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Abstract 
Yield line theory offers a simplified nonlinear analytical method that can 

determine the ultimate flexural moment  capacity of flat reinforced concrete plates 

subjected to distributed , linear or concentrated loads .In this study, a computer program 

based on  a numerical method which depends on the virtual  work method is presented 

.The method consists of computing the ultimate moment capacity based on the  geometry 

of the assumed collapse mechanism defined by means of nodes , planes and lines . One 

practical limitation of yield line theory is that it is computationally difficult to evaluate 

some complex   mechanisms . This problem is aggravated by complex geometry and 

reinforcing layouts commonly found in practice  , but since the present method is 

numerical , it allows the yield lines analysis of plates with complex shapes , assumed 

mechanisms and loadings. Algorithms for calculation of the work done by the external 

loads on the plate and the internal work dissipated by the yield line in the assumed 

mechanism are described and a numerical examples of reinforced concrete slab is given. 

The computer program developed in this paper allows the use to search on the 

mechanisms that give the highest ultimate flexural moment capacity using procedure that 

can change the mechanism and the associated failure geometry of the slab at each 

mechanism. 

Introduction 
Yield line theory is a relatively simple analysis method which is accepted by 

American Concrete Institute (ACI)  to calculate the ultimate bending capacity of flat 

reinforced concrete slabs .The method  was developed by  Johanson(4)  and since that, it 

has been applied successfully to both concrete and steel slabs. It is based on the observed 

failure suggested that all of the yielding in a slab can be lumped  into a discrete plastic 

hinges or  yield lines. Thus , a slab is idealized as a series of rigid bodies which are 

connected together by yield lines .At the ultimate load , the total  plastic strain energy in 

the yield lines is equated to the external work done by the external loads to the displaced 

shape of the assumed yield line mechanism .Yield line theory is an upper bound  energy 

method , and the quality of the solution depends on the assumed yield line mechanism. 

 A numerical method based on   the yield line theory is presented in this paper .The 

method differs from the conventional yield line method in that it does not use a direct 

algebraic description of the problem but rather it uses analytical geometry, vector algebra 

and the specific geometry of the problem on hand to arrive the solution. 

The method presented is general and since it is entirely numerical, it can be applied 

to plates of arbitrary shape which can be assumed to form any arbitrary yield line 

mechanism .Furthermore, the method has the advantage of requiring no algebraic 

manipulation and thus it is not limited by complexity of the algebra, as in some time the 

case with the conventional  yield line method. 

There are two solution procedures in the yield line theory, the virtual work method 

and the so-called equilibrium method, both methods lead to identical upper bound 
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solutions. The virtual work method is simpler in principle and it is used for the numerical 

method presented in this paper. 

Since the yield Line method leads to an upper bound solution, different mechanisms 

as well as different dimensions for each mechanism must be tried in order to find the 

lowest predicted strength of the plate. In the conventional methods , the optimum solution 

of simple problems can be found directly by differentiation . For complex problems a trial 

and error technique is faster and usually satisfactory . For numerical method presented 

herein , a simple searching procedure is used to find the optimum solution. 

Virtual work method  
I -Internal Work 

The internal work dissipated by the yield lines during a small motion of the assumed 

collapse mechanism is represented as the following equation 





ny

i

iii LMpD
1

         … (1) 

Where  Mpi  is the plastic moment capacity resistance per unit length 

            l  is the rotation of each yield line . 

            Li  is the length of each yield line.  

            ny is the number of yield line in the assumed mechanism. 

Consider , as a simple example , an orthotropic rectangular slab with fixed supports 

subjected to a uniformly distributed load (w) over the area of the plate and assumed to 

form a yield line mechanism shown in Figure( 1) .The yield lines are numbered  from 

(1) to (8).With ends numbered from 1 to 5 , the flat slab segments , or planes , are 

numbered from 1 to 5 including the plane represented the fixed support plane which is 

numbered (1) .A right hand rectangular coordinates system is set with the origin 

located arbitrary , say at the lower   left corner with the z-axis pointing upward, the 

(x,y) coordinates of each node are then determined    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1) .Fixed edges rectangular slab with uniformly distributed load (a) Plate 

(b) Model of  numerical analysis 
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The bending resistance per unit length, Mpi of a yield line making an angle ( ) with 

the x axis in an orthotropic plate ,(Figure2) if the yield line is sagging  :- 

 22
sincos MpyMpxMpi         … (2) 

and if the yield line is hogging  

 22
sincos ypMxpMMpi

       … (3) 

where the function of   are found from  

  2
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
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  , 
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
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 
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L

xx
      …(4) 

Mpx and Mpy are the sagging resistance in the x and y direction, respectively, and 

xpM   and ypM  are the hogging resistance .x1, y1 are the x and y coordinates of the 

end nodes of the yield line and (l) is the length of the yield line. 

In skew concrete slabs the reinforcement may be placed parallel to the edges of the 

slab, and hence the plate is not orthotropic. Let the reinforcement be placed in the x 

direction and in the (S) direction, including at an angle   with the x axis 

( )1800    .The bending resistance, Mpi, of a yield line is sagging  

)(coscos   22
MpyMpxMpi

     … (5) 

and if the yield line is hogging] 

)(coscos   22
ypMxpMMpi

     … (6) 

where the functions of  (  ) are found from  :- 

  2
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yy
         …(7)  

if (y2-y1)(x2-x1) >0  
2
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Figure (2) Yield line at general angle (a) In orthotropic plate, (b) In skew 

concrete slab 
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Mpx, xpM  , Mps and spM  are the sagging and hogging resistance in the x and s 

direction, respectively. 
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Before calculating the rotation of the yield line, planes must be defined, as 

follows, corresponding to the rigid plate segments of the assumed mechanism. For the 

plate shown in Figure 1 , plane 2 is defined by nodes 1,2 and 3 , plane 3 is defined the 

nodes 1,3 and 4,et.Given three points po(xo,yo,zo), p1(x1,y1,z1), and p2(x2,y2,z2), the 

algebraic equation of the plane through these points is :- 

Ax+By+Cz+D=0             … (10) 

Where  

A= (y1-yo) (z2-zo)-(z1-zo) (y2-yo)           … (11) 

B= (z1-zo) (x2-xo)-(x1-xo) (z2-zo)                                                                … (12) 

C=(x1-xo) (y2-yo)-(y1-yo) (x2-xo)                                                       … (13) 

   

D=-(Ax+By+CZ)                         … (14) 

In order to define a plane, the three point’s po, p1 and p2 must not to be collinear. This 

can be checked by  comparing the slopes of a line from po to p1 and a line from p1 to 

p2 .For simplicity , the slopes in the x, y plane (y2-y1)/(x2-x1) are compared .If the 

slopes are unequal the three points are not collinear and can be used to calculate the 

algebraic equation of the plane. 

Once the equation of a planes has been determined, it can be possible to calculate the 

deflection of some nodes, which otherwise would have to be calculated by hand using 

the following equation :- 

C/)DByAx(z cc               …(15)  

The rotation of each yield line is given by the angle   between the two planes 

intersecting at that yield line (see Figure 3 ).Given two planes (m) and ( n) with the 

following algebraic equations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3).Rotation between the rigid plate segments: (a) Plane view; (b) Section 

A-A 

Plane m: Amx+Bmy+Cmz+D=0   

Plane n : Anx+Bny+Cnz+D=0                               … (16) 

The angle   between these planes is equal to the acute angle between their normal 

vectors nm and nn and is given by 
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Where, since we consider virtual displacement, the angle can be considered small. 

Such small angles are obtained by assuming small deflections of the yield line 

mechanism .For example , choosing a maximum value of 1/
610  of the plate width , 

say , for the z coordinate of the nodes in the displaced plate leads to satisfactory 

results with less errors. 

From the numerical description of a yield line mechanism , it is possible to determine 

the bending sign of the yield lines, i.e. whether they are sagging or hogging .Given a 

yield line with end nodes 1 and 2 , bounded by planes (m) and (n) , and using the 

convention that plane  m is on the left hand side of the yield line for an observer 

standing at node 1 and looking  at node 2 , then a point H with coordinates [x1+(y2-

y1), y1+(x1-x2)] is always on the right –hand side of the yield line (see Figure 4  ) .The 

differences between the z coordinate of point H on plane n and the corresponding 

coordinate using the equation of plane m indicates whether the yield line is sagging or 

hogging .When ZHn-ZHm>0 , the yield line is sagging .When  ZHn-ZHm,<0,  the yield 

line is hogging . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4) .Bending sign (sagging or hogging ) of yield line (a) Plane view 

(b)Section A-A 

 

The length of each yield line is given by the distance between its end nodes 

p1(x1,y1,z1) and p2(x2,y2,z2), and is equal to  
2

21

2

2121 )()( yyxxpp             … (18) 

  

Where the z coordinates, being very small, are not included. 

The plastic moment , the rotation and the length of each yield line having been found 

using eqns (5-17) , the product of these values is then summed for all yield lines .The 

sum , lm p , is equal to the total energy , D, dissipated by the yield line . 

II-External work 

The external work of loads moving the displaced shape of the yield line mechanism is 

discussed in this section. The external work is the sum of work due to concentrated, 

line and uniformly distributed loads and is represented in the following equation 

 

NP

i iiP
1

  Where :- Pi is the loads acing on the slab                          … (19) 

                                        is the deflection occurred due to the applied load  

The procedure used to calculate the external work for each loading case is as follows:- 
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1- Concentrated (Point)  Load :- 

Point load can be defined by a magnitude PPL, a point (node) where the load  acts is 

with coordinates x and y and the plane on which it is acting .The deflection of the load 

is the zPL coordinate of the point where the load is acts .If the z coordinate is not 

specified at the load point, it can be calculated from Eqn. ( 15 ) .The work done by the 

point load (EPL)is  calculated as:- 

EPL=PPL.zPL                   … (20) 

2- Line Load :- 

A uniform or linearly varying line load can be defined by two end  nodes with 

coordinates x1,y1 and x2,y2  respecively , the magnitude of the line load at each end is 

PLL1 & PLL2 and the plane on which the line load is applied   is shown on figure( 5 ) 

.Given this data, the work done by the line load   (ELL ) is  calculated as follows:- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The length of the line load is     
2

12

2

12 )()( yyxxl         … (21)  

The resultant of the line load is  

PLL= (PLL1+PLL2)/2         … (22)     

The location of the resultant is at (xc,yc) where  

c
l

xx
xxc 


 12
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l

yy
yyc 


 12

1    …(23) 

Where    l
PP

PP
c

LLLL

LLLL 





)(3

2

12

12       … (24) 

The deflection at the point through which the resultant load acts is  

 

zLL=-(Axc+Byc+D)/C                                                                                     … (25) 

 

Where A, B, C and D are the coefficients of the algebraic equation of the plane on 

which the load is acting  

Finally, the work done by the line load  ELL is 
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Figure (5) Line load ;(a) Top view ;(b) Front view 

 



 2006:  5/ العذد 11/ الوجلذ الهنذسية/ العلوم هجلة جاهعة بابل 

 861 

ELL= LLLL zP            … (26) 

3- Uniformly distributed Load (UDL) 

 

A uniformly distributed load can be defined by the N vertices, with coordinates 

(x1,y1), (x2,y2),…,(xn,yn), of the area covered by the UDL , the magnitude of the UDL 

, PUDL , and the plane on which it applied. Given these data, the work done by the load 

is calculated as follows:- 

The values and location of the resultant are calculated in a manner similar to that by 

which the area of a traverse is calculated in surveying (see Figure 6 ) .The unit 

resultant load is :- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (6); Uniformly Distributed Load 
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The location of the resultant is at the centriod of the area covered by the UDL , i.e. at 

(xc,yc) where  
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and 
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The deflection at the resultant is:- 

 

ZUDL=-(Axc+Byc+D)/C       …(31) 

 

Where A, B, C and D are the coefficient of the algebraic equation of the plane on 

which the load is acting  

Finally the work done by the UDL EUDL is 

 EUDL=PUDL.zUDL                          … (32) 

The work done by the various loading cases having been found using eqns (20) - (32), 

the values are then summed for all the loads; .This sum  P  is equal to the work 

done by the loads (E). 

Finally, the moment capacity of the slab is found by dividing E by the sum of( l ) for 

all yield lines . 

 

Optimality procedure:- 
To find the optimum solution for a yield line mechanism, a series of patterns can 

be defined and a yield load calculated for each pattern .The pattern that gives the 

maximum ultimate flexural moment capacity  is retained as the solution. Series of 

patterns can be produced by specifying, for one or more nodes, initial and final 

positions in the x, y plane, and the number of steps between these positions. These 

values can be used by an iteration procedures which create the family of patterns 

.When a yield line mechanism involves several parameters , a corresponding number 

of iterations procedures can be used to generate all the families of patterns. The 

iteration procedures should preferably be nested ,so that all possible patterns are 

created in the same solution .Recursive procedures can be used advantageously for 

this purpose. 

When generating a series of yield line patterns, it is often possible to relate the 

location of some of the moving nodes to the location of other nodes. This reduces the 

amount of data required for the optimization, and also it conveniently restricts the 

movements of the nodes within the limit of validity for the mechanism. One way for 

establishing the relationship is by locating a node at the intersection of two lines 

defined by two pairs of nodes .The node at the intersection is called a slave node, 

while the other four nodes guiding the slave node are called master nodes. An 

example to explain this technique will be presented in this paper. 

Computer Program 
A computer program (ULTYL) was developed  in this paper to evaluate the 

ultimate bending moment capacity of a concrete slab with specified dimensions and 

loading conditions .The program was written using quick basic language (version 4.5)  

on a PC computer .The flow chart of this program is shown in Figure (7) .This 

program enable  the user  to find the  maximum  bending moment capacity of a slab 

with an arbitrary shapes and with a various loading conditions (concentrated, line, 
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uniformly distributed )loads and supporting cases by analyzing all the possible 

mechanism patterns  that can be done on the slab  and  then  finding the maximum 

flexural  moment occurred (or. minimum  load that causes  these  patterns ) . 

Application Examples  
 Three examples are presented in this paper to demonstrate the capability of the 

technique and the program developed in this study used to evaluate the ultimate 

moment capacity of a concrete slabs subjected to a various loading conditions (point, 

line and uniformly distributed ) loads, for each case  relationships were found between  

the ultimate  moment capacity and the parameters that relating the failure pattern  

(mechanism pattern) to show the effect of the mechanism pattern on the total  load 

capacity of the slab , a conclusions was drawn based on these relationships which 

explain the behavior of the slabs  under  different loading conditions . 

Example (1 ):-Rectangular slab with simply supported edges 

This simple example is one of the common examples used in text books dealing 

with the yield line theory
( 2)

 and it is presented her to compare the results achieved 

using our program with the results obtained from  the classical method of yield line 

analysis .The dimensions of the slab is shown clearly in figure ( 8 ) and the load was 

assumed to be a uniformly distributed over the area of the slab and its value was 

assumed to be one unit , the analysis of this slab using the method reported in this 

study gave a value of (7.07 ) of a maximum  moment capacity which shows 

reasonable agreement with the value of (7.08) given in Ref.(2) 
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Figure (7) Flow chart of the computer Program ( ULTYL) 
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Figure (8 ): Example (1) Rectangular slab with simply supported edges. 

 
The relationship between the maximum  moment capacity of the slab and the location of 

the intersection of the yield lines from corners of the slab (X – distance in figure 8 ) is shown 

in figure ( 9 ).From this relation one can observe that  when the (X) diverge away from the 

edge of the slab ,  a greater capacity of the slab is required to prevent the failure to occur  until 

reach to a specified location (X=6.5 m) over which the relation is conflicted and this point 

depends on the relative dimensions of the slab and the distribution of the live load on the slab 

. By this relationship one can re distribute the live loads (line or uniformly distributed) on the 

slab in a manner that gives a largest load carrying capacity of the structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (9) :Relationship between the distance (x) in Figure (8) and the ultimate flexural  

moment capacity of the slab 
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Example (2 ):-Square Concrete Slab with Fixed and free  Supporting Edges . 
The objective of this  example is to demonstrate the efficiency of searching technique 

used in this paper to trace the ultimate moment capacity of the slab by using the optimality 

procedure developed in this study and to show the capability of the program  used  in 

simulating the line load case . the slab dimensions and supporting case and loading conditions 

are shown in Figure  (10) in this example there is one moving node (7) and two slave nodes 

(4,6) .The coordinates (x,y) for each slave node was updated by four master nodes (3,72,5) 

and (7,9,8,5) for nodes 4 and 6 respectively .After the analysis the maximum moment 

capacity of the slab was found to be ( 4800 ) kN.m at (x=10 m) and the curves showing the 

relationships between the ultimate load capacity an the distances (x ) and (y) of the moving 

node (7) in figure (10) are shown figures (11) and (12 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  (10 ): Example (2) Square Concrete Slab with Fixed and free  

Supporting Edges . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures  (11and 12): Relationships between the ultimate moment capacity of the 

slab with the distances (x) and(y) in figure (10  ) 
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Example (3 ):-Concrete Slab with different supporting cases  

In this example, all the cases of supporting edges and loading conditions  are 

enclosed.This example is taken from Ref.( 5 ) which deals with the problem by the 

ordinary technique of yield line method .The dimensions and loading conditions and 

supporting  cases are shown clearly in figure ( 13 ).This example was analyzed using 

the developed program. Two moving nodes (4 &9) were considered in searching 

process .No slaving nodes were needed  in this case .The analysis has shown that the 

ultimate moment capacity of this slab was (3415 Ib.ft )at the positions of the moving 

node  (x1=9.0 ft ,y=11ft ,x2=18.5 ft ).This indicates  good agreement with the  ( 3500 

Ib.ft)of Ref.(5).The relationships between the ultimate capacity of the slab with the 

distances ( x1,x2,y) of the moving nodes (4&9) in figure ( 13 ) are shown in figures 

(14 ) ( 15 )and ( 16 ) . 
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Figure  (13):Example (3) Concrete Slab with different supporting cases 
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Figures  (14 , 15 and 16): Relationships between the ultimate moment capacity of 

the slab with the distances (x1) , (y )and(x2) in figure (13  ) 

 

From figure (14) shown above, one can note that when the distance X1 exceeds 

line load location (x=10 ft )the external work done become large suddenly provided 

that the ultimate moment capacity was become larger too by this conclusion one can 

practically suppose the weaker point in the slab in order to distribute the live load ( 

line or uniform ) in such way that minimize the total external work .Figure(17) shows 

the relationships between the ultimate moment capacity of the slab with the distances 

(y) of the moving node (9 ) in a different  locations of distance (X1) one may conclude 

that increasing the dimension  (X1) leads to increase the total load carrying capacity of 

the slab when (X1) exceeds (11 ft) an inversion in the behavior is noticed  

Fig.(14) 

Fig.(16) 

Fig.(15) 
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Figure  (17): Relationships between the ultimate moment capacity of the slab 

with the distances  (y ) at different values of the distance x1    

Conclusions 
From the examples presented in this paper  one can conclude that the suggested 

numerical method of analysis and the searching technique adopted to create different 

yield line mechanisms and then the computer program developed on the bases of these 

method were very effective in  tracing the ultimate moment capacity of the concrete 

slabs with different loading conditions and supporting cases and with complex 

geometry shapes .This numerical method and computer program  can be considered as 

a good tool for the civil engineers  to tracing the behavior and estimate the maximum 

moment capacity of the slabs and  then design it to carry this moment  sufficiently . 
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طريقة عذدية لإيجاد عزم الانحناء الأعظن للسقوف الكونكريتية باستخذام 

 نظرية خظ الخضوع

 الخلاصة
طر قلل ظسطدللل ظ يلحيلللنظ  للللل ظ يدللق  ظظ للل ظظYield Line Theoryتمثللنظرير لل ظلللوظ  خ لل  ظ

نظسركلز ظيل ظب  سللهاظ يجادظزمظ لارحناءظ لأعي ظ يدق  ظ  ك ركر لي ظ  معرضل ظل ل ظلملنظسل ز ظليظللل ظليظلمل
هذهظ  در س ظت ظإعد دظبرراسجظلاس ب ظبالاعلمادظعيىظتمثلنظعدديظ نير  ظلوظ  خ   ظيباسلعمالظطر قل ظ  ذل نظ

 ظتلكللل نظهلللذهظ  لر قللل ظسللللاظلدلللالأظعلللزمظ لارحنلللاءظ لأعيللل ظيظبالاعلملللادظعيلللىظ Virtual Work لايلر ضللل ظ
يظظNodesيللللظعيلللىظالللكنظس ا لللنظي  لللذيظ لللل ظتمثلظ Collapse Mechanismسيكاريكيللل ظ   ذلللنظ  مل  عللل ظ

   جلدظهنلاتظتحد لدظيل ظتلنلليظرير ل ظللوظ  خ ل  ظ  لقيلديل ظظYield linesيلل طظل   ظظ Planesسدل  ات
عميياظ لمثنظي ظ لع ب ظ يجلادظيتكل  لاظيللنظ  معلادلاتظ  مذللق ظ يذل نظ  لد لي ظيظ  خلارج ظ يحلالاتظ  لل ظتكل نظ

يحظظيلل ظ  دللقرظتلللرظسنلللي ظي كلللاظ  لر قلل ظ  مللل ر ظيلل ظهللذهظيلهللاظلاللكالظ  دللق  ظتلللرظسنليملل ظليظت ز لل ظ  لدللي
 ميكاريكيل ظظNumerical Idealization  در س ظتجايزتظهذ ظ  لحد دظيذ كظبدنبظ علمادهاظعيىظتمثلنظعلدديظ

  حا  ظس ض ع ظ  در س ظسماظيمكنهاظسللاظللنظسيكاريكيلاتظ   ذلنظذ تظ لأالكالظ  معقلد ظيبحلالاتظتحمللنظسخلي ل ظ ظ
لللوظ ردللياب ظ حدللالأظ  ذلل نظ  خللارج ظ  نللاتجظسلللاظ لألمللالظ  خارجيلل ظ  مدلليل ظعيللىظ  دللقرظيكللذ كظتلل ظإعللد دظسخ

  ذ نظ  د لي ظ  مل  دظسلاظلل طظ  خ   ظ  مل  د ظيل ظالكنظ   ذلنظ  مل  ل ظلللتظتل ظتلنلليظهلذ ظ  مخللوظعيلىظ
ظعد لالاتظسخلي  ظي ظ  ذكنظيظ  لحملنظ يلأكدظسلاظيعا ي ظ  لر ق ظ  مقدس ظيظ  نرراسجظ  م

يدمحظ  نرراسجظ  معدظي ظهذهظ  در س ظ يمدلخدمظبا طحتظعلاظسيكاريكي ظ   ذنظ  ل ظتعل ظ كنرظعلزمظ رحنلاءظسدليوظ
عيىظ  دقرظيذ كظب  سل ظ علمادظلسي لأظ رتد ديظيمكلاظسلاظت للرظسيكاريكي ظ   ذنظيظاكنظ   ذنظ  مقابنظ يدلقرظ

ظي ظكنظلا   
 


