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Abstract

In reinforced concrete construction, discontinuity of reinforcing bars is often
encountered even within length of a single member. Lap splices are preferred means
for providing continuity of reinforcing bars because of their practical and economical
characteristics. Hence, extensive experiments and limited number of analytical studies
have been implemented in this field to clear-up performance characteristics. In this
paper, the modulus of displacement theory is adopted to analyze the local behavior of
tensile reinforcement lap splices. Both compatibility and equilibrium conditions are
utilized to determine the distribution of steel and bond stresses of the reinforcing bars
along the lap region.

The equations derived herein and the general form for distribution of stresses,
are quite consistent with the analytical and experimental observations of numerous
researchers in this field. The analytical results confirmed that bond deterioration occur
simultaneously from both ends of the lap splice toward its center. Also, the numerical
examples implemented herein give reasonable agreement between the analytical and
experimental results.

Notations
As=area of reinforcing bar, mm’ e.~tensile strain of concrete.
Es=steel modulus of elasticity, MPa t=bond stress, MPa

7,=bond stress along reinforcing bar coming
from negative (left) side, MPa

K=tangent or secant modulus of bond t,=bond stress along reinforcing bar coming
stress-slip curve, N/mm?> from positive (right) side, MPa

d=relative displacement between steel and
concrete, mm.

o=angle of the bond forces resultant with
bar axis. g

f.u=cube compressive strength, MPa

Ls=length of lap splice, mm-

P=perimeter of reinforcing bar

gs1=tesile steel strain for reinforcing bar
coming from negative (left) side.

gso=tesile steel strain for reinforcing bar o =tensile steel stress for reinforcement bar
coming from positive (right) side. coming from negative (left) side, MPa.

osx=tensile steel stress for reinforcement
bar coming from positive (right)
side, MPa.

oso=tensile steel stress at splice end, MPa.

o.=normal tensile stress of surrounding
concrete , MPa.

Introduction

In order to insure reliable behavior of concrete members containing reinforcing
bar discontinuity, lap splicing is used in this field, which is the most economical and
practical type. The forces at any point along the lap splice are being transferred from
each bar by bond to the surrounding concrete.

959



2006 : 5 232l /12 daall Aptigh o slall / Qi daals Alas

However, the behavior of lap spliced bar is further complicated and different
from single anchored bars in several ways. In particular, the action of bond forces
becomes more severe in lap splices and it can be explained by doubling of splitting
forces against surrounding concrete, as shown in Fig.(l). As well as yielding of
reinforcement and bond deterioration can occur at both ends of the splice
simultaneously toward the interior.

As a result, the presence of lap splices is generally recognized to represent
potential weakness in reinforced concrete components especially for earthquake
resisting structures. Therefore; it is not surprising that most design codes™? require
splice length that are longer than the development length, as well as do not permit lap
splicing within high stress regions or extensive limitations regarding their design are
needed.

A large number of experimental programs®** have been conducted at last two
decades to enhance knowledge about the effect of the most notable parameters on
behavior and strength of lap splices under static and cyclic loads.

Objective Of The Present Study

In addition to the experimental investigations, there is limited number of
theoretical and analytical studies in this field. The modulus of displacement theory is
adopted herein to determine the distribution of bond and steel stresses along
reinforcement lap splices. In the present method, both compatibility and equilibrium
conditions are utilized to derive the governing differential equations of the problem.
Background

The modulus of displacement theory states that the change in shear stress dt
between two materials for element dx is proportional to the difference in the
displacement

dt=Kd§ ........ vereeseseseeesasastoaneeNeEsORt TN TSR RS e e N e s e R Es RS aNe SR NE eSOt b aTes vensrassracs €9

where K (N/mm is either the tangent or the secant modulus for bond stress-slip curve
in a pull-out test, which can be evaluated as follow (6):

K =24y (Grade 40) euumevreercrreneressesssessesssssssssasssssssssssssssssssssesssssssasssesass (2a)
K = 3.4 oy (GFAAE 60) cucveeeeeceeeeeeseneeeesesessesssssesssssssssssesssessessssssssssssassassassons (2b)

Where, f., is cubic compressive strength (MPa).
The concept of this theory was first mentioned by Bleih® (1924) to determine the
individual rivet loads in long riveted joints which are replaced by a continuous
medium. Granholm® (1949) transferred this theory so as to be useful for evaluating
the distribution of stress for nailed wooden beams and pillar constructions. Then he
presented® (1958) this theory for bond problems between reinforcement and
concrete. Perhaps the most important application of this theory is that by Tepfers®?
(1973) on behavior of tensile lap splices with and without contribution of surrounding
concrete after elimination the cross-sectional area of concrete surrounding the
reinforcing bar.
The Problem Of The Present Study

The problem herein is limited to lap splice regions in a beam where the moment
is constant and no shear exist. This means that reinforcement at both ends of the splice
has the same stress o, Flexural cracks in the concrete are also located and aggravated
there because of the stiffness discontinuity caused by sudden change in the tensile
reinforcement area at the splice ends, as shown in Fig.(2). The influence of the
concrete in estimating the distribution of bond and steel stresses can be ignored, i.e.
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normal tensile stress of concrete 5.=0. Numerous researchers™®*® in the study and
idealization of bond-slip behavior, adopted concept of neglecting the contribution of
surrounding concrete.

For the tensile reinforcement splices shown in Fig.(2), the reinforcement area,
As, is symmetrically, with the origin placed in the middle of the splice and the x- axis
is parallel to the spliced bars. The functions of the bar embedded from left (negative
side) are given the index (1) and those of the bar embedded from right (positive side)
the index(2).
Governing Differential Equations

Both compatibility and equilibrium conditions are utilized for the lapped splice
bars, as shown in Fig.(3a). The compatibility includes that the change in shear stress
for every element dx due to the displacement between the reinforcing bar and the

concrete is, _
L (TS T O 3)
and after neglecting the interaction of surrounding concrete becomes,
dt S,
dt, = Klg, Jdx OF — L = Kb i iiiiieirennrerenrececosnsenacncnensons 4
1 ( s,l) dX Es ( )
dt O,
dt, = Klg, Jdx or —:=K—2 .iiiimrcennncane cereeeeeeenaas ceevennens 5
> =Ke,,) =K 5)

The equilibrium condition at any section of the whole splice is,
Ao, +A0, = A0,

or Oy, + Oy, = O seerrnorenmrassosnonseioaisunnassiostessossonseasssnssasanss L...(6)

sy S,

The connection between bond stresses t; and t» and steel stresses o1 and o5, can be
obtained from equilibrium of element dx, Fig,(3b) as follows,

(dcssz ~-dog )As = ('cz -1, )P.dx

d d
. (____]i ................................................... 7
dx dx )P i
By differentiating Equation (7) and substituting Equations (4) and (5), yields to:
d’c d’s A K
___’il_____zs!_ "__s"'-:"'_(o.s —GS )-ono.o ooooo seacense I xrx 000000000(8)
dx* dx* )P E; 7 :
Then, substitute Equation (6) into Equation (8), leads to:
d*c, 5 A
—&‘2—“—7\. Gs' =——2—Gso sssecsessossessssccnae T consee (9)
there 32 = 2K
AE

§Ts

Equation (9) is a nonhomogenous second order differential equation, and the complete
solution is,

o, = ASinh} x + BCoshix+C..... ceerseceissaranens cereteesiesennntinas (19)
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where the first two terms represent the complementary function and the third is the
particular integral.
By substituting the particular integral C in the differential Equation (9) then,

(6]
C = 2 iiiiiiiinetetarararetntsanesasasasnsanes Ceenresreseateastiiateaes 11
5 (11
The constants A and B are obtained by means of conditions which are,
at x= _% B, S0y erereesessesee st s e s en s (12a)
R T R, (12b)
These give the constants as,
(o)
B=0 and A-—‘—"i——l')—"‘f'o.o.o. oooooooo 269 evessssseeese eescevene 00(13)
2 Sinh =2

Now, substitute Equations (11) and (13) into Equation (10) to get the function of steel
stress o

c SinhA x

S
o, =—+{1-
2 Sinh 2‘

...... etserreeessesssssreressommnsnesssrseseessn(14)

and substitute Equation (14) into Equation (6) leads to:

c SinhA x
s, = 25" ) veenene tececeacsones veseteacecscacans (15)

. AL
Sinh

It is well known that the traditional relation between the steel stress and bond stress t
is,

Then, the bond stresses t; and t» can be determined as follows:

o,, A CoshA x

‘rl == _S_)\' T sssscesssccssss $96eccsessssccrsecsersoves sseessrsee (17)
AL
2P Ginnl
c CoshA x )
Tz =+_~2SL%S-A”—-—A'—E— s60escnecssccsscssrene sseccscsssce Ceescsvescssraces (18)
Sinh— :

The general form for distribution of steel and bond stresses are shown in Fig.(4),
for suitable constants mentioned in the same figure. From the scrutiny of the
Equations (14),(15), (17), and (18) derived above and the curves of Fig.(4), many
notable features can be emphasized:
a-The distribution of steel or bond stresses, for both bars of the same splice, is equal

and has the same variation but in opposite directions.
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b-The stress ti.tana or t,.tanae which represents the splitting stress directed outwards
from the bar, has a maximum value at both ends of the splice.

c-The distribution of the steel or bond stresses along spliced bars is quite consistent
with the analytical and experimental observations of numerous workers in this
field© 1019,

Numerical Examples

A simply supported reinforced concrete beam containing tensile lap splices and
subjected to a constant moment was tested by Tepfers!? (1973). The steel strains
were measured at selected points of the spliced bars for the three levels of the applied
loading. Also, the distribution of strains is determined for each clamping stress of
splice end, o, by using the equations derived above.

Fig.(5) include comparison of measured and calculated values of steel strains
along spliced bars. Good agreement between the experimental and analytical results
can be concluded.

Another reinforced concrete beam with two points loading was performed by
Kluge and Tuma®® (1945). The distribution of the tensile stresses along the spliced
bar through lap region was determined experimentally by measuring the strains at
selected points along lap region.

Fig. (6) shows comparison of the measured and calculated stresses for the
spliced bar coming from negative side of lap region of steel stress at spliced end,
6=124.1 MPa, and acceptable agreement can be concluded.

Conclusions

From inspection of the equations derived in this study according to the modulus of

displacement theory, and the general form for distribution of steel and bond stresses

of tensile reinforcement lap splices, many notations can be deduced:

1- The equations developed herein by utilizing the compatibility and equilibrium
conditions, are quite consistent with experimental and analytical evidences of
numerous workers in this field.

2- The distribution of steel and bond stresses, for each bar of a lap splice, is same but
in opposite directions.

3- The bond stresses and split stresses have the maximum values at both ends of the
splice. This explains the fact that bond deterioration and yielding of
reinforcement occur simultaneously from both ends of the lap region towards its
center.
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Fig(1): Single and lapped splice bars
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. Onset of flexural cracks at splice end
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Fig.(2): Tensile zone of a beam with reinforcement lap splices
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Fig.(3): Schematic representation of the bond and steel stresses acting on tensile
reinforcement lap splices.
a. The whole lap splice
b. differential element (dx) of lap splice.
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Fig.(4): (a). Distribution of steel stresses for spliced bars
(b). Distribution of bond stresses along spliced bars
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Fig.(5) Distribution of tensile strain along spliced bars for simply supported R.C.

beams tested by Tepfers (10)
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Fig.(5) Continue
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Fig.(6): Distribution of tensile stress along spliced bar coming from negative side
of simply supported R.C. beam tested by Kluge and Tuma®® (1945).

ol et Jua g o sl Jalail s 5Y) e 4y ki

dadal)

ghall clad e s dalsi Lo IS mbedl) lacad &) pe o cdalcd) Al al) L) 3
Gl Jlaall 138 8 Aladall Bilagl) G s aBlaill CBlay L8 (apall gl Laalll Slaad)
Clay sl Ao gguall Jadas Caagsy Aaleai® |y doleal) lpuailiad s molidll 2 3 4] paia)
b coya) Al Gluhall e 3saaa dae g dalead) sl cre waall Gl il all claadl b calel)
bl Sy lsbes oty Ay 8 Al e i 2 ied lpay) oy ) Ayl L Lol 130
e bplly aall 8 2al Clalea) (e dS s sladY (lsally Bl dag il Badad iy s (ealll
c el dalaie (8 molaal) Gluad Joh

o S an ) Al o sl Gllgals aaall 8 aal) clalga) aial s disd) Y aled) o
Byallal Dyasd ulae) Al Sl o LS Jlaall 138 (3 dinlll (e 22ad dplailly dulaal) cilaliny)
ol elly 1) AsLayl L lglals ) el didaia ulgs & deany (3 pbedl] aas ggadg Janyl) s
Aylailly ddenl) 3 pDLe il alae) Ayl o3 Badieall Apanell A54Y)

969



