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Abstract 
 The present paper describes dynamical behaviour of a uniformly curved beam of 

tapered cross section under the action of periodical load. The investigated dynamics divided 

into two main parts ; the first deals with the effect of the slope of taper on the natural 

frequency. The second part studies the effect of the periodical load on the stability of the 

beam. The effects of  the value of the axial force and the total angle of curvature are 

discussed. Also the effects of excitation parameter and the periodical force are shown through 

graphs. 

 

Nomeclature 
E Young’s modulus (N/m

2
) 

F shear force (N) 

I second moment of area (m
4
) 

I o  second moment of inertia at the clamped end (m 4 ) 

I  second moment of inertia at angle of  curvature,  (m 4 ) 

 k s     stiffness of elastic end support (N/m) 

k e  dimensionless end stiffness, =k s R 3 /EI o  

M bending moment (N.m) 

m beam mass per unit length (kg/m) 

P axial force (N) 

R radius of curvature of beam (m) 

t time (s) 

u displacement along radius of beam (m) 

w displacement along the beam centerline (m) 

 total angle of beam  

  tapered ratio 

∆ excitation parameter 

 dimensionless transverse displacement 

 dimensionless displacement along beam centerline. 

 dimensionless frequency 

 circular frequency (Hz) 

μ  dimensionless periodical force. 

  dimensionless time 
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1- Introduction 
 The free vibration of curved beams has been studied by many investigators. Culver 

[1]

 used the Rayliegh-Ritz procedure together with the Lagrange multiplier concept to find 

the natural frequencies of a two – span curved beam with non – yielding  supports. Lee [2] 

studied the natural frequencies of an intermediately supported U-bend tube using the 

conventional methods. Chen [3] developed the dynamic three-moment equation for 

determining the natural frequencies of multispan curved beams on rigid,  

non –twisting  supports. 

 The out – of – plane vibrations of continuous curved beams neglecting the effect of 

damping and rotary inertia was studied by Wang [4]. Natural frequencies for a two – span  

curved beam were determined. It was found that the natural frequency increases with 

increasing the central angle of the arc. The same authors has another paper [5] which deals 

with the effect of an elastic foundation on the out – of –plane vibration of a circular curved 

beams, It was concluded that the natural frequencies decrease with increasing the central 

angle. 

 The free –out –of plane vibration of circular rings on identical equi-spaced elastic 

supports was studied by Mallik and Murty [6]. They calculated the natural frequencies and 

mode shape using a wave approach. Some numerical results were presented for six numbers 

of supports. 

 The dynamic behaviour of non-uniform cantilever straight beams was presented by 

Al-Rajihy and Al-Daami [7]. They were concluded that stiffening the end support shifts the 

resonance limits to a higher values. 

 From the literature available and to our knowledge there is no reference deals with the 

problem of curved beams under effect of periodical load. 

 All the aforemensioned and many other works for the dynamics of curved beams were 

limited to beams of uniform cross sections and no external periodical load. The purpose of 

this paper is to present the analysis of tapered beam of uniform curvature and the effects of 

the external periodical loads on the beam under consideration. 

 

2- Equation Of Motion 

 The equation of motion is derived using Newton’s second law by considering the 

element of the beam as shown in Fig.(1). The differential equation for the transitory motions 

in radial and tangential directions of the element are: 
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 Square brackets refer to reference number. 
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The bending moment is given by :  
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The radius of curvature after deformation, R  , is given by:  
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For in –plane motion, the condition of no extension in the centerline of the tube requires that 

the displacements u and w related to each other by : 
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 Utilizing Eqs. (4), (5)& (6) and neglecting the higher order terms, Eqs.(1), (2) and (3) 

reduced to a single differential equation as: 
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Upon introducing the following dimensionless parameters  
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the equation of motion becomes: 
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The second moment of area, I and mass distribution, m are written as: 

 

 )1(1)(   II                                                                    …(10) 

 

where:   )]1(1[)(   mm                                   …(11) 
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: Total angle of curvature 

 

The dimensionless force (t) is periodical which is written as [8]  

 

)cos1(0 τμμ                                                                       …(14) 

 

where  is the excitation parameter of the force, o is the steady state force, and  is the 

dimensionless frequency which related to the circular frequency   as: 
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substituting Eq. (14) into (9) yields : 
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3-Boundary Conditions: 
 

 The beam is clamped at one end and supported by elastic support at the other, which 

can be written as:  

 

a – at the clamped support :  
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b – at the elastic end: 
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where(  ) denotes differentiation with respect to  and k e =k os EIR /3 . 
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4- Bands Of Parametric Instabilities 
 For systems under parametric forces, Bolotin [9] has shown that the instability occur 

in two separated bands, which are the primary and secondary bands. The bands of unbounded 

solution are separated from the bands of bounded solution by two periodic periods T and 2T 

which are corresponding to the secondary and primary instability bands respectively. 

Applying Bolotin’s concept directly, the displacement   is expressed as: 
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Substituting Eq. (19) into Eq. (9) yields:  
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Truncating the series in Eq. (20) at k=1 and equating the coefficients of )
2

1
sin( τ and 

)
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1
cos( τ results in the following two equations : 
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Equations (21) and (22) determines the upper and lower limits of the primary instability 

regions respectively. The solutions of Eqs.(21) and (22) are respectively :  
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 Substituting each of Eqs. (23) and (24) into the boundary conditions, Eqs. (17) & (18), 

results in 6 equations in 6 unknowns  for each band. Searching for frequencies which vanish 

the determinants give the corresponding limit of the primary band. 

 The principal secondary instability regions are determined by expressing the 

displacement, , as: 
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Substituting Eq. (27) into (16) results in Eq. (20) with k=0,2,4. The principal secondary 

instability bands can be estimated with a good accuracy by truncating the series at k=2. 

Equating the constant terms and coefficients of )sin( τ and )cos( τ gives: 

 

0)1()2( 2

2

2

2

2

04

2

4

06

2

6















X

θ

X
μ

θ

X
μ

θ

X
     …(28) 

 

0
2

)1()2( 2

0

002

0

2

04

2

4

04

0

4

06

0

6























Y

μ
Yμ

θ

Y
μ

θ

Y
μ

θ

Y
μ

θ

Y
     …(29) 

 

and 

 

























2

2

02

0

2

02

2

2

2

04

0

422

0

04

2

4

06

2

6

)(2)1()
2

()2( Yμ
θ

Y
μ

θ

Y
μ

θ

Yμ
μ

θ

Y
μ

θ

Y

                                                              010 Yμ                     … (30) 

 

Equation (28) is uncoupled 6-order differential equation can be solved to give the upper limit 

as:  
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where ai’s are arbitrary constants, and r2i’s are the roots of the polynomial: 
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Equations (29) and (30) are two coupled differential equations gives the lower limit of the 

secondary instability regions. They  are solved as: 
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 Where s0j’s are the roots of:  
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Substituting Eqs.(31) , (33) and (34) into the boundary conditions results in 12 equations in 12 

unknowns for each band.  

 

5- Disscussions 
 The effect of the exciting periodical force (µ) on the bands of parametric instability 

regions is indicated in Fig. (2) while Fig.(3) shows the variation of the regions of instability 

with the excitation parameter (Δ). The size of an unstable region increases with increasing the 

value of the exciting force for both the primary and secondary instabilities. This phenomenon 

can be elaborated as follows: 

* The time duration through the reduction in force value from (µMax) to the mean value (µO) 

increases with increasing the exciting force. 

* The inertia force delivered from the fluctuations of the force value increases with increasing 

the value of the periodical force (µo). Hence this force will be an auxiliary reason in resonance 

appearance. 

* Increasing the value of exciting periodical force increasing the energy transferred to the 

excited structure; i.e. the kinetic energy of the structure will be increased which cause an 

increase in the size of unstable regions.  

      The excitation parameter has an identical effect on regions of parametric instabilities 

as that of the exciting periodical force  (µo). This can be explained as; the time duration  t ( 

 t=t at µmax – t at µo ) is proportional to (µmax -µo) and  µmax  depend on amplitude of 

excitation,  therefore  t is proportional to Δ. 

  The effect of axial force (nonperiodical) on the natural frequency of the beam is 

shown in Figs. (4) and (5). In Fig. (4) the axial force is compressive while in Fig.(5) the force 

is tensile. It is shown that increasing the compressive force  decreases the natural frequency. 

When the compressive force reach a certain value, the beam loses its stability by buckling. 

The value of force at which the loses its stability is known as “the critical force”. In the case 

of tensile force, the natural frequency increases with increasing the force, then it decreases 

when the stresses developed in the beam reaches the elastic limit. 

 Figure (6) shows the variation of the natural frequency with the total angle of 

curvature of the beam. The natural frequency decreases with increasing the angle of curvature. 

This is due to the fact that the stiffness of  curved beams decrease with increasing the angle of 

curvature as the case of helical springs. 

 The effect of the  elastic end support on the natural frequency is shown in Fig. (7). It 

shown that the natural frequency increases with increasing the stiffness of the end support. 
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Through out the computational process, it is found  that the taper ratio has no effect on 

the dynamical  characteristics of the beam. Therefore, the graph corresponding to this 

parameter is not presented here.  

  

6- Conclutions 
 Throughout the obtained results, the following conclusions are obtained: 

1- Increasing both of  the exciting periodical force and the excitation parameter cause an 

increase in the size of the parametric instability regions. This indicate that care  should be 

taken into account during the design stage to prevent failure.  

 2- The taper ratio (slope taper of beam) has a non effective effect on the dynamical 

characteristics of the beam. 
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بات الطبيعية واللاأسحقزارية  لعحبة منحنية مسلىبة جقع جحث جأثيز حمل دوري ذألذب

 زنمسنده بمسند طزفي م
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  ق ذعرضزذحانتلئجذعيىذشة ذننحنيلتذ ’ذحا ينلنيةيتذايستلتذ
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