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Abstract

Yield line theory offers a simplified nonlinear analytical method that can
determine the ultimate flexural moment capacity of flat reinforced concrete plates
subjected to distributed , linear or concentrated loads .In this study, a computer program
based on a numerical method which depends on the virtual work method is presented
.The method consists of computing the ultimate moment capacity based on the geometry
of the assumed collapse mechanism defined by means of nodes , planes and lines . One
practical limitation of yield line theory is that it is computationally difficult to evaluate
some complex mechanisms . This problem is aggravated by complex geometry and
reinforcing layouts commonly found in practice , but since the present method is
numerical , it allows the yield lines analysis of plates with complex shapes , assumed
mechanisms and loadings. Algorithms for calculation of the work done by the external
loads on the plate and the internal work dissipated by the yield line in the assumed
mechanism are described and a numerical examples of reinforced concrete slab is given.

The computer program developed in this paper allows the use to search on the
mechanisms that give the highest ultimate flexural moment capacity using procedure that
can change the mechanism and the associated failure geometry of the slab at each
mechanism.

Introduction

Yield line theory is a relatively simple analysis method which is accepted by
American Concrete Institute (ACI) to calculate the ultimate bending capacity of flat
reinforced concrete slabs .The method was developed by Johanson(4) and since that, it
has been applied successfully to both concrete and steel slabs. It is based on the observed
failure suggested that all of the yielding in a slab can be lumped into a discrete plastic
hinges or yield lines. Thus , a slab is idealized as a series of rigid bodies which are
connected together by yield lines .At the ultimate load , the total plastic strain energy in
the yield lines is equated to the external work done by the external loads to the displaced
shape of the assumed yield line mechanism .Yield line theory is an upper bound energy
method , and the quality of the solution depends on the assumed yield line mechanism.

A numerical method based on the yield line theory is presented in this paper .The
method differs from the conventional yield line method in that it does not use a direct
algebraic description of the problem but rather it uses analytical geometry, vector algebra
and the specific geometry of the problem on hand to arrive the solution.

The method presented is general and since it is entirely numerical, it can be applied
to plates of arbitrary shape which can be assumed to form any arbitrary yield line
mechanism .Furthermore, the method has the advantage of requiring no algebraic
manipulation and thus it is not limited by complexity of the algebra, as in some time the
case with the conventional yield line method.

There are two solution procedures in the yield line theory, the virtual work method
and the so-called equilibrium method, both methods lead to identical upper bound
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solutions. The virtual work method is simpler in principle and it is used for the numerical
method presented in this paper.

Since the yield Line method leads to an upper bound solution, different mechanisms
as well as different dimensions for each mechanism must be tried in order to find the
lowest predicted strength of the plate. In the conventional methods , the optimum solution
of simple problems can be found directly by differentiation . For complex problems a trial
and error technique is faster and usually satisfactory . For numerical method presented
herein , a simple searching procedure is used to find the optimum solution.

Virtual work method

I -Internal Work

The internal work dissipated by the yield lines during a small motion of the assumed
collapse mechanism is represented as the following equation

ny
D=> Mp x6xL (D)
i=1
Where Mpi is the plastic moment capacity resistance per unit length
6, is the rotation of each yield line .

Li is the length of each yield line.

ny is the number of yield line in the assumed mechanism.
Consider , as a simple example , an orthotropic rectangular slab with fixed supports
subjected to a uniformly distributed load (w) over the area of the plate and assumed to
form a yield line mechanism shown in Figure( 1) .The yield lines are numbered from
(1) to (8).With ends numbered from 1 to 5, the flat slab segments , or planes , are
numbered from 1 to 5 including the plane represented the fixed support plane which is
numbered (1) .A right hand rectangular coordinates system is set with the origin
located arbitrary , say at the lower left corner with the z-axis pointing upward, the

(x,y) coordinates of each node are then determined
@ Nodes

A Planes

10

1 @ g A @ Fixed
(b)

7 Fixed
X
OO

(b) | n | @)

Figure (1) .Fixed edges rectangular slab with uniformly distributed load (a) Plate
(b) Model of numerical analysis
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The bending resistance per unit length, Mp; of a yield line making an angle (a ) with
the x axis in an orthotropic plate ,(Figure2) if the yield line is sagging :-

Mp, = Mpxcos’ e+ Mpysin’ « . (2)
and if the yield line is hogging
Mp, = Mp'xcos’ e+ Mp'ysin’ a ..(3)

where the function of a are found from
2 2
Cosza:|:[yzly1]j| ’ Sin2a=|:[xz T—Xl] i| (4)

Mpx and Mpy are the sagging resistance in the x and y direction, respectively, and
Mp'x and Mp'y are the hogging resistance .x1, y; are the x and y coordinates of the
end nodes of the yield line and (l) is the length of the yield line.

In skew concrete slabs the reinforcement may be placed parallel to the edges of the
slab, and hence the plate is not orthotropic. Let the reinforcement be placed in the x
direction and in the (S) direction, including at an angle g with the x axis

(0 < B <180) .The bending resistance, Mp;, of a yield line is sagging

Mp, = Mpxcos’ a + Mpycos’ (8 — a) .. (5
and if the yield line is hogging]
Mp, = Mp’xcos® &+ Mp'ycos’ (B — &) ... (6)
where the functions of (« ) are found from :-
2

cos’ a = [_[yz E yl]} (7
if (Y2-y1)(X2-X1) >0

r . 2
COSZ(ﬂ—a)= COSﬂ(Tz_y1)+S|nﬂ(Tz_xl)] .(8)
if (y2-y1)(X2-X1) <0

r . 2

- sinB(|x, — x

COSZ(ﬂ—a)= COSﬁ(Blll y2) + '3(| |2 |l)j| . (9)

Mpx, Mp'x, Mps and Mp'sare the sagging and hogging resistance in the x and s
direction, respectively.

A A @ L
Mpy Mp, @

N
v

Figure (2) Yield line at general angle (a) In orthotropic plate, (b) In skew
concrete slab
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Before calculating the rotation of the yield line, planes must be defined, as
follows, corresponding to the rigid plate segments of the assumed mechanism. For the
plate shown in Figure 1, plane 2 is defined by nodes 1,2 and 3, plane 3 is defined the
nodes 1,3 and 4,et.Given three points po(Xo,Yo,Zo), P1(X1,Y1,Z1), and pa(X2,Y2,22), the
algebraic equation of the plane through these points is :-

Ax+By+Cz+D=0 ... (10)
Where

A= (Y1-Yo) (22-20)-(21-20) (Y2-Yo) (1)
B= (21-2Z0) (X2-X0)-(X1-Xo) (Z2-Z0) ... (12)
C=(X1-Xo) (Y2-Y0)-(Y1-Yo) (X2-Xo) ... (13)
D=-(Ax+By+CZ2) ... (14)

In order to define a plane, the three point’s po, p1 and p, must not to be collinear. This
can be checked by comparing the slopes of a line from p, to p; and a line from p; to
p2 .For simplicity , the slopes in the x, y plane (y2-y1)/(X2-x1) are compared .If the
slopes are unequal the three points are not collinear and can be used to calculate the
algebraic equation of the plane.
Once the equation of a planes has been determined, it can be possible to calculate the
deflection of some nodes, which otherwise would have to be calculated by hand using
the following equation :-

z=—(Ax,+By.,+D)/C ...(15)
The rotation of each yield line is given by the angle @ between the two planes
intersecting at that yield line (see Figure 3 ).Given two planes (m) and ( n) with the
following algebraic equations.

Nn

Plane m (end view) Plane n (end view)

Yield line (end view)

Figure (3).Rotation between the rigid plate segments: (a) Plane view; (b) Section
A-A

Plane m: A x+Bmy+Cnz+D=0

Plane n : Apx+Bny+C,z+D=0 ... (16)

The angle @ between these planes is equal to the acute angle between their normal

vectors np, and n, and is given by

0=tand = ‘nm xn, _ \/(Ban _CmBn)2 +(CmAn _Aan)2 +(AmBn _BmAn)Z
‘nm-nn ‘AmAn+BmBn+Can
... (17)
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Where, since we consider virtual displacement, the angle can be considered small.
Such small angles are obtained by assuming small deflections of the yield line

mechanism .For example , choosing a maximum value of 1/10° of the plate width ,
say , for the z coordinate of the nodes in the displaced plate leads to satisfactory
results with less errors.

From the numerical description of a yield line mechanism , it is possible to determine
the bending sign of the yield lines, i.e. whether they are sagging or hogging .Given a
yield line with end nodes 1 and 2 , bounded by planes (m) and (n) , and using the
convention that plane m is on the left hand side of the yield line for an observer
standing at node 1 and looking at node 2 , then a point H with coordinates [x1+(y.-
Y1), Y1t(X1-X2)] is always on the right —hand side of the yield line (see Figure 4 ) .The
differences between the z coordinate of point H on plane n and the corresponding
coordinate using the equation of plane m indicates whether the yield line is sagging or
hogging .When Zyn-Zum>0 , the yield line is sagging .When Zun-Zpm,<0, the yield
line is hogging .

9

v

Figure (4) .Bending sign (sagging or hogging ) of yield line (a) Plane view
(b)Section A-A

The length of each vyield line is given by the distance between its end nodes
P1(X1,Y1,21) and pa2(X2,¥2,22), and is equal to

BB, = (X, =X,)* + (¥, —Y,)° ... (18)

Where the z coordinates, being very small, are not included.
The plastic moment , the rotation and the length of each yield line having been found
using eqgns (5-17) , the product of these values is then summed for all yield lines .The

sum, Zmpa , Is equal to the total energy , D, dissipated by the yield line .

I1-External work

The external work of loads moving the displaced shape of the yield line mechanism is
discussed in this section. The external work is the sum of work due to concentrated,
line and uniformly distributed loads and is represented in the following equation

"p Jd;  Where :- P; is the loads acing on the slab ... (19)

i=1 |
J is the deflection occurred due to the applied load
The procedure used to calculate the external work for each loading case is as follows:-
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1- Concentrated (Point) Load :-

Point load can be defined by a magnitude Pp., a point (node) where the load acts is
with coordinates x and y and the plane on which it is acting . The deflection of the load
is the zp, coordinate of the point where the load is acts .If the z coordinate is not
specified at the load point, it can be calculated from Eqgn. ( 15 ) .The work done by the
point load (Epp)is calculated as:-

EpL=PpL.ZpL (20)

2- Line Load :-

A uniform or linearly varying line load can be defined by two end nodes with
coordinates X1,y1 and Xp,y» respecively , the magnitude of the line load at each end is
PLi1 & PLi2 and the plane on which the line load is applied is shown on figure( 5)
.Given this data, the work done by the line load (E__) is calculated as follows:-

O,

Resultant Force

Line Load —

’|

o
R

O c

v

X

(a) (b)

Figure (5) Line load ;(a) Top view ;(b) Front view

The length of the line load is

I =\/(X2_X1)2+(y2_y1)2 .. (2D

The resultant of the line load is

PLL= (PLLi+PL2)/2 ... (22)

The location of the resultant is at (Xc,y.) where

xc=xl+¥-c : yc=yl+y2|_y1-c ...(23)
2P, P

Where c=-_—te ™l .. (24)
3(PLL2 + PLI_1)

The deflection at the point through which the resultant load acts is

zL.=-(Ax.+Byc+D)/C ... (25

Where A, B, C and D are the coefficients of the algebraic equation of the plane on
which the load is acting
Finally, the work done by the line load E,, is
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ELl=R, xz,, ... (26)
3- Uniformly distributed Load (UDL)

A uniformly distributed load can be defined by the N vertices, with coordinates
(X1,Y1), (X2,¥2),...,(Xn,Yn), Of the area covered by the UDL , the magnitude of the UDL
, PupL , and the plane on which it applied. Given these data, the work done by the load
is calculated as follows:-

The values and location of the resultant are calculated in a manner similar to that by
which the area of a traverse is calculated in surveying (see Figure 6 ) .The unit
resultant load is :-

®

Yo

v

A
A 4

Xc

Figure (6); Uniformly Distributed Load

AX:(YZ_Y1)(X1+Xz%+(y3_yz)(xz+X%+_“+(y1_yn)(xn+X1%; .. (27)

Alternatively,

Ay — (Xz - Xi)(yl + yz% +(X3 - Xz)(yz + y% 4. +(X1 - Xn)(yn + y%; (28)
The location of the resultant is at the centriod of the area covered by the UDL , i.e. at
(Xc,Yc) Where

Xe :_ZT(P% :_ZVP )
A, A,
where

Z)—(A: (Y28y1)|:(xl+xz)2+(xz ;Xl)z}+(y3_y2)[(xz+x3)2+(X?’_XZ)?

8 3
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and

> VA= bex) . " ){(yl +y,f+ b. _3y1 f } %) {(yz ey f e WaYe) L )2}

8 ... (30)
ot ()(1%)("){(% +y, f+ B=v.)* _By” J }
The deflection at the resultant is:-
ZupL=-(Ax.+Byc+D)/C ..(31)

Where A, B, C and D are the coefficient of the algebraic equation of the plane on
which the load is acting

Finally the work done by the UDL Eyp is

EubL=PupL.ZubL ... (32)
The work done by the various loading cases having been found using egns (20) - (32),
the values are then summed for all the loads; .This sum ZP& is equal to the work

done by the loads (E).
Finally, the moment capacity of the slab is found by dividing E by the sum of( @ ) for
all yield lines .

Optimality procedure:-

To find the optimum solution for a yield line mechanism, a series of patterns can
be defined and a yield load calculated for each pattern .The pattern that gives the
maximum ultimate flexural moment capacity is retained as the solution. Series of
patterns can be produced by specifying, for one or more nodes, initial and final
positions in the X, y plane, and the number of steps between these positions. These
values can be used by an iteration procedures which create the family of patterns
\When a yield line mechanism involves several parameters , a corresponding number
of iterations procedures can be used to generate all the families of patterns. The
iteration procedures should preferably be nested ,so that all possible patterns are
created in the same solution .Recursive procedures can be used advantageously for
this purpose.

When generating a series of yield line patterns, it is often possible to relate the
location of some of the moving nodes to the location of other nodes. This reduces the
amount of data required for the optimization, and also it conveniently restricts the
movements of the nodes within the limit of validity for the mechanism. One way for
establishing the relationship is by locating a node at the intersection of two lines
defined by two pairs of nodes .The node at the intersection is called a slave node,
while the other four nodes guiding the slave node are called master nodes. An
example to explain this technique will be presented in this paper.

Computer Program

A computer program (ULTYL) was developed in this paper to evaluate the
ultimate bending moment capacity of a concrete slab with specified dimensions and
loading conditions .The program was written using quick basic language (version 4.5)
on a PC computer .The flow chart of this program is shown in Figure (7) .This
program enable the user to find the maximum bending moment capacity of a slab
with an arbitrary shapes and with a various loading conditions (concentrated, line,
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uniformly distributed )loads and supporting cases by analyzing all the possible
mechanism patterns that can be done on the slab and then finding the maximum
flexural moment occurred (or. minimum load that causes these patterns) .
Application Examples

Three examples are presented in this paper to demonstrate the capability of the
technique and the program developed in this study used to evaluate the ultimate
moment capacity of a concrete slabs subjected to a various loading conditions (point,
line and uniformly distributed ) loads, for each case relationships were found between
the ultimate moment capacity and the parameters that relating the failure pattern
(mechanism pattern) to show the effect of the mechanism pattern on the total load
capacity of the slab , a conclusions was drawn based on these relationships which
explain the behavior of the slabs under different loading conditions .
Example (1 ):-Rectangular slab with simply supported edges

This simple example is one of the common examples used in text books dealing
with the yield line theory!? and it is presented her to compare the results achieved
using our program with the results obtained from the classical method of yield line
analysis .The dimensions of the slab is shown clearly in figure ( 8 ) and the load was
assumed to be a uniformly distributed over the area of the slab and its value was
assumed to be one unit , the analysis of this slab using the method reported in this
study gave a value of (7.07 ) of a maximum moment capacity which shows
reasonable agreement with the value of (7.08) given in Ref.(2)
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Start
NP:-  Number of planes
Input geometrical data NP, NYL, NN . ; ;
Load data PL, LL, UDL NYL:- Number of yield lines
Material properties data Mpx,Mpy NN:- Number of nodes
Searching data (moving nodes MN,
Slave nodes SN) MN:- Number of moving nodes

I=1 TONYL

Calculate the terms of Equation (1 )

for each yield line Using eqns (2) to (17)
depending on the case of each slab (sagging,
hogging, orthotropic, isotropic &, L, Mp

/ ZMp,xe x1, /

Contmue

I=1 TO NP

Calculate the terms of Equation (19 )
using eqns(20 ) to (32)for each plane depending on
the case of the exterenal load (PL,LL,UDL,)

[ ]

Contlnue

//Ip E/Z”_yle.l.

Check is the coordinates ©
the moving nodes reached to If
final positions

Yes

SN:- Number of slave nodes

Find the Maximum value of the
flexural moment capacity of the
slab

Update the geometry of the slab

and yield lines s according to the
movement of the moving nodes Print the results
included in search data

Figure (7) Flow chart of the computer Program (ULTYL)
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Figure (8 ): Example (1) Rectangular slab with simply supported edges.

The relationship between the maximum moment capacity of the slab and the location of
the intersection of the yield lines from corners of the slab (X — distance in figure 8 ) is shown
in figure ( 9 ).From this relation one can observe that when the (X) diverge away from the
edge of the slab, a greater capacity of the slab is required to prevent the failure to occur until
reach to a specified location (X=6.5 m) over which the relation is conflicted and this point
depends on the relative dimensions of the slab and the distribution of the live load on the slab
. By this relationship one can re distribute the live loads (line or uniformly distributed) on the
slab in a manner that gives a largest load carrying capacity of the structure.

7.080

Ultimate Moment Capacity (kN.m)

T T T T T
5.00 5.50 6.00 6.50 7.00 7.50

Figure (9) :Relationship between the distance (x) in Figure (8) and the ultimate flexural
moment capacity of the slab

865



6000

5800 —

Ultimate Moment Capacity(kN.m)

Fig.(11) so00

4800

Fixgd Support

2006 : 5 222l /11 alaall Apusigd) o slall / Jils dzals dlae

Example (2 ):-Square Concrete Slab with Fixed and free Supporting Edges .

The objective of this example is to demonstrate the efficiency of searching technique
used in this paper to trace the ultimate moment capacity of the slab by using the optimality
procedure developed in this study and to show the capability of the program used in
simulating the line load case . the slab dimensions and supporting case and loading conditions
are shown in Figure (10) in this example there is one moving node (7) and two slave nodes
(4,6) .The coordinates (x,y) for each slave node was updated by four master nodes (3,72,5)
and (7,9,8,5) for nodes 4 and 6 respectively .After the analysis the maximum moment
capacity of the slab was found to be ( 4800 ) kN.m at (x=10 m) and the curves showing the
relationships between the ultimate load capacity an the distances (x ) and (y) of the moving
node (7) in figure (10) are shown figures (11) and (12).

©),
10
Column Column
7 O) 76
Mpy
/\ Yietd Line \/
- O Note -
0 Line Load L] s [>
®
A
@
l—x—! ? 10

Figure (10): Example (2) Square Concrete Slab with Fixed and free
Supporting Edges .

T T T T T T T T T 5000

4500

4000

3500

3000

2500

2000

Ultimate Moment Capacity(kN.m)

1500
1000

500

Fig.(12)

5.0

T T T T T T T T T T T T T T T T T T T 0 T T T T T T T T
55 6.0 6.5 7.0 75 8.0 8.5 9.0 9.5 10.0 5 6 7 8 9

' (m) m
Figures (11andX12): Relationships between the ultimate moment cya(p)acity of the
slab with the distances (x) and(y) in figure (10 )
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Example (3 ):-Concrete Slab with different supporting cases

In this example, all the cases of supporting edges and loading conditions are
enclosed.This example is taken from Ref.( 5 ) which deals with the problem by the
ordinary technique of yield line method .The dimensions and loading conditions and
supporting cases are shown clearly in figure ( 13 ).This example was analyzed using
the developed program. Two moving nodes (4 &9) were considered in searching
process .No slaving nodes were needed in this case .The analysis has shown that the
ultimate moment capacity of this slab was (3415 Ib.ft )at the positions of the moving
node (x;=9.0 ft ,y=11ft ,x,=18.5 ft ).This indicates good agreement with the ( 3500
Ib.ft)of Ref.(5).The relationships between the ultimate capacity of the slab with the
distances ( X1,X2,y) of the moving nodes (4&9) in figure ( 13 ) are shown in figures
(14)(15)and (16) .

14

Simply Supported

11 207 B AT RSP AL, o

Mpy

Mpx

Fixed Support

16 Line Load
7
2K
/2
:
RRARTTRRRIIA
Fixed Support /
24—
a
® (a) &
A)‘idib‘nf i
ON»& { m
3 rrane v‘
: ; 0 O[—X2—
2 4
? 5 ®
|
W |
i a
/o A0
(0) ©)
X1 o
(b)

Figure (13):Example (3) Concrete Slab with different supporting cases
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3500

Ultimate Moment Capacity (Ib.ft)
I

3400 | X1=11.0 ft
| X2=18.5 ft
3300

3500
y=9.0 ft
X2=18.5 ft

3200 —

3100 —

3000 —

Ultimate Moment Capacity Ib.ft

2900 —

2800 —

5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

T T T T T T T T T T T T T T T T 2700 +—1Y—1F—7—F—"F—F——F—T—"—T——

X1 (ft) 6.0 7.0 8.0 9.0 )(]io(fot) 11.0 12.0

Fig.(14) Fig.(15)

Ultimate Moment Capacity Ib.ft
I

X1=11.0 ft
Y=9.0 ft

.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0
X2 (ft)

Fig.(16)
Figures (14, 15 and 16): Relationships between the ultimate moment capacity of
the slab with the distances (x;) , (y )and(x,) in figure (13 )

From figure (14) shown above, one can note that when the distance X; exceeds
line load location (x=10 ft )the external work done become large suddenly provided
that the ultimate moment capacity was become larger too by this conclusion one can
practically suppose the weaker point in the slab in order to distribute the live load (
line or uniform ) in such way that minimize the total external work .Figure(17) shows
the relationships between the ultimate moment capacity of the slab with the distances
(y) of the moving node (9) in a different locations of distance (X;) one may conclude
that increasing the dimension (X1) leads to increase the total load carrying capacity of
the slab when (X;) exceeds (11 ft) an inversion in the behavior is noticed

868

13.0

14.0



2006 : 5 2321 /171 alaal Apusnigh  slall / Qi drals Al

3450 | | | | | | | | |

3400 —

3350 —

W
W
=
S
I

3250 —

3200 —

3150 —

Ultimate Moment Capacity
T

X1 Values (ft)

- X1=10.75
3100 X1=11.0ft

- e X1=171.25 ft

- X1=115ft

3050 —

- X1=11.75 ft

3000 T T T T T T T T T T T T T T T T T 1

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0
Y (ft)

Figure (17): Relationships between the ultimate moment capacity of the slab

with the distances (y ) at different values of the distance x;

Conclusions

From the examples presented in this paper one can conclude that the suggested

numerical method of analysis and the searching technique adopted to create different
yield line mechanisms and then the computer program developed on the bases of these
method were very effective in tracing the ultimate moment capacity of the concrete

slabs

with different loading conditions and supporting cases and with complex

geometry shapes .This numerical method and computer program can be considered as
a good tool for the civil engineers to tracing the behavior and estimate the maximum
moment capacity of the slabs and then design it to carry this moment sufficiently .
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