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 Abstract 
     Rotating disk – spindle system consists of an elastic disk mounted on an elastic 

spindle by means of rigid clamp. This work presents a closed form solution for the 

eigensolutions of such systems. The complex eigenfunctions have the classical 

properties of a gyroscopic system when the individual disc, spindle and clamp 

deflections for a given eigenfunction are collected in terms of an extended 

eigenfunction. Critical speeds analogous to those of rigidly supported (classical) 

rotating disk are examined for the coupled system. It is concluded that whereas the 

rigidly supported disc does not experience critical speed instability in the one – nodal 

diameter eigenfunctions, the coupled system does. 

Introduction 
     An extensive literatures on the vibration and stability of spindle (short rotating 

shaft) and rotating disks have been published in the last several decades. Analyses that 

model elastic continuous system vibration typically focus on either the spindle (with 

any attached disks modeled as rigid) or the disk (supported by a rigid structure).  

 Practical systems such as disk drives, turbo machinery and high speed gear 

systems, however, exhibit coupled disc – spindle response wherein dynamic 

excitation at either the disk or spindle excites elastic vibration of both components. 

For example, the predominant excitation in gears is at the tooth mesh, but an 

acceptable noise is radiated primarily from the housing. The vibratory response is a 

coupled one involving the disk, spindle, bearings and housing. The reverse path 

occurs in disk drives where bearing forces and support structure motion drive disk 

vibration. While focusing on decoupled models, the existing literature also 

emphasizes free vibration and stability investigations with considerably less attention 

to the operating condition response. 

 J.A. Dopkin and T.E. Shoup [2], D.R. Chivens and H.D. Nelson [3] and F.S. Wu 

and G.T. Flowers [4] generally use transfer matrix method and other lumped models 

to examine natural frequencies and critical speeds. Their methods are focused on 

turbo machinery applications. None of these studies examine modal coupling and 

forced response. Chivens and Nelson [3] analytically studied the natural frequencies 

of an elastic disk – spindle system coupled by thin clamp. They conclude that disk 

flexibility alters the natural frequencies of an elastic spindle – rigid disk system but 

not the critical speeds. 

  The present work builds on that of Chivens and Nelson [3[and Parker [1]. 

Theoretical Approach 
    This study examines a coupled disk – spindle system where both the disk and the 

spindle are elastic bodies, a rigid clamp, Fig. (1), couples them. The associated 

eigenvalue problem is analytically solved in closed form solution (CFS) for the 

natural frequencies, vibration mode and critical speeds.   
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(A) Equations Of Motion 
     Figure (1) shows the disk – spindle system, in which an elastic, axisymmetric, 

rotating cantilever spindle carries elastic, axisymmetric disk at its end and rigid clamp 

couples these components. The deformation is described by seven variables namely, 

w(r,θ,t), u(z,t), v(z,t), u
c
(t), v

c
(t), φ(t) and ψ(t). These seven variables are not 

independent because the clamp motions are related to the spindle deflections by the 

geometric compatibility conditions: 
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The dimensionless parameters of the system are: 
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Figure(1): Rotating disk – spindle system 

 

Parker [1] derived the linearized equations of motion of the system in rotating co-

ordinates as follows: 

The governing equation over the continuous disk domain is: 
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, the governing equations over the continuous spindle domain are: 
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 , the linear momentum balance equations for the clamp are: 
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 and the angular momentum balance equations for the clamp are: 
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 Here r and θ are polar co- ordinates in the frame fixed to the rotating disk , z is the 

co- ordinate of a material point on the spindle and ξ(w) is the membrane stress 

operator [5] 
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The spindle and disk boundary conditions are: 
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Equations (3) – (9) can be written in the structured manner using the extended 

operator formulation [1]. 

 Defining the extended variable h  as 

  Tcc tttvtutzvtzutrwtzrh )()()()(),(),(),,(),,,(    …(14) 

Equations (3) – (9) are written concisely as 
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where M , G , L  and L  are the extended operators operating on h and f  is the 

extended excitation vector. These operators are defined in [1]. 

 The inner product between two extended variables x and y is defined as 

 (x , y)= 776655443
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where ix and iy  are the elements of the extended variables x and y, the double 

integral is over the area of the disk and, single integrals are over the length of the 

spindle and the over  bar denotes complex conjugate. With this inner product and with 

the constraint (equations. 1), the operators M , L  and L  are symmetric and G  is 

skew – symmetric. Moreover M  and L  are positive definite. Thus equations (15) and 

(16) cast the disk – spindle system in the canonical form of gyroscopic continuum. 

The importance of this structured formulation will be evident in the perturbation 

analysis and the forced response discussed later. 

(B) Closed Form Solution of the Eigenvalue   
        Problem 

     A closed form solution (CFS) of the gyroscopic system eigenvalue problem is 

presented here. Using the separation of variables technique 

    teztzu  )(),(       and teztzv  )(),(   
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 Decoupling these equations yields 

 0)()(2 222

4

4
22

8

8

 





dz

d

dz

d
   … (19) 

 and an identical equation for η. The general solution for Eq.(19) is 

 zAzAzAzAzAzAz  sincossinhcoshsincos)( 654321   

            zAzA  sinhcosh 87     … (20) 

 where Ai are complex constants, 25.022 )2(   i  and  

  25.022 )2(   i . The solution of η(z) is identical to Eq.(20) with Ci 

instead of Ai. Substituting η(z) solution and Eq.(20) into Eq.(17)(or Eq.(18)) yields 

 ziAziAziAziAziAz  cossinhcoshsincos)( 54321  

         ziAziAziA  sinhcoshsin 876    … (21) 

 The eigenfunctions are complex as seen in equations (20) and (21). 

 Proceeding the separation of variables technique on w(r,θ,t) such that 

    
terwtrw  ),(),,(    reduces equation (3) to 

0))sincos()sincos(( 2224   rrrrwwK   … (22) 

For an axisymmetric disk, disk spindle coupling occurs only for the one nodal 

diameter eigenfunctions [2,6]. These are coupled modes of the system and the only 

ones of interest here. For numbers of nodal diameters other than one, the deformation 
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is only in the disk; the spindle does not deform. These are the uncoupled modes of the 

system; they are well known for analyses of rigidly supported disks. For the coupled 

modes the solution  

   sin)(cos)(),( rprgrw   … (23) 

 gives the radial part of the disk equation from Eq.(22) 
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 Where 
K


   and  i . An identical solution is obtained from p(r) with ψ 

instead of φ. The solution of Eq.(24) is obtained using the power series method [13]. 

Using an expansion about the ordinary point r=1, the homogeneous solution has the 

form 
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 Substituting the above equation in the homogeneous form of Eq.(24) and equating 

coefficients of each power of (1-r) to zero, it is found that the coefficients (a0-a3) are 

arbitrary, (a4-a7) depends on (a0-a3) and each of the higher coefficients depends on the 

previous eight coefficients. 

 The recursion relation for 4i  is 
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 Substitution of 0i  in the recursion relation and setting the coefficients with 

negative subscript to zero gives the expression of a4 in terms of (a0-a3). Similarly 

substituting 1i  and the expression of a4 into the recursion relation gives as in terms 

of (a0-a3). This procedure is repeated to obtain a4-a7 in terms of (a0-a3). Finally, setting 

one of the coefficients (a0-a3) equal to one and the other three equal to zero at a time 

in the power series (eq.25) gives four independent – homogeneous solutions 

41 ohoh ww   of Eq.(24). The general solution of Eq.(23) to the disk equation is 

  cos)(),( 44332211 rwBwBwBwBrw ohohohoh   

                 sin)( 48372615 rwBwBwBwB ohohohoh   …  (27) 

 where rφ is a particular solution of Eq.(24), Bi are complex constants and the p(r) sinθ 

term of Eq.(23) has been included. 
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 Insertion of equations (20), (21), and (27) into equations (6) – (9), (13) and (1) yields 

16 linear, homogeneous equations in the 16 coefficients Ai and Bi. Roots of the 

characteristic determinant give the natural frequencies ω. 

 The disk modal deflections (equations (27) and (20)) and that of the spindle (Eq.21) 

are collected into an extended eigenfunctions of form (14) where the modal 

deflections and rotations of the clamp are calculated from equation (1). 
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 Note that Eq.(28) is the form of complex coupled modes. They occur in complex 

conjugate pairs. The uncoupled modes, which are real and degenerate, have the form 

   1,000000)sincos)(( 21  nnanarRh
T

nn   … (29) 

where a1 and a2 are arbitrary constants. The coupled vibration modes are qualitatively 

classified as disk modes, in which the strain energy in the disk dominates the total 

strain energy, and the spindle modes, in which the strain energy in the spindle 

dominates the total modal strain energy. 

 The above solution can be specialized to solve two special cases: the zero speed 

eigenvalue problem (Ω =0) and the critical speed eigenvalue problem to determine the 

speeds at which an eigenvalue vanishes (ω=0). To distinguish from disk critical 

speeds introduced later, the term spindle critical speeds is used for speeds with 

vanishing eigenvalue as these critical speeds exist for a spindle not coupled to a disk. 

At such spindle critical speeds, static loads in the rotating frame (e.g. a center of mass 

offset from the rotation axis) excite a resonant condition. The recursion relations for 

these problems are obtained by substituting Ω=0 or ω=0 into Eq. (26). Homogeneous 

solutions of the disk equation for the zero speed eigenvalue problems are Bessel 

functions. For both Ω=0 and ω=0, the following simplifications occur: equations (4) 

and (5) reduced to decoupled stationary beam equation with well known solution, the 

spindle deforms in only one plane for each mode, and the order of the characteristic 

determinant is 8 as opposed to 16 because of this decoupling. All roots ( that is, zero 

speed natural frequencies and spindle critical speeds) of the characteristic determinant 

are degenerate and the two associated modes are identical except for the plane of 

motion.  

(C) Disk Critical Speeds 
  The spindle critical speeds at which an eigenvalue vanishes area only part of the 

complete critical speed picture. In addition to these critical speeds derived from the 

gyroscopic terms in the spindle equation of motion. They are so called disk critical 

speeds where the name reflects the association with the critical speeds of a classical 

spinning disk. To understand this concept, first consider the critical speeds of a 

classical, rigidly supported disk. 
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 The critical speeds of rigidly supported disk are the speeds at which a disk natural 

frequency in a ground based (inertial) reference plane is zero [10]. At such speeds any 

constant, stationary force applied to the disk leads to large amplitude resonant 

response. In a rotating reference frame, the critical speeds are given by 
n

n
cr


  

where ωn is the natural frequency in the rotating reference frame and 0n  is the 

number of nodal diameters in the associated mode. To see the relationship between 

the fixed and rotating frame characterizations, consider a stationary point force of unit 

magnitude acting on the disk perpendicular to its plane. In the rotating frame, the 

excitation appears as the rotating force 

    00 /)()( rtrrFd      …(30) 

 The modal force associated with the n- nodal diameter mode 

      nrRrw nn cos)(),(      …(31) is 

  tnrRdArwtrFf nndn   cos)(),(),,( 0    …(32) 

 Resonant response (i.e. a critical speed) occurs when nΩ=ωn as noted previously. 

One would expect modes having any number of nodal diameters other than zero to 

become critical at some speed, but Renshaw and Mote [10] proved that one-nodal 

diameter modes of a rigidly supported disk never become critical. These modes, 

however, do become critical for the coupled disk – spindle system as discussed below.  

 We use the stationary force interpretation to characterize the disk critical speeds of 

the coupled system. The extended excitation vector )( f  associated with a stationary 

point force on the disk is 

    TdFf 000000     …(33) 

 The modal force associated with the uncoupled extended eigenfunctions nh of Eq. 

(29) with a1=1 and a2=0 is  

        tnrRf nn  cos)( 0       1n     …(34) 

which is identical to Eq.(32). Resonant response occurs when nn   )1( n , as for 

the rigidly supported disk. Because the uncoupled vibration modes 1n  and 

corresponding rotating frame natural frequencies ωn of a disk – spindle system are 

exactly those of rigidly supported disk [1[, the disk critical speeds of the uncoupled 

modes are unaffected by disk – spindle coupling. Thus the coupled system is 

subjected to the same critical speed instabilities as the rigidly supported disk; the 

unstable critical modes are identical to those of a rigidly supported disk and involve 

purely disk deformation. 

 Considering now the coupled vibration mode, mh of Eq. (28), the associated modal 

force is 

  trptrgf mmm  sin)(cos)( 00    ,....3,2,1m    …(35) 

   

Results and Discussion 
       A model of non-dimensional parameters listed below has been taken as a study 

case: 

 000355.0K        03248.01 d          5.0                            029521.011 
cJ  

   022279.0            05774.2                28.0                        029521.022 
cJ  

   057743.033 
cJ        016404.011 

dJ         016404.022 
dJ         032808.033 

dJ  
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  The choice of the point of expansion for the power series, Eq.(25) varies in the 

literature, Wu and Flowers [4] used the regular singular point r=0, whereas Eversman 

and Dodson [7] and Chivens and Nelson [3] used the ordinary point r=1. In order to 

check whether expansion about one point leads to better convergence than the other, 

an approach identical to that above used to obtain the natural frequencies by 

expanding about r=0. 

This method, however, gave the first two natural frequencies, at each speed as shown 

in table(1), irrespective of the number of terms retained in the power series, moreover, 

the convergence for r=0 is slower than for r=1. The choice r=1 is superior to r=0 for 

the parameter set considered here, and the expansion about r=1 is used in the 

subsequent results. 

Table(1) Comparison of convergence of natural frequencies  for power series 

expansion about r=0 and r=1 

 

r=1 r=0 

Number Of Terms Number Of Terms 

 

60 40 20 80 60 40 20 Galerkin Ω 

0.593 0.593 0.593 0.593 0.593 0.593 0.593 0.593 0.5 

1.528 1.528 1.528 1.552 1.554 1.555 1.558 1.528  

1.844 1.844 1.884     1.844  

0.113 0.113 0.113 0.113 0.113 0.113 0.114 0.113 1.0 

1.987 1.987 1.988 2.03 2.031 2.032 2.036 1.987  

2.267 2.267 2.268     2.267  

0.852 0.852 0.852 0.852 0.852 0.852 0.87 0.852 2.0 

2.948 2.948 2.950 2.974 2.976 2.977 2.979 2.948  

3.457 3.457 3.458     3.457  
 

 

 The closed form solution (CFS) provides a valuable benchmark for evaluation of 

approximate methods. The comparison between the CFS and the Galerkin solution in 

Parker and Mote [6] is shown in Fig.(2). Only the natural frequencies of the coupled 

one-nodal diameter are shown . Excellent agreement with the CFS is observed for all 

eigenvalues even for extremely high speeds. The Galerkin solution employed 12 zero 

speed eigenfunctions (six degenerate pairs) as basis function at each speed. The CFS 

requires 40 terms to converge at Ω=2, as shown in table(1); more terms are necessary 

at higher speeds. Validation of the Galarkin results is important as Galerkin 

discretization is far more convenient than the CFS for the perspectives for 

programming size and computational efficiency. The accuracy of the Galarkin 

discretization can not be taken as granted in the absence of verifying CFS, however , 

as discretization methods for gyroscopic systems at high speeds may converge poorly  

and yield erroneous results [8,9]. An advantage of the Galerkin solution is that the 

inertia, gyroscopic and stiffness matrices are independent of speed and are calculated 

only once. 

  A key feature of the above  complex, speed- dependent eigenfunctions is that 

they likely provide an excellent basis for discretization of models with non-linear, 

time-varying and dissipative effects that are present in practical systems. For example 

axially moving media system (which are gyroscopic system) demonstrate excellent 

convergence when complex, speed-dependent eigenfunctions are used in the 

discretization [8].   
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  Resonance occurs for Ω=ωm, this condition defines the disk critical speeds 

corresponding to the coupled modes. This condition is satisfied as is evident from 

Fig.(3), where the lowest critical speed is actually lower than the lowest spindle 

critical speed (Ω=0). Thus in contrast to the rigidly supported disk, critical speed 

instabilities of the one-nodal diameter modes, which are the coupled modes of the 

disk – spindle system, do occur. The severity of a disk critical sped instability depend 

on whether  the critical coupled mode involves predominately disk or spindle 

deformation. For the study case under hand the critical modes at all disk critical 

speeds are predominantly spindle modes. For these modes, the modal force given by 

Eq.(35) is small. As a result, the instability may be not severe in the light of small 

damping inherently present in the system that limits the resonant response amplitude. 

A more dangerous situation exists when the critical coupled mode is predominately a 

disk mode, as the resonant response induced by stationary disk forces would be driven 

by a larger modal force. 

  Figure(3) shows the variation the zero speed (Ω=0) natural frequencies obtained by 

the CFS with the parameters ( 0/ kk ), ( dc

ii

dc

ii JJ ,,

0
/ ) and ( 0/ ), where 0K , dc

iiJ ,

0
 and 

0  are as in the parameters set listed in the study case. 

  In summary, spindle critical speeds exists at zero eigenvalues of the coupled system 

as viewed in the rotating frame. The critical modes are call coupled modes as pure 

spindle do not exist. Disk critical speeds exist for the uncoupled mode (pure disk 

deformation) at exactly the same critical speeds as for the rigidly supported disk, that 

is Ωcr=ωn/n. Disk critical speeds exist for the coupled modes when Ω=ωm. 

Conclusions 
1- A closed form analytical solution to the eigenvalue problem of the rotating disk – 

spindle system involving modal analysis is obtained. This solution provides  a 

valuable benchmark for evaluation of approximate modes. Galerkin discretization 

provides excellent results for eigensolutions.  

2- For the parameters set considered, the convergence of power series solution to the 

disk equation is markedly better for expansion about r=1 than about the regular 

singular point r=0. While the limited parameter range considered here does not 

permit general convergence conclusions, the large difference suggest superiority of 

the expansion about r=1. 

3- Disk critical speeds analogous to those of rigidly supported rotating disk exist in 

addition to spindle critical speeds associated with vanishing eigenvalues. 

Futhermore, disk – spindle coupling introduces disk critical speeds associated with 

the one-nodal diameter coupled modes that do not exist for a rigidly supported 

disk. The critical speeds of rigidly supported disk corresponding to the modes with 

numbers of nodal diameters other than one remain points of instability; these 

speeds are unaffected by disk – spindle coupling. 
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Figure(2): Comparison between the CFS (denoted by circles) and Galerkin 

(denoted by solid curves) natural frequencies. The dashed line has 

unity slope, it's points of intersection with the solid lines are the 

disk critical speeds Ωcr 

 

 

 

  
Figure(3): Variation of the zero natural frequencies with some non-dimensional 

parameters. The circles denote spindle natural frequencies while the crosses 

denote disk natural frequencies. 
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Nomenclature 
  

  a,b         Inner and outer radii of the disk respectively (m) 

  D           Disk flexural rigidity (N.m) 

  d           Clamp half thickness (m) 

  EI          Spindle bending stiffness (N.m
2
) 

   iF         Applied force on the clamp (N) 

d

ii

c

ii JJ ,      Mass moment of inertia of the clamp and the disk respectively (Kg.m
2
) 

   K           Extensional (stretching ) rigidity 

   l             Length of the spindle (m) 

   m           Combined mass of the clamp and the disk (Kg ) 
    

iM         Applied moment on the clamp (N.m ) 

   dq         Transverse force per unit area of the disk N/m
2 

   uq         Horizontal transverse force per unit length of the spindle (N/m) 

   vq         Vertical transverse force per unit length of the spindle (N/m) 

   t            Time (sec) 

),( tzu       Horizontal elastic deflection of the spindle (m) 

)(tu c        Horizontal displacement of the clamp’s center of mass (m) 

),( tzv       Vertical elastic deflection of the spindle (m) 

)(tv c        Vertical displacement of the clamp’s center of mass (m) 

),,( trw   Transverse elastic deflection of the disk (m) 

  )(t        Clamp rotation in the plane of horizontal elastic deflection u  

   )(t       Clamp rotation in the plane of vertical elastic deflection v  

              Rotation speed (rad/sec) 

               Poisson’s ratio 

  d           Disk mass per unit area (Kg/m
2
) 

  s           Spindle mass per unit length (Kg/m) 

  
 ,r

       Disk rotational stresses in the radial and circumferential directions  

                   respectively (Pas) 

              Dirac delta function 

   m         The natural frequency of the coupled modes (rad/sec) 

   n          Rotating frame natural frequency of the uncoupled modes (rad/sec) 
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 حل مغلق الشكل للخىاص الاهتسازية الحرة لمنظىمة

 دوار قصير عمىدقرص دوار مع  

 الخلاصة   
أن منعؽمةةا قرصةةخد قرةةج قم مةةو ر ةةؽر ر قم  صةةقخ  مرةةؽن مةةؼ  ةةخد مةةخن مخ ةة  ر ةة  ر ةةؽر             

رهكةحق أظع ةا. أن  (*)ا مثبت ص  . أن هحق قرع ل يصجم حل مغ ق قرشكل ر ح ةؽ  قييكنةةار قم  صقخ مخن بؽقسط
قييكنةةةةا قر عصةةةجك   م ةةةغ قرسةةةؽقد قررمسةةةةكةا ر نعؽمةةةا قرمع خ سةةةكؽت رنةةةجمع  م ةةةو ق ظحخق ةةةع  قر ن ةةةخرك  قرةةةج ق 

 قرا أيكنةا معقنا بج را قرج ق  قييكنةا قر  مجك.ر صخد, قرع ؽر قرج قم قرصصقخ   قر ثبت رج
أن قرسةةخا قرحخ ةةا قر شةةعبها كرةة    ةةغ قر ؽ ةةؽرك  ةة  قرصةةخد قرةةج قم ل  قيسةةنعر قرصةة   )قررمسةةةك (  ةةج   

 قخمبخ  ر نعؽما مدر  ا. 
سخرا رؼ رجم أسمصخقميا رنج قر فرصج  ػ قرمؽصل كر  أظه بقن ع قرصخد قرج قم ل  قيسنعر قرص     يكش  

 قرحخ ا    قرجقرا قييكنةا لق  قرعصجك قرؽقحجك قرصطخيا,  أن قر نعؽما قر در  ا  ج أظهخ  لرغ.
 
 
 
 

 حقث رػ ظمج رهع أيا  خ  ا    قرصؽقمةذ قر مؽ خك.eigen   رػ ظعخف قرمخ  ا قرعخبةا رر  ا  (*) 
 


