1]

Let f and g be two functions defined on the

same domain ,then we have

)()()()( ,,, gqfqgfqi jrjrjr  ,
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where  is a constant.

Lemma 2.9

Let f be a bounded  measurable convex

function then for  p1 , we have
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Proof:-

Let 2)(  pLf and nT  , then we have
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get
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Lemma 2.10 [7]

Let f be a 2 -periodic bounded 

measurable function then for  p1 , we

have:

(2.7)
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Lemma 2.11 [1]

f be a 2 -periodic bounded  measurable

function for  p1

(2.8)
 ,,, )(

ppjr fcfQ  .

Lemma 2.12

Let f be a bounded  measurable function

then for  p1 , we have:
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(2.8)
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Proof :-

By using (1.13 ) ,then we have
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Then by Lemma 2.1 ,Lemma 2.6 and (1.7), we
have

p

k
h

r

h
prk xfxnpcf ),()(sup)(),( (.)

0

1
,, 




  




,

p

r fxnkpc )(),( 1  ,




,

1 )(),(
p

r fxnkpc  .

Now, we finished the proof .

Lemma 2.13 [1]

Let f and g be two functions defined on the

same domain , It follows that

);();();(S)( xgSxfSxgfi nnn  ,

)()(S)( fSfii nn   .

where  is a constant.

Lemma 2.14 (Minkowsk’s Inequality) [6]
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3.Main Results

We are review the main results and the
following Theorem 3.1 and Theorem 3.4 represent
the direct theorems for best approximation .On
the other hand Theorem 3.2 and Theorem 3.3
represent the inverse Theorems.

Theorem 3.1

Let f be 2-periodic bounded  -measurable

function for  p1 .then we have

(3.1)
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with the equivalence constants depending only on
rk , and p .

Theorem 3.2

Let f be 2-periodic bounded  -measurable

function ,then we have

(3.2)
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with the constants depending only on r and p .

Theorem 3.3

Let );( xfSn be Trigonometric polynomial and f

be 2-periodic bounded  -measurable function,

then



6

Journal of education college no.3           vol.2                     Aug/2012

(3.3)
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where, c depending on rk , and p .

Theorem 3.4

Let );( xfSn be Trigonometric polynomial and f

be 2-periodic bounded  -measurable function,

for  p1 then we have

(3.4)
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with the constants depending only p .

4.Proof of The Main Results

Proof of Theorem 3.1

We may assume the Trigonometric polynomial

nT  ,and we introduce
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Also, by using Lemma 2.8 (i) (ii) ,Lemma 2.11 and
Lemma 2.9, then we have
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where the constant c depends only on p and k .

Now we complete proof (3.1)

Proof of Theorem 3.2

Suppose that any polynomial )(p
k
p LWh 

, 0,1  p then by using

Lemma 2.5  and Lemma 2.1, we have
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From (1.7)  it follows that
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with the constants depending only on r and p

and this complete the proof Theorem 3.2

Proof of Theorem 3.3

We assume that );( xfSn is Trigonometric

polynomial and )(pLf  and let

1)( 2  xx .

Now, using Lemmas 2.1, 2.7 , 2.13 and the
formula (3.1) , we get the following
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The constant c depends on pk , and r

Proof of Theorem 3.4

We assume that );( xfSn is a Trigonometric

polynomial and )(pLf  ,  p1 and by

using Lemmas 2.14 , 2.14 ,  2.1,  2.3 and the
formula ,(1.1). Also , suppose that )(, pjr Lq  ,it

follows that
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where , nD is Dirichlet Kernel of degree n and

since jnxxD jn  ,12)( and using (1.1)

then we have
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Furthermore, by using Theorem 3.1 and (1.7) then
we have
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Now we complete the proof for 1r , 1k and
the constant depending on

rk , and p
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:المستخلص

الھدف من ھذا البحث ھو دراسة  درجة تقریب الدالة القابلة 

للقیاس jrqة ومؤثر  یباستخدام متعددة الحدود المثلث- , ,
وسوف نركز على حساب التقدیر الأفضل باستخدام  مقیاس 

ح لكل من دتیزین وتوتك النعومة المرجّ
 rk ,.
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