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Abstract

Rotating disk — spindle system consists of an elastic disk mounted on an elastic
spindle by means of rigid clamp. This work presents a closed form solution for the
eigensolutions of such systems. The complex eigenfunctions have the classical
properties of a gyroscopic system when the individual disc, spindle and clamp
deflections for a given eigenfunction are collected in terms of an extended
eigenfunction. Critical speeds analogous to those of rigidly supported (classical)
rotating disk are examined for the coupled system. It is concluded that whereas the
rigidly supported disc does not experience critical speed instability in the one — nodal
diameter eigenfunctions, the coupled system does.

Introduction

An extensive literatures on the vibration and stability of spindle (short rotating
shaft) and rotating disks have been published in the last several decades. Analyses that
model elastic continuous system vibration typically focus on either the spindle (with
any attached disks modeled as rigid) or the disk (supported by a rigid structure).

Practical systems such as disk drives, turbo machinery and high speed gear
systems, however, exhibit coupled disc — spindle response wherein dynamic
excitation at either the disk or spindle excites elastic vibration of both components.
For example, the predominant excitation in gears is at the tooth mesh, but an
acceptable noise is radiated primarily from the housing. The vibratory response is a
coupled one involving the disk, spindle, bearings and housing. The reverse path
occurs in disk drives where bearing forces and support structure motion drive disk
vibration. While focusing on decoupled models, the existing literature also
emphasizes free vibration and stability investigations with considerably less attention
to the operating condition response.

J.A. Dopkin and T.E. Shoup [2], D.R. Chivens and H.D. Nelson [3] and F.S. Wu
and G.T. Flowers [4] generally use transfer matrix method and other lumped models
to examine natural frequencies and critical speeds. Their methods are focused on
turbo machinery applications. None of these studies examine modal coupling and
forced response. Chivens and Nelson [3] analytically studied the natural frequencies
of an elastic disk — spindle system coupled by thin clamp. They conclude that disk
flexibility alters the natural frequencies of an elastic spindle — rigid disk system but
not the critical speeds.

The present work builds on that of Chivens and Nelson [3[and Parker [1].
Theoretical Approach
This study examines a coupled disk — spindle system where both the disk and the
spindle are elastic bodies, a rigid clamp, Fig. (1), couples them. The associated
eigenvalue problem is analytically solved in closed form solution (CFS) for the
natural frequencies, vibration mode and critical speeds.
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(A) Equations Of Motion

Figure (1) shows the disk — spindle system, in which an elastic, axisymmetric,
rotating cantilever spindle carries elastic, axisymmetric disk at its end and rigid clamp
couples these components. The deformation is described by seven variables namely,
w(r,0,t), u(zt), v(z,t), u(t), v°(t), ¢(t) and y(t). These seven variables are not
independent because the clamp motions are related to the spindle deflections by the
geometric compatibility conditions:
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The dimensionless parameters of the system are:
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Figure(1): Rotating disk — spindle system

Parker [1] derived the linearized equations of motion of the system in rotating co-

ordinates as follows:
The governing equation over the continuous disk domain is:
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2
KV*w — Q& (W) + p(zt—\;v -r cos&(%—f + Q%) — rsin&(%’” + Q%)) =q,(r,0,t)...3)

, the governing equations over the continuous spindle domain are:
ML 0¥ Quoq @) @)
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+20—-Q%v=q,(z,t) ...(5

perieey - q.(zt) ...(5
, the linear momentum balance equations for the clamp are:
AL —83 Lz =1 200 e —E () ..(6)
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and the angular momentum balance equations for the clamp are:
o%u o%u ¢ 4.0 o*w N o174
“lz=1+ d1$|z =1+(5+92) 7 —jj,orcose—olatz A=+ 35 = 33) - -

Q* (5, 35— I5)p+ [[ prcosowdA) = M, (1) ...(8)
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—2|Z =+ dlgp =]+ (‘]11 + Jldl)? — ”pI’SInQFdA+ Q(‘Jll + J22 — J33)E —
Q*((35, — 55— Iy + [[ prsinowdA) = —M, (1) ...©9)

Here r and 6 are polar co- ordinates in the frame fixed to the rotating disk , z is the

co- ordinate of a material point on the spindle and &(w) is the membrane stress
operator [5]

10 10
QW) ===—(rc'w.)+=—(c’w,) ...(10
&(w) rar(a r) r6(9(67 0) (10)
Where
o' :Qz(cl+(r;—§+c3r2), o’ :Qz(cl—%+c4r2) (1)

Where

_ d+o (-t -B+o) . d-v, L, (0+D)yP—(B+v)
P T R B Al A

3+U 1+3v
c; =—p( ) and ¢, = —p( ) ... (12)
The splndle and disk boundary conditions are:
uz=0=vz=0=0, Z—UZ—O——|Z=O, wr =y =0, %|r:7:0
z
1-v ow 10°w 0 1-v 10w 0 o'w
Vz - (— 4 —— r=1=01 —VZ I’=l=0
( ( or 6492))| (8r r? (r 0% or 692))|
...(13)

Equations (3) — (9) can be written in the structured manner using the extended
operator formulation [1].

Defining the extended variable h as

h(r,0,z,t) = [W(r,9,t)u(z,t)v(z,t)u°(t)vC (t)(p(t)l//(t)]T ...(14)

Equations (3) — (9) are written concisely as
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MM oM C-?Dh=T ..a5)
a T a ]
where M, G, L and L are the extended operators operating on hand f is the

extended excitation vector. These operators are defined in [1].
The inner product between two extended variables x and y is defined as

1 1
0, )= [[ X YA+ [, y,d2+ [ % Yoz + X, Y, + X Vs + X Yo + %, Yy -..(16)
0 0

where x,and vy, are the elements of the extended variables x and y, the double
integral is over the area of the disk and, single integrals are over the length of the
spindle and the over bar denotes complex conjugate. With this inner product and with
the constraint (equations. 1), the operators M, L and L are symmetric and G is

skew — symmetric. Moreover M and L are positive definite. Thus equations (15) and
(16) cast the disk — spindle system in the canonical form of gyroscopic continuum.
The importance of this structured formulation will be evident in the perturbation
analysis and the forced response discussed later.

(B) Closed Form Solution of the Eigenvalue
Problem
A closed form solution (CFS) of the gyroscopic system eigenvalue problem is
presented here. Using the separation of variables technique

u(z,t) = £(z)e™ and v(z,t) = n(z)e*
in the spindle equations (4) and (5) gives

4
a—€+/12.§’—2§2/177—§22§ =0 ...(17)
A

o'n
2040 — Q=0 .. (18)

ot
Decoupling these equations yields
8 4
(;—§+2(/12 —QZ)(;—€+ (F+Q%°¢=0 ...(19)
z z
and an identical equation for n. The general solution for Eq.(19) is
¢(z) = A coskz + A,sinkz + A,coshxz + A, sinhxz + A cos fz + A sin fz
+ A,coshpz+ Ajsinh gz ... (20)
where A; are complex constants, x = (-4 + Q7 + 2iA1Q)** and
B = (=2 +Q%-2iaQ)°*. The solution of n(z) is identical to Eq.(20) with C;
instead of A;. Substituting n(z) solution and Eq.(20) into Eq.(17)(or Eq.(18)) yields
n(z) = —1A coskz — A, sinkz —iA, coshkz — iA, sinh kz + 1A, oS Sz +
iA;sin gz +iA coshpz +iA;sinh gz ... (21)
The eigenfunctions are complex as seen in equations (20) and (21).
Proceeding the separation of variables technique on w(r,0,t) such that

w(r,0,t) = w(r,0)e™ reduces equation (3) to
KV*W— Q2 + p(1*(W—rcosbp —rsinfy) — Q% (rcosforsinfy)) =0 ... (22)
For an axisymmetric disk, disk spindle coupling occurs only for the one nodal

diameter eigenfunctions [2,6]. These are coupled modes of the system and the only
ones of interest here. For numbers of nodal diameters other than one, the deformation

975



2006 : 5 222l /11 alaall Apwsigl) o slall / Qi dzals dlae

is only in the disk; the spindle does not deform. These are the uncoupled modes of the
system; they are well known for analyses of rigidly supported disks. For the coupled
modes the solution
w(r,8) = g(r)cosé + p(r)siné ... (23)
gives the radial part of the disk equation from Eq.(22)
r d’g +2rd d° —@Brr+5%(cr +c,r’+c re))Olzgl +@r-o%(cr®—c,r+c,r°—pr’
W F 1 2 3 W 1 2 4 or))

d
d—?— (3-5%(cr’ —c, +c,rY)+ r“a)z(f))g = 52pr5g0—a)2(§)l’5(0 ...(24)
Where 5 =-2_ and A=iw. An identical solution is obtained from p(r) with y

JK
instead of ¢. The solution of Eq.(24) is obtained using the power series method [13].
Using an expansion about the ordinary point r=1, the homogeneous solution has the
form

g(r) = iai A=r) ... (25)

Substituting the above equation in the homogeneous form of Eq.(24) and equating
coefficients of each power of (1-r) to zero, it is found that the coefficients (ap-a3) are
arbitrary, (a4-a7) depends on (ap-a3) and each of the higher coefficients depends on the
previous eight coefficients.

The recursion relation for i >4 is

a.,=1{40+3)([(+2)(+Di+2(i+3)([i+2)([i+D}a., +{6(+2)(i +1)i(i —1) +
6(i +2)(i + )i + (-3—5%(c, +¢, +c))(i + 2) (i +DYa,, +{-4{ +Di(i -1 (i —2) -
6(i +1)i(i —1) + (6 — 5°(—4c, — 2¢c, —6¢,))(i +1)i — (3—5%(c,—¢c, +¢,— p))(i +D}a , +
{i(i—)(i —2)(i —3)+2i(i —1)(i —2) + (-3—5°(6c, +C, +15¢,))i(i —1) +
(3+6°(-3c, +¢, —5¢, +5p))i + (-3+5%(c,—C, +¢,) —o’ p/ K}a +
{~6%(~4c, —20c,)(i —1)(i — 2) + 6%(3c, +10c, —10p)(i —1) + 57 (-2¢c, — 4c,) +
4o’ pl K}a,_, +{~67(c, +15¢,)(i — 2)(i —3) + 5°(—¢, —10c, +10p)(i — 2) +
5°(c, +6¢,) -6’ pl K}¥a,_, +{65°c,(i —3)(i —4) + 5°(5¢, —5p) (i —3) +
(—45%c, + 40’ pl K)Ya_, +{-5°c,(i—4)(i —5) + 6% (-, + p)(i—4) +
5°c, — o’ pl K¥a,_ /(i + A +3)(i+2)[i+1] ... (26)

Substitution of i=0 in the recursion relation and setting the coefficients with
negative subscript to zero gives the expression of a, in terms of (ag-az). Similarly
substituting i =1 and the expression of a4 into the recursion relation gives as in terms
of (ap-as). This procedure is repeated to obtain as-a; in terms of (ap-as). Finally, setting

one of the coefficients (ap-a3) equal to one and the other three equal to zero at a time
in the power series (eq.25) gives four independent — homogeneous solutions

w,,, —W,,, of Eq.(24). The general solution of Eq.(23) to the disk equation is
W(r,0) = (BWyy, + B,Wey, + BoWes + B,W,,, + re) cOSO
+ (Bw,,, + Bgw,,, + B,w,,, + Bow,, , +ry)sing ... (27)
where ro is a particular solution of Eq.(24), Bjare complex constants and the p(r) sinf
term of Eq.(23) has been included.
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Insertion of equations (20), (21), and (27) into equations (6) — (9), (13) and (1) yields
16 linear, homogeneous equations in the 16 coefficients A; and B;. Roots of the
characteristic determinant give the natural frequencies o.

The disk modal deflections (equations (27) and (20)) and that of the spindle (Eq.21)
are collected into an extended eigenfunctions of form (14) where the modal
deflections and rotations of the clamp are calculated from equation (1).

w,, =g, (r)cosé + p,,(r)sing
¢(m)
n(m)
h =|us=¢ )+ds, () m=123... ... (28)
Vr?] = 77m (l) + d177m (1)
_dg,@)
v= dz
_dr, ()
L dz

Note that Eqg.(28) is the form of complex coupled modes. They occur in complex
conjugate pairs. The uncoupled modes, which are real and degenerate, have the form
h, =[R, (r)(a, cosn@ + a, sinng)000000]" ,n =1 ... (29)
where a; and a; are arbitrary constants. The coupled vibration modes are qualitatively
classified as disk modes, in which the strain energy in the disk dominates the total
strain energy, and the spindle modes, in which the strain energy in the spindle
dominates the total modal strain energy.

The above solution can be specialized to solve two special cases: the zero speed
eigenvalue problem (Q =0) and the critical speed eigenvalue problem to determine the
speeds at which an eigenvalue vanishes (o=0). To distinguish from disk critical
speeds introduced later, the term spindle critical speeds is used for speeds with
vanishing eigenvalue as these critical speeds exist for a spindle not coupled to a disk.
At such spindle critical speeds, static loads in the rotating frame (e.g. a center of mass
offset from the rotation axis) excite a resonant condition. The recursion relations for
these problems are obtained by substituting Q=0 or ®=0 into Eq. (26). Homogeneous
solutions of the disk equation for the zero speed eigenvalue problems are Bessel
functions. For both Q=0 and ®=0, the following simplifications occur: equations (4)
and (5) reduced to decoupled stationary beam equation with well known solution, the
spindle deforms in only one plane for each mode, and the order of the characteristic
determinant is 8 as opposed to 16 because of this decoupling. All roots ( that is, zero
speed natural frequencies and spindle critical speeds) of the characteristic determinant
are degenerate and the two associated modes are identical except for the plane of
motion.
(C) Disk Critical Speeds

The spindle critical speeds at which an eigenvalue vanishes area only part of the
complete critical speed picture. In addition to these critical speeds derived from the
gyroscopic terms in the spindle equation of motion. They are so called disk critical
speeds where the name reflects the association with the critical speeds of a classical
spinning disk. To understand this concept, first consider the critical speeds of a
classical, rigidly supported disk.
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The critical speeds of rigidly supported disk are the speeds at which a disk natural
frequency in a ground based (inertial) reference plane is zero [10]. At such speeds any
constant, stationary force applied to the disk leads to large amplitude resonant
response. In a rotating reference frame, the critical speeds are given by Q = ©n
n

where o, is the natural frequency in the rotating reference frame and n =0 is the
number of nodal diameters in the associated mode. To see the relationship between
the fixed and rotating frame characterizations, consider a stationary point force of unit
magnitude acting on the disk perpendicular to its plane. In the rotating frame, the
excitation appears as the rotating force

F,=0(r-r)o@+Qt)/r, ...(30)
The modal force associated with the n- nodal diameter mode

w,(r,0) =R, (r)cosnd ...(31)is

f, = [ Fa(r.0.0)w,(r,0)dA= R (r,)cosnQt ...(32)

Resonant response (i.e. a critical speed) occurs when nQ=wm, as noted previously.
One would expect modes having any number of nodal diameters other than zero to
become critical at some speed, but Renshaw and Mote [10] proved that one-nodal
diameter modes of a rigidly supported disk never become critical. These modes,
however, do become critical for the coupled disk — spindle system as discussed below.
We use the stationary force interpretation to characterize the disk critical speeds of
the coupled system. The extended excitation vector (f) associated with a stationary
point force on the disk is

f =[F,000000] ...(33)
The modal force associated with the uncoupled extended eigenfunctions Eof Eq.
(29) with a;=1 and a,=0 is
f, =R, (r,)cosnQt n1l ...(34)
which is identical to Eq.(32). Resonant response occurs when nQ =, (n#1), as for

the rigidly supported disk. Because the uncoupled vibration modes n=1 and
corresponding rotating frame natural frequencies o, of a disk — spindle system are
exactly those of rigidly supported disk [1[, the disk critical speeds of the uncoupled
modes are unaffected by disk — spindle coupling. Thus the coupled system is
subjected to the same critical speed instabilities as the rigidly supported disk; the
unstable critical modes are identical to those of a rigidly supported disk and involve
purely disk deformation.

Considering now the coupled vibration mode, Eof Eqg. (28), the associated modal

force is
f,=0,(rp)cosQt—p,(r,)sinQt m=123... ...(35)

Results and Discussion
A model of non-dimensional parameters listed below has been taken as a study

case:
K =0.000355 d,=003248  »=05 38 =0.029521
p=0022279 o =2.05774 v=0.28 3%, =0.029521

JS, =0057743 12 =0016404 JS, =0.016404 JS =0.032808
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The choice of the point of expansion for the power series, Eq.(25) varies in the

literature, Wu and Flowers [4] used the regular singular point r=0, whereas Eversman
and Dodson [7] and Chivens and Nelson [3] used the ordinary point r=1. In order to
check whether expansion about one point leads to better convergence than the other,
an approach identical to that above used to obtain the natural frequencies by
expanding about r=0.
This method, however, gave the first two natural frequencies, at each speed as shown
in table(1), irrespective of the number of terms retained in the power series, moreover,
the convergence for r=0 is slower than for r=1. The choice r=1 is superior to r=0 for
the parameter set considered here, and the expansion about r=1 is used in the
subsequent results.

Table(1) Comparison of convergence of natural frequencies for power series

expansion about r=0 and r=1

r=0 r=1
Number Of Terms Number Of Terms
Q Galerkin 20 40 60 80 20 40 60

0.5 0.593 0.593 | 0.593 | 0.593 | 0.593 | 0.593 | 0.593 | 0.593

1.528 1.558 | 1.555 | 1.554 | 1.552 | 1.528 | 1.528 | 1.528

1.844 1.884 | 1.844 | 1.844

1.0 0.113 0.114 | 0.113 | 0.113 | 0.113 | 0.113 | 0.113 | 0.113

1.987 2.036 | 2.032 | 2.031 2.03 1.988 | 1.987 | 1.987

2.267 2.268 | 2.267 | 2.267

2.0 0.852 0.87 0.852 | 0.852 | 0.852 | 0.852 | 0.852 | 0.852

2.948 2979 | 2977 | 2976 | 2974 | 2.950 | 2.948 | 2.948

3.457 3.458 | 3.457 | 3.457

The closed form solution (CFS) provides a valuable benchmark for evaluation of
approximate methods. The comparison between the CFS and the Galerkin solution in
Parker and Mote [6] is shown in Fig.(2). Only the natural frequencies of the coupled
one-nodal diameter are shown . Excellent agreement with the CFS is observed for all
eigenvalues even for extremely high speeds. The Galerkin solution employed 12 zero
speed eigenfunctions (six degenerate pairs) as basis function at each speed. The CFS
requires 40 terms to converge at Q=2, as shown in table(1); more terms are necessary
at higher speeds. Validation of the Galarkin results is important as Galerkin
discretization is far more convenient than the CFS for the perspectives for
programming size and computational efficiency. The accuracy of the Galarkin
discretization can not be taken as granted in the absence of verifying CFS, however ,
as discretization methods for gyroscopic systems at high speeds may converge poorly
and yield erroneous results [8,9]. An advantage of the Galerkin solution is that the
inertia, gyroscopic and stiffness matrices are independent of speed and are calculated
only once.

A key feature of the above complex, speed- dependent eigenfunctions is that
they likely provide an excellent basis for discretization of models with non-linear,
time-varying and dissipative effects that are present in practical systems. For example
axially moving media system (which are gyroscopic system) demonstrate excellent
convergence when complex, speed-dependent eigenfunctions are used in the
discretization [8].
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Resonance occurs for Q=wn, this condition defines the disk critical speeds
corresponding to the coupled modes. This condition is satisfied as is evident from
Fig.(3), where the lowest critical speed is actually lower than the lowest spindle
critical speed (©2=0). Thus in contrast to the rigidly supported disk, critical speed
instabilities of the one-nodal diameter modes, which are the coupled modes of the
disk — spindle system, do occur. The severity of a disk critical sped instability depend
on whether the critical coupled mode involves predominately disk or spindle
deformation. For the study case under hand the critical modes at all disk critical
speeds are predominantly spindle modes. For these modes, the modal force given by
Eq.(35) is small. As a result, the instability may be not severe in the light of small
damping inherently present in the system that limits the resonant response amplitude.
A more dangerous situation exists when the critical coupled mode is predominately a
disk mode, as the resonant response induced by stationary disk forces would be driven
by a larger modal force.

Figure(3) shows the variation the zero speed (Q2=0) natural frequencies obtained by

the CFS with the parameters (k/k,), (J5°/J5%) and (a/«,), where K,, J&° and
a, are as in the parameters set listed in the study case.

In summary, spindle critical speeds exists at zero eigenvalues of the coupled system
as viewed in the rotating frame. The critical modes are call coupled modes as pure
spindle do not exist. Disk critical speeds exist for the uncoupled mode (pure disk
deformation) at exactly the same critical speeds as for the rigidly supported disk, that
is Qq=wy/n. Disk critical speeds exist for the coupled modes when Q=wy,.

Conclusions

1- A closed form analytical solution to the eigenvalue problem of the rotating disk —
spindle system involving modal analysis is obtained. This solution provides a
valuable benchmark for evaluation of approximate modes. Galerkin discretization
provides excellent results for eigensolutions.

2- For the parameters set considered, the convergence of power series solution to the
disk equation is markedly better for expansion about r=1 than about the regular
singular point r=0. While the limited parameter range considered here does not
permit general convergence conclusions, the large difference suggest superiority of
the expansion about r=1.

3- Disk critical speeds analogous to those of rigidly supported rotating disk exist in
addition to spindle critical speeds associated with vanishing -eigenvalues.
Futhermore, disk — spindle coupling introduces disk critical speeds associated with
the one-nodal diameter coupled modes that do not exist for a rigidly supported
disk. The critical speeds of rigidly supported disk corresponding to the modes with
numbers of nodal diameters other than one remain points of instability; these
speeds are unaffected by disk — spindle coupling.
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Figure(2): Comparison between the CFS (denoted by circles) and Galerkin
(denoted by solid curves) natural frequencies. The dashed line has
unity slope, it's points of intersection with the solid lines are the
disk critical speeds Q,
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Figure(3): Variation of the zero natural frequencies with some non-dimensional
parameters. The circles denote spindle natural frequencies while the crosses
denote disk natural frequencies.
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Nomenclature

a,b Inner and outer radii of the disk respectively (m)
D Disk flexural rigidity (N.m)
d Clamp half thickness (m)
El Spindle bending stiffness (N.m?)
F, Applied force on the clamp (N)
J_,fﬁ Mass moment of inertia of the clamp and the disk respectively (Kg.m?)
K Extensional (stretching ) rigidity
I Length of the spindle (m)
m Combined mass of the clamp and the disk (Kg )
M; Applied moment on the clamp (N.m)
a, Transverse force per unit area of the disk N/m?
E Horizontal transverse force per unit length of the spindle (N/m)
a Vertical transverse force per unit length of the spindle (N/m)

— |

Time (sec)
u(z,t)  Horizontal elastic deflection of the spindle (m)
u‘(t) Horizontal displacement of the clamp’s center of mass (m)
v(z,t)  Vertical elastic deflection of the spindle (m)
ve(t) Vertical displacement of the clamp’s center of mass (m)
w(r,6,t) Transverse elastic deflection of the disk (m)
o(t) Clamp rotation in the plane of horizontal elastic deflection u
w(t)  Clamp rotation in the plane of vertical elastic deflection v

Q Rotation speed (rad/sec)

v Poisson’s ratio

D Disk mass per unit area (Kg/m?)

PR Spindle mass per unit length (Kg/m)

o'’ Disk rotational stresses in the radial and circumferential directions
respectively (Pas)

o Dirac delta function

@, The natural frequency of the coupled modes (rad/sec)

@, Rotating frame natural frequency of the uncoupled modes (rad/sec)
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