مجلة جامعة بابل / العلوم / العدد (**4**) / المجلد (14) : 2007

T-Operation on Topological Space and Separation Axioms

Asaad M.A. Alhosaini

University of Babylon, College of Education, Dept. Mathematics

Abstract

In this paper we introduce a new kind of operation, t, on a topological space (X,τ) , and study the concepts of t-open, t- semi open together with its corresponding t-closure, t-interior, t-semi closure and t-semi interior operators. Also we study the concepts of t-T_i spaces and t-semi T_i spaces $(i=0,\frac{1}{2},1,2)$ and study the relations between them. Finally, we study the concepts of t-T_b and t-T_d spaces using the concepts of t-gs.closed sets in a topological space and investigate the relation between them.

الخلاصة

في هذا البحث عرفنا نوعا جديدا من المؤثر على الفضاء التوپولوجي أسميناه مؤثر t ودرسنا مفاهيم المجموعات t – المفتوحة و t – شبه المفتوحة مع المفاهيم المرتبطة بها مثل t –انغلاق t –داخلية t –شبه انغلاق و t –شبه داخلية .كذلك درسنا الفضاءات t –t و t –t (t –t) وحددنا العلاقات بينها .

وأخيرا درسنا الفضاءات t- T_b وأخيرا درسنا الفضاءات t-t-t والمخلقة وحددنا العلاقات بينها وبين بعض بديهيات الفصل الأخرى.

1. Introduction.

Jankovic 1983 defined the concept of operation on topological spaces and introduce the concept of α -closed graphs of an operation. Ogata 1991 called the operation α as γ -operation and introduce the notion of τ_{γ} which is the collection of all γ -open sets in a topological space (X,τ) .Further he introduce the concept of γ - T_i spaces ($i=0,\frac{1}{2},1,2$) and characterized γ - T_i by the notion of γ -closed set or γ -open sets.

Krishnan and Balachandran 1998 introduced the concept of γ -semi open sets in a topological space (by using the definition of operation γ as a mapping from τ into P(X) with the condition $U \subseteq \gamma(U)$ for each $U \in \tau$) and the concepts of γ -semi T_i spaces ($i = 0, \frac{1}{2}, 1, 2$) and studied the relation between them, also they introduced the concepts of γ - T_b and γ - T_d spaces using the concept of γ -gs.closed sets in a topological space.

In this paper ,in section 2, the author give a deferent definition of operation on a topological space (X,τ) and call it t-operation (as a mapping from P(X) into τ with the condition $t(U)\subseteq U$ for each $U\subseteq X$ and t(X)=X), and study the concepts of t-open, t-closed ,t-g.closed, t-semi open , t-semi closed ,t- semi g.closed and t-g.semi closed sets in (X,τ) together with its corresponding t-closure ,t-interior ,t-semi closure and t-semi interior operators in the sense of the new definition of operation t. Also in section 2 the author prove many results about the previous concepts.

In section 3 the author study the concepts of t- T_i , t-semi T_i (i =0,½,1,2), t- T_b and - T_d spaces using the t-operation on a topological space and investigate the relationship between them.

Through out sections 2 and 3 the symbols clA and intA denote the closure and interior sets of the set A (respectively) with respect to the topology τ .

2 T-operation on a topological space.

2.1 Definition. Let (X,τ) be a topological space. An operation t on (X,τ) is a mapping from P(X) into τ such that $t(V) \subseteq V$ for each $V \subseteq X$ and t(X)=X.

مجلة جامعة بابل / العلوم / العدد (**4**) / المجلد (14) : 2007

- **2.2 Definition.** Let t be an operation on a topological space (X,τ) , $A\subseteq X$.
- 2.3

A is said to be a t-open set if for each x in A ,there exists a subset G of X such that $x \in t(G) \subseteq A$. The set of all t-open sets in (X, τ) is denoted by t-O(X).

- **2.4** Remark. t-O(X) $\subseteq \tau$, t(U) $\in t$ -O(X) for each U \subseteq X, but a member of t-O(X) need not be t(U) for some U.
- **2.5** Remark. If t is an operation on a topological space (X,τ) defined by t(A)=intA, for each $A\subseteq X$, then $t-O(X)=\tau$.
- **2.6** Remark. By 2.2 and 2.3, if t is an operation on a topological space (X,τ) , then
 - i) φ , $X \in t$ -O(X)
 - ii) If $A_{\alpha} \in t$ -O(X), $\alpha \in \Lambda$, then $\bigcup_{\alpha \in \Lambda} A_{\alpha} \in t$ -O(X).
 - iii) If $A,B \in t-O(X)$, it is not necessary that $A \cap B \in t-O(X)$.
 - (i.e. t-O(X) dose not form a topology on X in general)
- **2.7 Example.** Let $X = \{a,b,c\}, \tau = \{\phi,X,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}, t$, defined by ,t(A)=intA if intA \neq {c}, t(A)= ϕ if intA={c}. Then t-O(X)= τ -{{c}}.
 - If $A = \{a,c\}, B = \{b,c\}$, then $A,B \in t-O(X)$, but $A \cap B \notin t-O(X)$.
- **2.8 Definition.** A subset A of X is said to be a t-closed set if its complement is t-open.
- **2.9** Remark. By 2.5 and 2.7, if t is an operation on a topological space (X,τ) , then
 - i) φ and X are t-closed sets.
 - ii) The intersection of any family of t-closed sets is a t-closed set.
 - iii) The union of two t-closed sets need not be t-closed set.
- **2.10 Definition.** The t-closure set of a subset A of X, denoted by cl_tA , is defined by $cl_tA = \{x \in X | A \cap t(U) \neq \phi \text{ for each set } U \text{ such that } x \in t(U) \}$.
- **2.11** Remark. For each subset A of X, $A \subseteq clA \subseteq cl_tA$.(since $t(U) \in \tau$)
- **2.12** Remark. In Example 2.6 if $E=\{a,b,d\}$, then clE=E where $cl_tE=X$.
- **2.13 Remark.** If t is an operation on a topological space (X,τ) , then:
 - i) $A \subseteq B \subseteq X$ implies $cl_t A \subseteq cl_t B$.
 - ii) $\bigcup cl_t A_\alpha \subset cl_t \bigcup A_\alpha$
 - iii) $cl_t \cap A_\alpha \subseteq \cap cl_t A_\alpha$ (where $\{A_\alpha\}$ is an arbitrary family of subsets of X).
 - iv) $cl_t A = \bigcap \{F \mid F \text{ is a t-closed set and } A \subseteq F\}.$
 - v) A is a t-closed set if and only if $A = cl_t A$.
 - vi) $cl_t(cl_t A) = cl_t A$, i.e $cl_t A$ is a t-closed set.
 - **proof:** (i) follows from Definition 2.9.
 - (ii) and (iii) follow from (i) since $A_{\alpha} \subseteq \bigcup A_{\alpha}$ and $\bigcap A_{\alpha} \subseteq A_{\alpha}$ for each α .
 - iv) If $x \notin cl_t A$ then by 2.9 there exists U such that $x \in t(U)$ and $t(U) \cap A = \emptyset$.

Hence $A \subseteq X$ - t(U), $x \notin X$ -t(U) and $t(U) \in t$ -O(X),

i.e $x \notin \bigcap \{F | F \text{ is a t-closed set and } A \subseteq F \}$.

On the other hand if $x \notin \cap \{F | F \text{ is a t-closed set and } A \subseteq F \}$ then there exists a t-closed set F such that $A \subseteq F$ and $x \notin F$, which implies $x \in (X-F) \in t-O(X)$ and $A \cap (X-F) = \emptyset$, i.e $x \notin cl_t A(Definition 2.9)$.

- v) If A is t-closed, then by (iv) $cl_tA \subseteq A$ and by $2.10 A \subseteq cl_tA$, so, $A = cl_tA$. Now if $A = cl_tA$, then by (iv) and 2.8 (ii) A is a t-closed set.
- vi) By 2.10,cl_t $A \subseteq cl_t(cl_tA)$.If $x \notin cl_tA$ then by Definition 2.9, there exists U such that $x \in t(U)$ and $t(U) \cap A = \phi$, assume that $t(U) \cap (cl_tA) \neq \phi$ and let $y \in t(U) \cap cl_tA$, therefore $y \in t(U)$ and $y \in cl_tA$, so by Definition 2.9, $t(U) \cap A \neq \phi$, which is a contradiction. Hence $x \notin cl_t(cl_tA)$.

2007:(14) مجلة جامعة بايل / العلوم / العدد (4) العدد (4

- **2.14 Definition.** Let t be an operation on a topological space (X,τ) , $A \subseteq X$. A is said to be a t-generalized closed set (shortly t-g.closed set) if $cl_tA \subseteq U$, whenever $A \subseteq U$ and U is a t-open set.
- **2.15 Remark.** Any t-closed set in (X,τ) is a t-g.closed set ,but the converse is not true.
- **2.16** Example. Let $X=\{a,b,c,d\}$, $\tau=\{\phi,X,\{a\},\{a,b\},\{a,b,c\}\}$, $t:P(X) \to \tau$, defined by t(A)=intA, then $t-O(X)=\tau$. $A=\{a,b,d\}$ is not t-closed ,where the only t-open set containing A is X ,which contains clA=X. i.e A is a t-g.closed set.
- 2.16 Theorem. Let t be an operation on a topological space (X,τ). Then For each x∈X, {x} is t-closed set or X-{x} is a t-g.closed set in (X,τ).
 Proof: If {x} is not a t- closed set then X-{x} is not a t-open set, and so X is the only t-open set containing X-{x} which is containing clt (X-{x}) too. i.e X-{x} is a t-g.closed set.
- **2.17 Definition.** Let t be an operation on a topological space (X,τ) and $A \subseteq X$. The set t-int(A) is defined by, t-int(A) = $\bigcup \{U | U \in t\text{-}O(X) \text{ and } U \subseteq A\}$.
- **2.18 Remark.** By 2.3 and 2.17 t-int(A) \subseteq int(A) \subseteq A.
- **2.19 Remark.** Let t be an operation on a topological space (X,τ) , $A,B \subseteq X$ and $\{A_{\alpha}\}$ an arbitrary family of subsets of X, then
 - i) $A \subseteq B$ implies t-int(A) $\subseteq t$ -int(B).
 - ii) $\bigcup (t\text{-int}A_{\alpha}) \subseteq t\text{-int}(\bigcup A_{\alpha}).$
 - iii) t-int($\bigcap A_{\alpha}$) $\subseteq \bigcap (t$ -int A_{α}).
 - iv) A is t-open if and only if A=t-intA.

Proof: i) Follows from definition.

- ii) By (i) and since $A_{\alpha} \subseteq \bigcup A_{\alpha}$ for each α .
- iii) Also by (i) and since $\bigcap A_{\alpha} \subseteq A_{\alpha}$ for each α .
- iv) If A is t-open then , for each $x \in A$, $x \in t(G) \subseteq A$ for a subset G of X (Definition 2.2), and by Remark 2.3 $t(G) \in t$ -O(X) ,hence $A \subseteq t$ -int(A), (Definition 2.17), but t-int(A) $\subseteq A$,(Remark 2.18) ,i.e A = t-int(A). If A = t-int(A),then by 2.17 and 2.5(ii) A is a t-open set.
- **2.20 Remark.** The equality in 2.19 (ii)and(iii) is not true. Return to Example 2.6, if $A=\{a\}$ and $B=\{c\}$ then $t-intA \cup t-intB=\{a\} \cup \phi=\{a\}$, where $t-int(A \cup B)=\{a,c\}$. Also if $A=\{a,c\}$ and $B=\{b,c\}$, then $t-intA \cap t-intB=\{a,c\} \cap \{b,c\}=\{c\}$, where $t-int(A \cap B)=t-int(\{c\})=\phi$.
- **2.21 Definition.** Let t be an operation on a topological space (X,τ) . A subset A of X is said to be t-semi open set if there exists a t-open set U such that, $U \subseteq A \subseteq cl_t(U)$. The set of all t-semi open sets in (X,τ) is denoted by t-SO(X). The complement of a t-semi open set is called a t-semi closed set.
- **2.22 Theorem.** Let (X,τ) be a topological space, t an operation on (X,τ) , $A \subseteq X$.
 - i) A is a t-semi open set if and only if $A \subseteq cl_t(t-intA)$.
 - ii) A is a t-semi colsed set if and only if t-int($cl_t A$) $\subseteq A$.

Proof. i) If $A \subseteq cl_t(t\text{-int}A)$, then by Definition 2.17 and Remark 2.5(ii), U=t-intA is a t-open set and $U \subseteq A$, and so, $U \subseteq A \subseteq cl_t(U)$. Hence A is a t-semi open set.

Conversely, given A a t-semi open set , then $U \subseteq A \subseteq cl_tU$, for some t-open set U,by Remark 2.19(iv) t-intU=U ,hence $A \subseteq cl_t(t\text{-int}U)$, and $U \subseteq A$ by 2.12(i), 2.19(i) implies $cl_t(t\text{-int}U) \subseteq cl_t(t\text{-int}A)$, therefore $A \subseteq cl_t(t\text{-int}A)$.

ii) A is a t-semi colsed set if and only if X-A is a t-semi open set, if and only

مجلة جامعة بابل / العلوم / العدد (**4**) / المجلد (**14**) علوم العدد (4)

if $(X-A) \subseteq cl_t(t-int(X-A))$.

But t-int(X-A)= $\bigcup \{U|U \in t-O(X) \text{ and } U \subseteq X-A\} = \bigcup \{U|U \in t-O(X) \text{ and } A \subseteq X-U\} = X-\cap \{X-U|U \in t-O(X) \text{ and } A \subseteq X-U\} = X-(cl_tA).$

Similarly $cl_t(X-cl_tA)=X-(t-int(cl_tA))$.

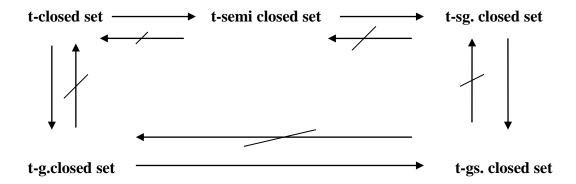
Hence $(X-A) \subseteq X$ - $(t-int(cl_tA))$, and so $t-int(cl_tA) \subseteq A$.

- **2.23** Remark. t-O(X) $\subseteq t$ -SO(X).
 - **Proof:** Follows from 2.19(iv),2.10, and 2.22.
- **2.24 Remark.** The converse of 2.23 is not true ,for example ,if $X = \{a,b,c\}$, $\tau = \{\phi, X, \{a\}, \{a,b\}\}$ and $t:P(X) \rightarrow \tau$,defined by $t(A) = (intA) \{b\}$, if $A \neq X$, and t(X) = X. Then $t-O(X) = \{\phi, X, \{a\}\}$ and $t-SO(X) = \{\phi, X, \{a\}, \{a,b\}, \{a,c\}\}$.
- **2.25 Remark.** The concepts of semi open and t-semi open sets are independent. See the following examples.
- 2.26 Examples.
 - i) Let $X = \{a,b,c\}$, $\tau = \{\phi,X,\{a\},\{c\},\{a,b\},\{a,c\}\}$, and define t: $P(X) \to \tau$ by $t(A) = (intA) \{b\}$, if $A \neq X$, and t(X) = X. Then $t O(X) = \{\phi,X,\{a\},\{c\},\{a,c\}\}\}$. The set $\{b,c\}$ is a t-semi open set but it is not a semi open set in (X,τ) .
 - ii) Let $X=\{a,b,c\}$, $\tau=\{\phi,X,\{a\}\}$, and define t: $P(X) \to \tau$ by $t(A)=\phi$ if $A\neq X$, and t(X)=X. Then t-O(X) = $\{\phi,X\}$, and the set $\{a\}$ is a semi open set ,but it is not t-semi open set.
- **2.27 Remark.** Let (X,τ) be a topological space, t an operation on (X,τ) .
 - i) φ and X are t-semi open sets.
 - ii) The union of any family of t-semi open subsets of X is a t-semi open set. The intersection of two t-semi open subsets of X need not be a t-semi open set.
 - **Proof:** i) Is obvious.
 - ii) Follows from 2.22(i),2.12(ii) and 2.19(ii).
 - iii) In Example 2.6 A and B are t-semi open sets ,but $A \cap B = \{c\}$ is not a t-semi open set.
- **2.28 Remark.** By Remark 2.23 and Definition 2.21, any t-closed set is a t-semi closed set. The converse is not true.
- **2.29 Remark.** By Definition 2.21 and Remark 2.27 we have:
 - i) φ and X are t-semi closed sets.
 - ii) The intersection of any family of t-semi closed subsets of X is a t-semi closed set.
 - iii) The union of two t-semi closed subsets of X need not be a t-semi closed set.
- **2.30 Definition.** Let t be an operation on a topological space $(X,\tau), A \subseteq X$. Then the set ,scl_tA is defined by $scl_tA = \bigcap \{F|F \text{ is a t-semi closed set and } A \subseteq F \}.$
- **2.31 Remark.** By Definition 2.30 and Remark 2.29(ii), scl_tA is the smallest t-semi closed set containing A, and scl_t(scl_tA)= scl_tA. Also A is a t-semi closed set if and only if A= scl_tA.
- **2.32 Remark.** By Remarks 2.23,2.28 and Definitions 2.21,2.30, $A \subseteq scl_t A \subseteq cl_t A$.
- **2.33 Definition.** Let t be an operation on a topological space (X,τ) , $A \subseteq X$. A is said to be t-semi generalized closed set (shortly t-sg.closed set) if $scl_t A \subseteq U$, whenever $A \subseteq U$ and U is a t-semi open set in (X,τ) .
- **2.34 Remark.** By Remark 2.31 every t-semi closed set is a t-sg.closed set.
- **2.35 Remark.** The converse of 2.34 is not true. In example 2.26 (ii), any subset other than φ and X is a t-sg.closed set but not t-semi closed.

مجلة جامعة بابل / العلوم / العدد (**4**) / المجلد (**14**) عوم العدد (4) العدد (4)

- **2.36 Remark.** The concepts of t-g.closed and t-semi closed sets are independent.
- **2.37 Examples.** i) Let $X = \{a,b,c\}$, $\tau = \{\phi,X\}$, and t an operation on (X,τ) defined by t(A) = intA. Then any subset of X other than ϕ and X is g.closed but not t-semi closed set.
 - ii) Let $X = \{a,b,c,d\}$, $\tau = \{\phi,X,\{a\},\{b,c\},\{a,b,c\}\}$, and t an operation on (X,τ) defined by t(A) = intA. Then $\{a\}$ is a t-semi closed set but not t-g.closed.
- **2.38 Theorem.** Let t be an operation on a topological space (X,τ) . Then For each $x \in X$, $\{x\}$ is a t-semi closed set or $X-\{x\}$ is a t-sg.closed set in (X,τ) . **Proof:** Similar to the proof of 2.16.
- **2.39 Definition.** Let t be an operation on a topological space (X,τ) , $A \subseteq X$. A is said to be t- generalized semi closed set (shortly t-gs.closed set) if $scl_t A \subseteq U$, whenever $A \subseteq U$ and U is a t- open set in (X,τ) .
- **2.40 Remark.** By Remark 2.23 and Definitions 2.33,2.37, every t-sg.closed set is a t-gs.closed set.
- **2.41 Remark.** The converse of 2.40 is not true. Let $X = \{a,b,c\}$, $\tau = \{\phi,X,\{a\}\}$, and t an operation on (X,τ) , defined by t(A) = intA, then the set $\{a,b\}$ is a t-gs.closed set but not t-sg.closed.
- **2.42 Remark.** By Definitions 2.13,2.39 and Remark 2.32 every t-g.closed set is a t-gs.closed set. The converse is not true, in Example 2.37 (ii), {a} is a t-gs.closed set but not t-g.closed set.

We close this section by the following diagram which explain the relations between the concepts that we defined in the section:



Where $P \longrightarrow Q$ represents P imply Q, $P \longrightarrow Q$ represents P does not imply Q.

3 Separation axioms and t-operation

- **3.1 Definition.** Let t be an operation on a topological space (X,τ) . Then (X,τ) is said to be:
 - i) a t-T₀ space if for each distinct points x and y in X there exists a t-open set U containing one of them but not containing the other.
 - ii) a t-T₁ space if for each distinct points x and y in X there are two t-open sets U and V containing x and y respectively such that $y \notin U$ and $x \notin V$.
 - iii) a t-T₂ space if for each distinct points x and y in X there are two disjoint t-open sets U and V containing x and y respectively.
 - iv) a t- $T_{1/2}$ space if every t-g.closed subset of (X,τ) is a t-closed set.

مجلة جامعة بابل / العلوم / العدد (**4**) / المجلد (**14**) علوم العدد (4)

- v) a t-semi T_0 space if for each distinct points x and y in X there exists a t-semi open set U containing one of them but not containing the other.
- vi) a t-semi T_1 if for each distinct points x and y in X there are two t-semi open sets U and V containing x and y respectively such that $y \notin U$ and $x \notin V$.
- vii) a t-semi T₂ space if for each distinct points x and y in X there are two disjoint t-semi open sets U and V containing x and y respectively.
- viii) a t-semi $T_{1/2}$ space if every t-semi g.closed subset of (X,τ) is a t-semi closed set.
- ix) a t- T_b space (t- T_d space) if every t-gs.closed set is t-closed (t-g.closed). In the remaining of this part we always assume that (X,τ) is a topological space and t is an operation on (X,τ) .
- **3.2 Remark.** If (X,τ) is a t- T_i space ,then (X,τ) is a T_i and t-semi T_i space(for i=0,1,2). The converse is not true.

Proof: It follows from the facts that $t\text{-O}(X) \subseteq \tau$ (Remark2.3) and $t\text{-O}(X) \subseteq t\text{-SO}(X)$ (Remark2.23).

For the converse see the following examples.

- **3.3 Example.** i) Let $X = \{a,b,c\}, \tau = P(X)$ and $t:P(X) \to \tau$ be defined by, $t(A) = \varphi$ if $A \neq X$ and t(X) = X. Then $t-O(X) = \{\varphi,X\}$ and so (X,τ) is a T_i space but not $t-T_i$ space for i=0,1,2.
 - ii) In the example of Remark 2.24 (X,τ) is a t-semi T_0 but not t- T_0 space.
 - iii) Let $X=\{a,b,c\}$, $\tau=\{\phi,X,\{a\},\{b\},\{a,b\},\{a,c\}\}$ and $t:P(X)\to \tau$ is defined by t(A)=int(A) for each A, then $t-O(X)=\tau$ and $t-SO(X)=\tau \cup \{\{b,c\}\}$. Hence (X,τ) is a t-semi T_i space but not $t-T_i$ space for i=1 and i=2.
- **3.4 Remark.** If (X,τ) is a t-T_i space (t-semi T_i space) then (X,τ) is a t-T_{i-1} space (t-semi T_{i-1} space) for i=1 and 2. The converse is not true.

Proof: Follows from Definition 3.1. For the converse see the following examples.

- **3.5 Example.** i) Let $X = \{a,b\}, \tau = \{\phi, X, \{a\}\}$ and $t:P(X) \rightarrow \tau$ is defined by t(A) = int(A) for each A. Then $t-O(X) = \tau = t-SO(X)$ and (X,τ) is a $t-T_0$ space and t-semi T_0 space but neither $t-T_1$ space nor t-semi T_1 space.
 - ii) If X=N (the set of natural numbers), $\tau = \{U|X-U \text{ is finite}\} \cup \{\phi\}$ and t is defined by t(A)=int(A) for each A. Then $t-O(X)=\tau=t-SO(X)$ and (X,τ) is a $t-T_1$ space and t-semi T_1 space but neither $t-T_2$ space nor t-semi T_2 space.
- **3.6 Remark.** (X,τ) is a t-T₀ space (t-semi T₀ space) if and only if for each x and y in $X, x\neq y$, $cl_t\{x\}\neq cl_t\{y\}$ ($scl_t\{x\}\neq scl_t\{y\}$).

Proof: If for some x, y in X, $x \neq y$, $cl_t\{x\} = cl_t\{y\}$ then $\{x\} \subseteq cl_t\{y\}$ which implies that $x \in \cap \{F|F \text{ is } t\text{-closed} \text{ and } y \in F\}$, that is $x \notin U$ for each t-open set U such that $y \notin U$. Similarly $y \notin V$ for each t-open set V such that $x \notin V$. Hence (X,τ) is not a t-T₀ space.

On the other hand if $cl_t\{x\}\neq cl_t\{y\}$ for each x and y in X, $x\neq y$, then either $x\not\in cl_t\{y\}$ and so $x\in X$ - $cl_t\{y\}$ and $y\not\in X$ - $cl_t\{y\}$,where X- $cl_t\{y\}$ is a t-open set, or $y\not\in cl_t\{x\}$ and so $y\in X$ - $cl_t\{x\}$ and $x\not\in X$ - $cl_t\{x\}$,where X- $cl_t\{x\}$ is a t-open set. that is, (X,τ) is a t-T₀ space.

The proof of the (semi) case is similar.

3.7 Lemma. A subset A of (X,τ) is a t-g.closed (t-sg.closed) set if and only if $cl_t(\{x\}) \cap A \neq \phi(scl_t\{x\}) \cap A \neq \phi$, holds for every $x \in cl_tA(scl_tA)$.

Proof : Assume that A is a t-g.closed set, and $x \in cl_t A$ such that $cl_t(\{x\}) \cap A = \varphi$, then $A \subseteq X$ - $cl_t(\{x\})$, but $cl_t A$ is not a subset of X- $cl_t(\{x\})$. Since X- $cl_t(\{x\})$

2007:(14) مجلة جامعة بابل / العلوم / العدد (4) عدد العدم / العدد

is a t-open set , this contradicts the assumption that A is a t-g.closed set. Now if A is not a t-g.closed set , then there exists a t-open set U such that $A \subseteq U$ and cl_tA is not a subset of U, therefore there is an element $x \in cl_tA$ and $x \notin U$, hence $cl_t(\{x\}) \subseteq X$ -U, i.e $cl_t(\{x\}) \cap A = \varphi$.

The proof of the (semi) case is similar.

3.8 Lemma. If $cl_t(\{x\}) \cap A \neq \phi$ ($scl_t\{x\} \cap A \neq \phi$), holds for every $x \in cl_tA(scl_tA)$, then (cl_tA)-A ((scl_tA)-A)does not contain a non empty t-closed (t-semi closed) set. **Proof:** Assume that $cl_t(\{x\}) \cap A \neq \phi$, for each $x \in cl_tA$, and assume that B is a non empty t-closed subset of (cl_tA)-A. Let $x \in B$, then $x \in cl_tA$ and $x \notin A$, also $cl_t(\{x\}) \subseteq B$ (since B is a t-closed set containing $\{x\}$), therefore $x \in cl_tA$ and $cl_t(\{x\}) \cap A = \phi$, which contradicts the assumption The proof of the (semi) case is similar.

3.9 Theorem. (X,τ) is a t-T_{1/2} space (t-semi T_{1/2} space) if and only if for each x in X, $\{x\}$ is either t-closed (t-semi closed) or t-open (t-semi open) set.

Proof: Let (X,τ) be a t-T_{1/2} space, $x \in X$. If $\{x\}$ is not t-closed, then by Theorem 2.16 X- $\{x\}$ is a t-g.closed set, and by Definition 3.1(iv) it is t-closed, that is $\{x\}$ is a t-open set.

Conversely assume that for each x in X, $\{x\}$ is either t-closed or t-open set. Let A be a t-g.closed set in (X,τ) , $x \in cl_t A$ and $x \notin A$.

Case1. $\{x\}$ is t-closed, in this case $\{x\}$ is a non empty t-closed set contained in (cl_tA) -A which contradicts Lemma 3.7 and 3.8(since A is a t-g.closed set). Case2. $\{x\}$ is t-open , $A \subseteq X - \{x\}$ and $cl_tA \subseteq X - \{x\}$ (since $X - \{x\}$ is a t-closed set), which contradicts the assumption that $x \in cl_tA$. Therefore $x \in cl_tA$ implies $x \in A$,

that is A is t-closed set. Hence (X,τ) is a t-T_{1/2} space.

The proof of the (semi) case is similar.

3.10 Corollary. If (X,τ) is a t-T_{1/2} space then (X,τ) is a t-semi T_{1/2} space. The converse is not true.

Proof: By Theorem 3.9, if (X,τ) is a t-T_{1/2} space then for each x in X,{x} is either t-closed or t-open set, and by Remark 2.23,{x} is either t-semi closed or t-semi open set, and finally by 3.9 (X,τ) is a t-semi T_{1/2} space.

For the converse see Example 2.24 in which (X,τ) is a t-semi $T_{\frac{1}{2}}$ space but not t- $T_{\frac{1}{2}}$ space.

3.11 Theorem. (X,τ) is a t-T₁ space (t-semi T₁ space) if and only if for each x in X, $\{x\}$ is a t-closed (t-semi closed) set.

Proof: Let (X,τ) be a t-T₁ space and $x \in X$. Therefore for each $y \in X$, $y \neq x$, there exits a t-open set U_y such that $x \notin U_y$ and $y \in U_y$.

Let $V = \bigcup_{y \neq x} \{ U_y \mid U_y \text{ is a } t \text{ -open set } y \in U_y \text{ and } x \notin U_y \}$, then V is a t-open set

(Remark 2.5(ii)), and $V=X-\{x\}$, hence $\{x\}$ is a t-closed set.

On the other hand if $\{x\}$ is a t-closed set for each x in X, then if $x\neq y$, then $U=X-\{y\}$ and $V=X-\{x\}$ are t-open sets containing x and y respectively with $y\notin U$ and $x\notin V$, i.e (X,τ) is a t-T₁ space.

The proof of the (semi) case is similar.

3.12 Theorem. If (X,τ) is a t-T_i space (t-semi T_i space) then (X,τ) is a t-T_{i-1/2} space (t-semi T_{i-1/2} space), for i=1/2 and 1. The converse is not true.

Proof: (i=½) Let (X,τ) be a t- $T_{\frac{1}{2}}$ space, and let $x,y \in X$, $x \neq y$. By Theorem 3.9 $\{x\}$ is either t-open (and in this case $x \in \{x\}, y \notin \{x\}$) or t-closed (in this case $X-\{x\}$ is t-open $x \notin X-\{x\}$, where $y \in X-\{x\}$). Therefore (X,τ) is a t- T_0 space . (i=1) If (X,τ) is a t- T_1 space, then by Theorem 3.11 for each x in X, $\{x\}$ is a

مجلة جامعة بابل / العلوم / العدد (**4**) / المجلد (14) : 2007

t-closed set and hence by Theorem 3.9 (X,τ) is a t-T_{1/2} space.

The proof of the (semi) cases is similar.

For the converse see the following examples.

- **3.13 Example.** In the following examples we assume that t: $P(X) \rightarrow \tau$ is defined by t(A) = int A, and so $t O(X) = \tau$.
 - i) Let X=N,the set of natural numbers, $\tau = \{U \subseteq N | 1 \in U \text{ and } N\text{-}U \text{ is finite}\} \cup \{\phi\}$, then t-SO(X)=t-O(X)= τ , and (X, τ) is a t-T₀ space and t-semi T₀ space but neither t-T_{1/2} space nor t-semi T_{1/2} space, since {1} is not t-open, not t-closed, not t-semi open and not t-semi closed set.
 - ii) Let $X=\{a,b,c\}$, $\tau=\{\phi,X,\{a\},\{b\},\{a,b\}\}$, then t-O(X)= τ , and (X, τ) is a t-T_{1/2} space, but not t-T₁ space, since $\{a\}$ and $\{b\}$ are not t-closed sets.
 - iii) Let $X=\{a,b,c\}$, $\tau=\{\phi,X,\{a\}\}$, then t-SO(X)= $\{\phi,X,\{a\},\{a,b\},\{a,c\}\}$, hence (X,τ) is a t-semi $T_{1/2}$ space but not t-semi T_1 space since $\{a\}$ is not t-semi closed set.
- **3.14 Theorem.** (X,τ) is a t-T_b space if and only if (X,τ) is a t-T₂ and t-T_d space.

Proof: Let (X,τ) be a t-T_b space ,if A is a t-g.closed set in (X,τ) , then by Remark 2.42, A is a t-gs.closed and by Definition 3.1(ix) it is a t-closed set, that is, (X,τ) is a t-T_{1/2} space. A is a t-closed set implies A is at-g.closed set(Remark 2.14), that is, (X,τ) is a t-T_d space.

Conversely, if (X,τ) is a t- $T_{1/2}$ and t- T_{d} space, A is a t-gs.space, then A is a t-g.closed set(Definition 3.1(ix) since (X,τ) is a t- T_{d} space),hence it is a t-closed set (Definition 3.1(iv) since (X,τ) is a t- $T_{1/2}$ space). Therefore (X,τ) is a t- T_{b} space (Definition3.1(ix)).

- **3.15 Remark.** i) If (X,τ) is a t-T_{1/2}, then (X,τ) need not be a t-T_b space.
 - ii) If (X,τ) is a t-T_d, then (X,τ) need not be a t-T_b space.
 - iii) The concepts of $t-T_{\frac{1}{2}}$ and $t-T_{d}$ are independent.
 - iv) The concepts of $t-T_1$ and $t-T_b$ are independent.

See the following examples.

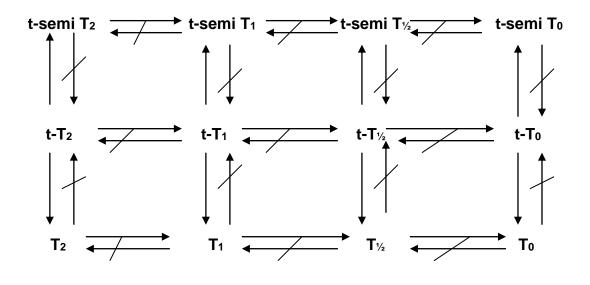
3.16 Examples.

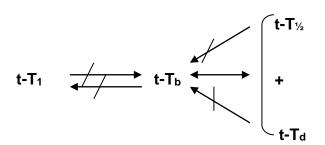
- i) In Example 3.13(ii), (X,τ) is a $t-T_{\frac{1}{2}}$, but it is not $t-T_b$ space since $\{a\}$ (and $\{b\}$) is a t-gs.closed set but not t-closed set.
- ii) In Example 3.13(i), (X,τ) is not a t- $T_{1/2}$ space and so it is not a t- T_b space. The t-closed sets are all the finite subsets of X not containing 1,and X. Hence cl_tA =Aor X, for each A, also scl_tA =Aor X(by Remark2.32). The only t-gs.closed set which is not t-closed is X-{1}, and it is a t-g.closed set ,that is (X,τ) is a t- T_d space.
- iii) Let X=R (the set of real numbers), τ be the usual topology on R, the operation t is defined by t(A)=intA for each A then (X,τ) is a t- T_1 space
- **3.17 Theorem.** i) If (X,τ) is a t-T_b space then for each x in X, $\{x\}$ is a t-semi closed or t-open set.
 - ii) If (X,τ) is a t-T_d space then for each x in X, $\{x\}$ is a t-closed or t-g.open set.
 - **Proof:** i) Let (X,τ) be a t-T_b space, $x \in X$. If $\{x\}$ is not t-semi closed, then X- $\{x\}$ is not t-semi open and so the only t-semi open set containing X- $\{x\}$ is X and $scl_t(X-\{x\})\subseteq X$, that is, X- $\{x\}$ is a gs.closed set and since (X,τ) is a t-T_b space, X- $\{x\}$ is a t-closed set. Hence $\{x\}$ is a t-open set.
 - **ii**) Let (X,τ) be a t-T_d space, $x \in X$. If $\{x\}$ is not t- closed, then $X-\{x\}$ is not t- open and so the only t- open set containing $X-\{x\}$ is X and $scl_t(X-\{x\})\subseteq X$, that is, $X-\{x\}$ is a gs.closed set. Since (X,τ) is a t-T_d space,

 $X-\{x\}$ is a t-g.closed set, hence $\{x\}$ is a t-g.open set.

3.18 Remark. The converse of theorem3.18 is not true. In Example 3.13(ii), (X,τ) is neither t-T_b space nor t-T_d space, on the other hand $\{a\},\{b\}$ and $\{c\}$ are semi closed sets, $\{c\}$ is t-closed, $\{a\}$ and $\{b\}$ are t-g.open sets.

Finally, the following two diagrams summarize the conclusions of this section about the relationships between the deferent concepts appeared in Definition 3.1.





Where $P \longrightarrow Q$ represents P imply Q, $P \longrightarrow Q$ represents P does not imply Q.

References

Jankovic, D.S. 1983, On functions with α-closed graphs. Glasnik Math.,18,141-148. Ogata, H. 1991, Operation on topological spaces and associated topology, Math.Japonica,36(1),175-184.

Sai G. Sundara Krishnan and K. Balachandran ,1998,On gama-semi-open sets in topological spaces, Bull. Cal. Math. Soc.

Sai G., Sundara Krishnan and K. Balachandran, 2007, Operation approaches on semiopen sets and applications, Kochi J. Math. 2, 21-33