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Abstract: The design and Implementation  using Arduino UNO microcontroller as 

simple practical Technique. The designed ultrasonic Radar performance take its 

comparison with respect standard   using MATLAB. The proposed implementation 

show enhancement in system performance with  on new Techniques of Compressive 

sensing. using  (Irregular Low Density Parity Check Code)ILDPC to Generate 

Measurement Matrix Φ=H . 

 

 

 

1-Introduction: 

In this paper we introduce the hardware implementation of ultrasonic Radar and 

process the transmitted and echo signal by using new approach of CS by using 

deterministic method of get Phi = ΦM×N  =H M×N    =ILDPC code to ge 

2. Compressive Sensing Implementation. (CS) 
CS theory enables the implementation of the recovery of the high dimensional signal 

from lesser observations as a comparison to the actual number of measurements 

required in conventional techniques. The objective of CS recovery algorithms is to 

provide an estimate of the original signal from the captured measurements. It is based 

on the property of the signals to be able to offer their representation in the sparse 

domain with fewer numbers of nonzero coefficients. This property is called Sparsity 

mailto:alijalil2010@yahoo.com
mailto:alijalil@cmitfod.com
mailto:dreng.ahmad@yahoo.com
mailto:thamer_rashed@yahoo.com
mailto:thamir_rashed@uotechnology.edu.iq


 7102مجلة أبحاث ميسان ،المجلد الثالث عشر ، العدد السادس والعشرون ، السنة 

 

 

    

 
703 

and the given signals as sparse signals. The reconstruction algorithm used with CS 

decides the number of samples needed for exact reconstruction. The model of 

reconstruction using CS depends on two properties: Sparsity and Incoherence. where 

 can see the difference between the traditional method and compressive sensing in the 

 figure 1 and 2 Respectively. 

  

 

            
                 Figure 1. Conventional Signal Sampling Process. 

 

 
                  Figure 2. Signal Sampling Process Based on CS. 

 

3-Sparsity . 
Many signals are capable to be stored in compressed form in terms of their projection 

in a suitable basis. The projected coefficients of these signals can be zero or a far 

lower value, if a suitable basis is used. For a signal having non-zero coefficients, it is 

called -sparse. As, these sparse signals may offer the larger number of smaller 

coefficients that can be ignored easily; hence a compressed signal can be obtained 

from the sparse form. For compressive Sensing, the suitable domains available are 

DCT, DWT, and Fourier Transform [7]. Discrete Wavelet Transform is usually 

preferred over Discrete Cosine Transform because it enables the removal of blocking 

artifacts [8]. Basically, Sparsity refers to the possibility of having a much smaller 

information rate for a continuous time signal as a comparison to the one depicted by 

its bandwidth. So, CS can use the advantage of using these natural signals with their 

compressed form in a particular domain. Suppose a signal can be represented in a 

suitable Orthonormal basis like wavelet, DCT. As in a signal, many coefficients are 

small and most of the important information lies in few larger coefficients. Hence, it 

can be expanded in an Orthonormal basis for sparse representation. Let x the given 

signal and  ψ={ψ1 ψ2 ψ3 …..ψn} represents the suitable basis, therefore, an image x 

in domain is given as ψ represents the suitable basis, therefore, an image in domain is 

given as:                        
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                                         s(t) =Σn
i=1  xi ψi(t)  …………..(1) 

Where s  is the coefficients of the sparse form of  x, x i = <  si, ψi > . In a sparse 

representation of the signal, small coefficients in that signal can be neglected without 

much information loss. It's like considering the signal by keeping only the significant 

coefficients and discarding the smaller coefficients. Thus, the obtained vector is 

known as a sparse signal  see Figure.3. 

 

 
           Figure.3. Recovery of the original signal by using Compressive sensing     

                           N=256. 

 

4-Incoherence. 
Incoherence shows that any signal with a sparse representation in a particular domain 

can be spread out in a domain in which it is actually captured. It enables the 

relationship of duality between time and frequency. It measures the maximum 

correlation for any two matrices. These two matrices give a form of different 

representation domains. For the measurement matrix Φ with size  M×N and the 

representation matrix  ΨN×N of size  N×N, the representation matrix can be 

represented as Ψ1   … Ψn as columns and measurement matrix as Φ1…… Φn as  

rows. The coherence is given as. 

                                     μ(Φ, Ψ ) =√n max │ Φk , Ψj│   …….(2) 

for  1 ≤ j ≤  n , and  1 ≤ k ≤  m. Moreover, from linear algebra, for incoherence 

following result can be depicted. 

                                         1 ≤   μ(Φ, Ψ )  ≤ √n  ……………....(3) 

In CS technology, the incoherence of two matrices is important. One is the Sensing 

matrix that is used to sense the significant columns of the signal of interest. The 

second one is the representation matrix ΨN×N in which the given signal is represented 
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in the sparse form. The low value of incoherence for CS shows that the fewer 

measurements are required for reconstruction of the signal [9].                                     

Coherence is able to measure the maximum correlation between the columns or 

elements of ΨN×N and Φ. Mostly low coherence pairs are considered in Compressive 

Sensing. The measurement matrix Φ basically performs the function of sampling the 

coefficients. The measurement matrices like Fourier, Gaussian are able to satisfy the 

coherence property. The random matrices like i.i.d (independent identically 

distribution )Gaussian Matrix or binary ±1 matrix with fixed basis ΨN×N are mainly 

incoherent. These matrices are simple and possess lower convergence, which are 

required for recovery with Compressive Sensing.                                                           

 

5- Compressive Sensing Model . 
Compressive Sensing model basically performs compression and sampling 

simultaneously. Considering an N dimensional signal , the sparse form of the signal 

can be constructed by representing it in any suitable basis like DCT, Fourier 

Transform, and wavelet Transform. The sparse form or the signal of interest can be 

given as:                                                                                                                         

x = ΨN×N s  ………..(4) 

Where x is the sparse form of x  to s and ΨN×N is the suitable basis that shows the 

projection coefficients of x on the given basis. The next step is to compute the 

measurement vector y with a suitable matrix either Gaussian [12] or Bernoulli [13]. 

The measured vector can be given as:                                                                              

y = ΦM×N x  ………..(5) 

where ΦM×N is the measurement matrix of dimension M×N. The overall Eq. can be 

represented as: 

y= ΘM×N s ………..(6) 

Where ΘM×N is the Sensing matrix and is depicted as ΘM×N = ΦM×N ΨN×N, it is also 

known as reconstruction matrix. In practical applications, the measurement or the 

random noises can also be considered. Equations (5) and (6) are reformulated as: 

Figure 3.                                                                                                                          

y = ΦM×N x +e………..(9)       

y= ΘM×N s + e ………..(10)        

Where e represents Random noise vector. Hence, the primary objective of CS is to 

recover the signal from these captured measurements, under sparsifying conditions. 

Then, the recovery algorithms are applied on the given measurement vector. The 

recovery algorithms available are L1 minimization.  
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(a)                                                            (b) 

Figure 4: (a) Compressive sensing measurement process with (random Gaussian) measurement 

matrix ΦM×N and Discrete Cosine Transform (DCT) matrix ΨN×N. The coefficient vector s is 

sparse with K = 4. (b) Measurement process in terms of the matrix product ΘM×N = ΦM×N ΨN×N 

with the four columns corresponding to nonzero si highlighted. The measurement vector y is a 

linear combination of these four columns. 

 

 

 

.H  LDPC (Low Density Parity Check code)-6 

1 Graphical Representation. -6 

Tanner considered LDPC codes ( and a Generalization) and showed how they may be 

represented  effectively by a so-called bipartite graph, now call graph [13].  The 

Tanner graph of an LDPC code is analogous to the trellis of a convolutional code in 

that it provides a complete representation of the code and it aids in the description of 

the decoding algorithm .A bipartite graph is a graph ( nodes connected by edges ) 

whose nodes may be separated into two types and edges may only connect two nodes 

of different types. The two types of nodes in Tanner graph are the variable nodes and 

the check nodes (which we shall call v-nodes and c-nodes, respectively).(  the 

nomenclature varies in the literature : variable nodes are also called bit or symbol 

nodes and check nodes are also called function nodes) The Tanner graph of a code is 

drawn according to the following rule: check node j  is connected to variable node i  

whenever  element hij in H is 1. One deduce from this that there are m=n-k check 

nodes, one for each check equation , and n variable nodes ,one for each code bit ci 

.Further , the m rows of  H  specify  the m c-node connections, and the n columns of 

H   specify the n v-node connections.                                                                             

     

 

Example. Consider a (10,5) linear block code with wc =2 and wr = wc(n/m) =4 with 

the following H. Matrix . 
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The Tanner graph corresponding to H  is depicted in fig 1. Observe that v-nodes  

c0,c1,c2 and c3 are connected to c-node f0  accordance with the fact that , in the zeroth 

row of H ,h00= h01= h02= h03= 1 (all others are zero).Observe that analogous 

situations holds for c-nodes   f1 , f2 , f3, and f4  which corresponds to rows 1,2,3 and 4 

of H , respectively. Note m as  follows from the fact  that cH
T
 =0. The bit values 

connected   to the same check node  must sum to zero .we may also proceed along 

columns to construct the Tanner graph. For example , note that  v-node c0  is 

connected to c-nodes  f0 and f1 in accordance with the fact that , in the zeroth column 

of  H  , h00= h10=1. 

Note that the Tanner graph in this example is regular: each v-node has two edge 

connections. And each c-node has four edge connections ( that is, the degree of each  

v-node  is 2 and degree of each c-node is 4). This is in accordance with the fact that  

wc =2 and wr =4. Is also clear from this example that mwr=nwc. For Irregular LDPC 

codes , the parameters wc and  wr are functions of the column and row numbers and so 

such notation is not generally adopted in this case . instead m it is usual in the 

literature [7] to specify the v-node and c-node                                                                

   

 degree distribution polynomials., denoted by λ(x)  and p(x), respectively . in the 

polynomial. 

 

                           λ(x) =    , 

 denotes the fraction of all edges connected to degree d. v-nodes and dv denotes the 

 maximum v-node degree . Similarly , in the polynomial. 

 

                           p(x) =    , 

pd denotes the fraction of all edges connected to degree d c-nodes and dc denotes the 

maximum c-node degree. Note for the regular code above , for which wc =dv=2 and 

wr =dc=4, we have λ(x)=x  and p(x)=x 
3
. 
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                             Figure (5) Tanner graph for example code. 

 

A cycle (or loop)  of length v in a Tanner graph is a path comprising v edges which 

closes back on itself. The Tanner graph in the above example posses a length -6 cycle 

as exemplified by the six bold edges in the figure. The girth  γ of a Tanner graph is 

the minimum cycle length of the graph. the shortest possible cycle in bipartite graph 

is clearly a length-4 cycle, and a such cycles manifest themselves in the H matrix   as 

four 1s that lie on the corners of a submatrix of  H .we are interested in cycles, 

particularly short cycles , because they degrade the performance of the iterative 

decoding algorithm used for LDPC codes .                                                                     

 

2.LDPC Code Design Approaches. -6 

Clearly , the most obvious path to the construction of LDPC code is via the 

construction of a low-density parity-check  matrix with prescribed  properties. A 

large number of design techniques exist in the literature , and we introduce some of 

the more prominent ones in this section , albeit at a superficial level. The design 

approaches target different design criteria , including  efficient encoding and 

decoding ,near –capacity performance ,or low-error  rate floors. (Like turbo codes, 

LDPC  codes often suffer from low-error  rate floors, Owing both to poor distance 

spectra and  weaknesses   in the iterative decoding algorithm) .                                     

                   

3.Gallager Codes.-6 
The original LDPC codes due to Gallager [13] are regular LDPC codes with n H 

matrix of the form. 
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Where the sub matrices  Hd  have the following  structure . From any integers μ  and 

wr than greater than 1 .each submatrix  Hd  is μ * μwr with row weight wr and column 

weight 1.the submatrix.                                                                                                   

H1 has the following specific form : for i=1,2,3,….., μ the i-th row contains all of its 

wr 1’s  in columns (i-1) wr+1  to iwr .the other submatrices  are simply column 

permutations of  H1 . its evident that H  is regular  has dimension   μwc * μwr , and 

has row and column weights wr and  wc , respectively . the  absence of length-4 cycles 

in H is not guaranteed ,but they can be avoided  by computer design of H .Gallager 

showed that the ensemble of such codes has excellent distance properties  provided  

wc ≥ 3 and wr ˃ wc .Further  Such codes have low-Complexity  encoders since parity 

bits can be solved for as a function of the  user bits via the parity-check matrix 

[13].Gallager codes were generalized by Tanner in 1981[16]. And were studied for 

application to code-division multiple- access (CDMA). Channel in[20].Gallager 

codes were extended by MacKay other.[14],[15].                                                           

                                 

 

4.MacKay. Codes. -6 

MacKay had independently discovered the benefits of the designing binary codes 

with sparse H matrices and was the first to show the ability of these codes to perform 

near capacity limits[13],[14]. MacKay has archived on a web page[10] a large 

number of  LDPC codes  has designed for application to data communication and 

storage, most of which are regular .He provided in [4].algorithm  to semi-randomly 

generate sparse H  matrices. A few of these are listed below in order of increasing 

algorithm complexity (but not necessarily improved performance).                              

                                    

1- H is created by randomly generating weight-wc columns and (as near as possible) 

uniform row weight. 

2- H  is created by randomly generating weight -wc  column ,while ensuring weight-

wr rows and no two columns having overlap greater than one. 

3- H  is generated as in 2,plus short cycles are avoided. 

4- H  is generated as 3,plus H =[H1  H2] is constrained so that H2 is invertible(or 

at least  H  is full  rank).one drawback of Mackay Codes is that they lack 

sufficient structure to enable low-complexity encoding .Encoding is performed by 

putting  H  in the form [P
T
 I] via Gauss-jordan elimination, 

From  which the generator matrix can be put in the systematic form  G=[I  P] . the 

problem  with encoding via G  is the submatrix  P is generally not sparse  so that ,for 
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codes of length n=100 or more encoding complexity is high .An efficient  encoding 

technique employing only the H matrix was proposed in [16]. 

 

5. Irregular LDPC codes .-6 
Richardson et al.[17] and Luby et al[18] defined ensembles of irregular LDPC codes 

parameterized by the degree distribution polynomials  λ(x) and p(x) and showed how 

to optimizes  these polynomials for a variety of channels. Optimality  is in the sense 

that ,assuming  message-passing decoding (described below),a typical code in the 

ensemble was capable of reliable  communication in worse channel conditions than 

codes outside the ensemble are .the worst-case channel condition is called the 

decoding threshold and optimization of  λ(x) and p(x) is found by a combination of a  

    so-called density evolution  algorithm and an optimization algorithm. Density         

     

Evolution refers to the evolution of the probability density functions(pdfs) of the 

various quantities passed around the decoders Tanner graph. The decoding  threshold 

 for a given λ(x) - p(x) pair is determined by evaluation the pdfs of computed log-

likelihood ratios of the code bits .the spate optimization algorithm optimizes over the 

λ(x) - p(x) pairs.                                                                                                             

Using  this approach an irregular  LDPC  code has been  designed  whose simulated 

performance was within 0.045dB. of the capacity limit for a binary-input AWGN 

channel[15].This code had length n=10
7
 and rate  R=1/2 . it is generally true that 

designs  via density  evolution  are best applied to codes whose rate is not too high 

 (R ≤ ¾) and whose length is not too short ( n ≥ 5000) . The reason is that the density 

evolution design algorithm assumes  n → ∞( hence ,m → ∞) and so λ(x) - p(x) pairs  

which are optimal for very long codes, will not be optimal for medium-length and  

short  codes. As discussed in [15],[16],[17],[18], such  λ(x) - p(x) pairs applied to 

medium-length and short  codes gives rise to a high error floor. Finally, we remark 

that ,as for the MacKay codes, these irregular codes do not intrinsically lend  

themselves to efficient encoding. However ,as mentioned above ,Richardson  and  

Urbanke [16].     Have Proposed algorithms for achieving linear-time encoding for 

these codes.            
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Table 1. Arduino UNO technical specification [20]. 

Microcontroller ATmega328P  

Operating Voltage 5V 

Input Voltage (recommended) 7-12V 

Input Voltage (limit) 6-20V 

Digital I/O Pins 14 (of which 6 provide PWM output) 

PWM Digital I/O Pins 6 

Analog Input Pins 6 

DC Current per I/O Pin 20 mA 

DC Current for 3.3V Pin 50 mA 

Flash Memory 
32 KB (ATmega328P) 

of which 0.5 KB used by bootloader 

SRAM 2 KB (ATmega328P) 

EEPROM 1 KB (ATmega328P) 

Clock Speed 16 MHz 

LED_BUILTIN 13 

Length 68.6 mm 

Width 53.4 mm 

Weight 25 g 

       

  To overcome memory limitation of Arduino UNO, SD card used with suitable 

connection with Arduino UNO. The connection between them listed in Table 3.  

 

Table 2. SD card connected with Arduino UNO [22]. 
GND: ground (0V) 
VCC: power supply (5V) 
MISO (Master Input Slave Output) connected to  Arduino UNO pin 12 
MOSI (Master Output Slave Input) connected to Arduino UNO pin 11 
SCK (Master Serial Clock) connected to Arduino UNO pin 13 
CS (Slave Select) hint : you can connect this pin to any Arduino digital output 

        
Table 3. Ultrasonic Ranging Module HC - SR04.[21] 

http://www.atmel.com/Images/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
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Table 4. Wire Connection of the Bored of ultrasonic Radar using Arduino Uno.. 

 

color 

Wire 

 Arduino Uno  SD CARD Ultrasonic 

Ranging Module 

HC - SR04. 

Monitor 

screen 

 

  Rx-0 X X X 

 Tx-1 X X X 

Red Digital-2 X X RS 

Blue Digital-3 X X E 

Green Digital-4 X X D4 

Yellow Digital-5 X X D5 

Orange Digital-6 X X D6 

Red Digital-7 X X D7 

 Gray Digital-8 X Trig X 

white Digital-9 X Eco X 

Brown Digital-10 CS X X 

Orange Digital-11 MOSI X X 

Yellow Digital-12 MISO X X 

Red Digital-13 SCK X X 

Red 5V X X VDD 

Gray 5V- Potential-resistance. X X VO 

Red 5V X X A 

Red 5V X VCC X 

Green 5V VCC X X 

Blue GND GND X X 

Blue GND X X K 

BLACK GND  GND  

Blue GND –Potential 

Resistance 

   



 7102مجلة أبحاث ميسان ،المجلد الثالث عشر ، العدد السادس والعشرون ، السنة 

 

 

    

 
713 

 

The Arduino UNO micro controller after program algorithm, it uses serial port to 

transmit data to user interface and save the calculated permuted sequence as text file in 

SD card. Where the transmitted signal and received its real ultrasonic signal using 

frequency 40 kHz. The stored information in text file will be exported to MATLAB, by 

using SD card. a full simulation function in M-file that simulate communication 

system will import the stored information and use it to calculate system performance 

and plot the results as comparison between system using standard and convolution CS- 

and proposed CS- Using Irregular ILDPC codes to generate measurement Φ matrix . 
the process illustrated in Figure 6. 

 

 

 

 

 

   
 

 

                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

1) Do Arduino UNO 

connections. And program 

the proposed ultrasonic 

radar sensor HC-SR4  

algorithm  

2) Transfer ultrasonic radar 

result Through serial port 

3) Create and write 

ultrasonic results sequence 

to text file 

5) MATLAB import the 

text file and use its data 

through communication 

system m files, test 

performance and 
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Figure 6. Illustrate Proposed Ultrasonic Radar Hardware Implementation with 

Arduino Micro Controller Based on compressive sensing CS. Using ILDPC to 

generate measurement matrix ΦM×N. 

 

 

7-Simulation Results  

In this study we can compare the results by using conventional methods of 

compressive sensing recovery  Algorithms  Figure 7.( ΦM×N.= Random Gaussian or 

Bernoulli Matrix)  and the Figure 9. Compare the results by using   methods of Using 

The Proposed New techniques  Of  compressive sensing recovery  Algorithms  by   

Using ILDPC to generate Measurement matrix ΦM×N. =H M×N. Which is 

deterministic method ( not random)  we can see the recovery all the time for all 

algorithms is 99%. Recovery. 

  

 

    Figures 7,8 and 9 show simulation results.  

 

4) Save text file to SD card 

memory and export it to 

MATLAB  
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Figure 7. Compression  the Performance of the Recovery Algorithms Of  the  

Conventional Compressive sensing CS By using ΦM×N.=Random Gaussian or 

Bernoulli.   

 
 
Figure.8. Recovery of the original signal by using New techniques of Compressive sensing 

ILDPC-     

                     CS with Ultrasonic Real Signal. N=256. 
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Figure 9. Compression  the Performance of the Recovery Algorithms Of  the      

                 Compressive Sensing CS. By Using ΦM×N.=ILDPC.  

 

 

 

 

 

8-Conclusions  

     Implement proposed Ultrasonic Real signal using Arduino UNO with sensor 

HCSR04- Ultrasonic sensor for implementation of new techniques of compressive 

sensing by using ILDPC( Irregular Low Density Parity-Check  Code. Which is 

deterministic  technique ( Not Random) to generate measurement matrix ΦM×N. =H 

M×N. Instead Of convolution method by using ΦM×N. = Random Gaussian or Bernoulli 

Random variable .we see at figure 7 we need more Measurements  M for all types of 

recovery Algorithms ,Subspace Pursuit( SP), Orthogonal Matching Pursuit (OMP),  

(modifiedOMP)  ,Iterative Reweighted Least Square Algorithm (IRLS).and The 

Compressive Sampling Maching Parsuite Algorithm (CoSaMP).  

The recovery of the received signal approximately  99% . For new the techniques as 

ΦM×N. = H M×N. as compare with the conventional one by using ΦM×N. = Random 

Gaussian or Bernoulli Random variable . we see more measurements  M to recovery 

the received signal for the same Algorithms to get the same transmitted signal .  

Illustrated in figure 7.   
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4.Arduino code. 

/*design HCSR04- ULTRASONIC SENSOR WITH ARDUINO UNO TO 

DETECT OBJECTS. 

BY Ph.D Student Ali Jalil Taher. 

Bahgdad/ Iraq/University of Technology/ Electricaldwaz\ Dept./2017-8. 

 HC-SR04 Ping distance sensor] 

 VCC to arduino 5v GND to arduino GND 

 Echo to Arduino pin 13 Trig to Arduino pin 12 

 Red POS to Arduino pin 11 

 Green POS to Arduino pin 10 

 560 ohm resistor to both LED NEG and GRD power rail 

  

 */ 

 

#define trigPin 13 

#define echoPin 12 

#define led 11 

#define led2 10 

 

void setup() { 

  Serial.begin (9600); 

  pinMode(trigPin, OUTPUT); 

  pinMode(echoPin, INPUT); 
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  pinMode(led, OUTPUT); 

  pinMode(led2, OUTPUT); 

} 

 

void loop() { 

  long duration, distance; 

  digitalWrite(trigPin, LOW);  // Added this line 

  delayMicroseconds(2); // Added this line 

  digitalWrite(trigPin, HIGH); 

//  delayMicroseconds(1000); - Removed this line 

  delayMicroseconds(10); // Added this line 

  digitalWrite(trigPin, LOW); 

  duration = pulseIn(echoPin, HIGH); 

  distance = (duration/2) / 29.1; 

  if (distance < 4) {  // This is where the LED On/Off happens 

    digitalWrite(led,HIGH); // When the Red condition is met, the Green LED 

should turn off 

  digitalWrite(led2,LOW); 

} 

  else { 

    digitalWrite(led,LOW); 

    digitalWrite(led2,HIGH); 

  } 

  if (distance >= 200 || distance <= 0){ 

    Serial.println("Out of range"); 

  } 

  else { 

    Serial.print(distance); 

    Serial.println(" cm"); 

  } 

  delay(500); 

} 

 


