CONTINUITY IN BITOPOLOGICAL SPACES

Hassan'a Hassan Department of mathematics Department of mathematics Babylon university

Sajda Kadhm Al-Kufa university

Abstract

In this paper we discuss the topological property of the separation axioms in the special bitopological spaces (X,T,T^{α}) after the definition of continuous mapping and some theorems of its in this space.

Introduction

After we define the special Bitopological space (X,T,T^{α}) where T^{α} is the α -topological space and the open set in the space (X,T,T^{α}) define by using the definition a subset A is open set in (X,T,T^{α}) if and only if there exist T^{α}-open set U such that $A \subset U$, $A \subset cl_T(U) \cap int_T(U)$ see [Mahdi,2006], we will define the continuity and homeomorphism in this space and also study the topological property of the separation axioms see[Mahdi,2006], graph and closed graph mapping study in this paper see [Al-Swaidi,1990].

1-The definition and auxilary results

<u>1-1.Definition</u> :- Let (X,T,T^{α}) and (Y,ξ,ξ^{α}) are two bitopological spaces a mapping f:(X,T,T^{α}) \rightarrow (Y, ξ , ξ^{α}) is λ -continuous at a point x_0 in X if and only if to every λ_Y -nbd. M of $f(x_0)$ there exist λ_X -nbd N of x_0 such that $f(N) \subset M$. also f is say to be

 λ -continuous if and only if its continuous at each point of X see [Sharma, 1977].

1-2.Example:-

Let $X = \{a, b, c\}, T = \{X, \phi, \{a\}\}$

 $Y = \{1, 2, 3\}, \xi = \{Y, \phi, \{2, 1\}\}$

Let $f:(X,T,T^{\alpha}) \rightarrow (Y,\xi,\xi^{\alpha})$ be a mapping defined by f(x)=1 for each $x \in X$ then f is λ -continuous.

<u>1-3.Theorem:</u> Let (X,T,T^{α}) and (Y,ξ,ξ^{α}) be two bitopological spaces a mapping f:(X,T,T^{α}) \rightarrow (Y, ξ , ξ ^{α}) is say to be λ -continues if and only if

 $f^{-1}(U)$ is λ -open in X for each U is ξ -open in Y.

<u>1-4.Theorem:-</u> Let (X,T,T^{α}) and (Y,ξ,ξ^{α}) be bitopological space. A mapping f:X \rightarrow Y is λ -continues if and only if the inverse image of every ξ -closed in Y is λ -closed in X.

<u>1-5.lemma:-</u>Every mapping from (X,T) into (X,T^{α}) is continues.

Proof:- From the fact that $T \subset T^{\alpha}$, clearly that this mapping is continues.

<u>1-6.Theorem:</u> If $f:(X,T) \rightarrow (Y,\xi)$ is closed and continues function then f from a bitopological space X into another bitopological space Y is λ -continues if and only if $f(cl(A)) \subset cl_{\xi}(f(A))$ for every $A \subset X$.

proof: Let f be λ -continues and A be a subset of X, since f is closed f(A) is

 ξ -closed in Y, $cl_{\xi}(f(A))$ is ξ -closed, then $f^{-1}(cl_{\xi}(f(A)))$ is λ -closed in X,

 $cl(f^{-1}(cl_{\xi}(f(A)))=f^{-1}(cl_{\xi}(f(A)), since f(A) \subset cl_{\xi}(f(A)) then$

 $A \subset f^{-1}(cl_{\xi}(f(A)))$, then $cl(A) \subset cl(f^{-1}(cl_{\xi}(f(A))) = f^{-1}(cl_{\xi}(f(A)))$.

Then $f(cl(A)) \subset cl_{\mathcal{E}}(f(A))$.

Conversely, let $f(cl(A)) \subset cl(f(A))$ and B is ξ -closed in Y, cl(B)=B, $f^{-1}(B) \subset X$ $f(cl(f^{-1}(B)) \subset cl(f(f^{-1}(B))) \subset cl(B)=B$, then $cl(f^{-1}(B)) \subset f^{-1}(B)$ and since $f^{-1}(B) \subset cl(f^{-1}(B))$ $^{1}(B))$

we get $cl(f^{-1}(B))=f^{-1}(B)$, from that we get $f^{-1}(B)$ is T-closed and then λ -closed.

1-7.Remark :- Let X,Y,Z are three bitopological spaces and $f: X \rightarrow Y, g: Y \rightarrow Z$ be λ -continuous mapping then gof is not necessary λ -continuous. **<u>1-8.Theorem :-</u>** Let $(X,T,T^{\alpha}),(Y,\xi,\xi^{\alpha})$ be bitopological spaces, if f:(X,T) \rightarrow (Y, ξ) is continuous then the mapping f:(X,T,T^{α}) \rightarrow (Y, ξ , ξ ^{α}) is λ-continuous if and only if $f^{-1}(int_{\xi}(B)) \subset int(f^{-1}(B))$, for every B ξ-open in Y. **proof:**- Let f be λ -continuous and B be ξ -open set then f⁻¹(int_{ξ}(B)) is λ -open set in X, $int(f^{-1}(int_{\xi}(B))=f^{-1}(int_{\xi}(B))$, since $int_{\xi}(B) \subset B$ then $fint_{\xi}(B)) \subset f^{-1}(B)$ and $\operatorname{int}(f^{-1}(\operatorname{int}_{\mathcal{E}}(B)) \subset \operatorname{int}(f^{-1}(B))$ from that, we get $f^{-1}(\operatorname{int}_{\mathcal{E}}(B)) \subset \operatorname{int}(f^{-1}(B))$. Conversely, let A is ξ -open set in Y then int $\xi(A)=A$, by hypothesis $f^{-1}(int_{\xi}(A)) \subset int(f^{-1}(A)), f^{-1}(A) \subset int(f^{-1}(A)), since int(f^{-1}(A)) \subset f^{-1}(A)$ we get int($f^{-1}(A)$)= $f^{-1}(A)$ and then $f^{-1}(A)$ is T-open, since every T-open is λ -open. Then f is λ -continues. **1-9.Lemma:-** Let $(X,T),(Y,\xi)$ be a topological spaces such that $f:X \rightarrow Y$ is continuous then $f:(X,T,T^{\alpha}) \rightarrow (Y,\xi,\xi^{\alpha})$ is λ -continuous. **Proof:-** let U is ξ -open set in Y, since f is continuous f⁻¹(U) is T-open set in X, since every T-open set is λ -open set $f^{-1}(U)$ is λ -open set in X, therefore f is λ -continuous **1-10.Theorem:-** If $f:(X,T) \rightarrow (Y,\xi)$ is continuous mapping. A mapping f :(X,T,T^α)→(Y,ξ,ξ^α) is λ-continues if and only if cl(f⁻¹(B)) ⊂f⁻¹(cl_ξ(B)), for each ξ -closed set B. **Proof:** let f be λ -continuous, B be ξ -closed set in Y then $cl_{\xi}(B)$ is ξ -closed set, since f is λ -continuous f⁻¹(cl_{ξ}(B) is λ -closed set in X, $cl(f^{-1}(cl_{\xi}(B)) = f^{-1}(cl_{\xi}(B)), \text{ now since } B \subset cl_{\xi}(B) \text{ then } f^{-1}(B) \subset f^{-1}(cl_{\xi}(B))$ then $cl(f^{-1}(B)) \subset cl(f^{-1}(cl_{\xi}(B))) = f^{-1}(cl(B))$. Then $cl(f^{-1}(B)) \subset f^{-1}(cl(B))$. Conversely, let A be ξ -closed set in Y , $cl_{\xi}(A)=A$, by assume $cl(f^{-1}(A)) \subset f^{-1}(cl_{\xi}(A)) = f^{-1}(A)$, then $cl(f^{-1}(A)) \subset f^{-1}(A)$ (1)since $f^{-1}(A) \subset cl(f^{-1}(A))$ (2)by (1) and (2) we get, $cl(f^{-1}(A))=f^{-1}(A)$, then $f^{-1}(A)$ is T-closed then λ -closed set in X.Therefor f is λ -continuous. **1-11.Definition:-** Let (X,T,T^{α}) and $(Y,\xi\xi^{\alpha})$ be bitopological spaces and f be a mapping of X into Y, then 1- f is said to be λ - open mapping if and only if f(U) is λ_{ξ} -open whenever U is λ_{T} -open. 2- f is said to be λ -closed mapping if and only if f(H) is $\lambda \xi$ -closed whenever H is λ_T -closed. 3- f is said to be λ - bicontinuous if and only if f is λ -open and λ -continuous. 4- f is said to be λ -homeomorphism if and only if f is bijection, λ -continuous and f^{-1} is λ -continuous. <u>**1-12.Theorem:-**</u> Let (X,T,T^{α}) , (Y,ξ,ξ^{α}) be bitopological spaces , then 1- a mapping $f:X \rightarrow Y$ is λ -open if and only if $f(int(A)) \subset int(f(A))$, for every $A \subset X$.

2- a mapping f:X \rightarrow Y is λ -closed if and only if cl(f(A)) \subset f(cl(A)), for every A \subset X. **Proof:-** see [Sharma,1977] with replacing open set by λ -open set

 $\begin{array}{l} \underline{1-13.Example:-} \ Let \ X=\{a,b,c\}, T=\{X,\phi,\{a\}\} \\ Y=\{1,2,3\}, \ \xi=\{y,\phi,\{1\},\{2,3\} \\ T^{\alpha}=\{X,\phi,\{a\},\{b,c\}\}, \ \xi^{\alpha}=\{Y,(,\{1\},\{2,3\}\} \end{array}$

مجلة جامعة بابل / العلوم الصرفة والتطبيقية/ المجلد 12/ العدد 3 : 2006

Let $f:X \to Y$ be a mapping defined by f(a)=1, f(b)=2=f(c) then f is λ -open mapping. When we define f as follow f(a)=2,f(b)=1,f(c)=3, we get f is λ -close mapping <u>1-14.Theorem:</u> The mapping f: $(X,T,T^{\alpha}) \to (X,T)$ is λ -continuous. **Proof**:- Since the λ -open set is finer than T, f is λ -continuous.

<u>**1-15.Theorem:**</u>-If:(X,T) \rightarrow (X,T^{α}) is continuous then f:(X,T,T^{α}) \rightarrow (X,T^{α}) is λ -continuous.

Proof:- let U is T^{α} -open ,since f is continues then $f^{-1}(U)$ is T-open and since every T-open is λ -open .Then f is λ -continuous.

<u>1-16.Theorem:</u> The mapping f: $(X,T^{\alpha}) \rightarrow (X,T,T^{\alpha})$ is continuous.

Proof:- Let U is λ -open set, since f from (X,T) into (X,T,T^{α}) is continuous we have f⁻¹(U) is T-open and since every T-open is T^{α}-open .Then f is continuous.

<u>**1-17.Theorem:-**</u> If $f:(X,T,T^{\alpha}) \rightarrow (X,T)$ is λ -continuous and $g:(X,T) \rightarrow (X,T^{\alpha})$ is continuous then gof $:(X,T,T^{\alpha}) \rightarrow (X,T^{\alpha})$ is λ -continuous.

Proof:- Let U is T^{α} -open, $(f^{-1}og^{-1})(U)=f^{-1}(g^{-1}(U))=f^{-1}(W)$ since g is continuous and since f is λ -continuous then $f^{-1}(W)$ is λ -open and $f^{-1}og^{-1}=(gof)^{-1}$, we get gof is λ -continuous.

<u>1-18.Theorem:</u> If f is a continuous mapping from (X,T) into $(X\xi,\xi^{\alpha})$, then $f:(X,T,T^{\alpha}) \rightarrow (X,\xi,\xi^{\alpha})$ is λ -continuous.

Proof:- Let U is λ_{ξ} -open ,f⁻¹(U) is T-open since f is continuous, and every T-open is λ_{T} -open .Then f is λ -continues.

2- topological property:-

<u>2-1.Definition</u>:- The bitopological space (X,T,T^{α}) is say to be λ - T₀-space if and only if for each two points x,y in X there exist λ -open set U such that $x \in U, y \notin U$.

<u>2-2.Definition</u>- The bitopological space (X,T,T^{α}) is say to be λ -T₁-space if and only if for each two points x,y in X there exist two λ - open sets U,W such that $x \in U$, $y \notin U$ and $x \notin W$, $y \in W$, $U \cap W = \emptyset$

<u>2-3.Definition</u>- The bitopological space (X,T,T^{α}) is say to be λ -T₂- space if and only if for each two points x,y in X there exist two λ -open sets U,W such that $x \in U$, y $\in W$, $U \cap W = \emptyset$

<u>2-4.Definition</u>- The bitopological space (X,T,T^{α}) is say to be λ - regular space if and only if for every T^{α} -closed set A and $x \notin A$ there exist λ -open set U,W such that $A \subset U$, $x \in W$, $U \cap W = \emptyset$

<u>2-5.Definition</u>- The bitopological space (X,T,T^{α}) is say to be λ - normal space if and only if for each T^{α} -closed sets U,W, $U \cap W = \emptyset$ there exist two λ -open set M,N such that $U \subset M$, $W \subset N$ and $M \cap N = \emptyset$

<u>2-6.Theorem:-</u> λ -T₀, λ -T₁ and λ -T₂ are topological property.

Proof:- The proof is clear from the definition of λ -T₀, λ -T₁ and λ -T₂ space.

<u>2-7.Theorem:</u> if $f:(X,T) \rightarrow (Y,\xi^{\alpha})$ is onto and continuous mapping, then λ -regular is a topological property with respect to the same mapping f.

Proof: Let $f:(X,T,T^{\alpha}) \rightarrow (Y,\xi,\xi^{\alpha})$ is λ - homeomorphism.

Let A be a ξ^{α} -closed set and $y \in Y$, $y \in A$, since f is onto then there exist $x \in X$ there exists f(x)=y, $x=f^{-1}(y)$, since f is continues then $f^{-1}(A)$ is T-closed and since every T-closed is λ -closed then $f^{-1}(A)$ is λ -closed, $f^{-1}(y) \in f^{-1}(A)$.

Now, since (X,T,T^{α}) is λ -regular space there exist two λ -open sets U,V such that $f^{-1}(y) \in U$, $f^{-1}(A) \subset V$ and $U \cap V = \phi$ from that, we get $y \in f(U)$ and $A \subset f(V)$,

since f is λ -open f(U), f(V) are λ -open in Y, f(U) \cap f(V)=f(U \cap V)= ϕ .Then (Y, \xi, \xi^{\alpha}) is λ -regular.

<u>2-8.Theorem:</u> If $f:(X,T) \rightarrow (Y,\xi^{\alpha})$ is continuous and onto mapping then λ -T₃ is a topological property.

Proof:- Since λ -T₁ space is a topological property and by theorem(2-7)

 λ -T₃ space is a topological property.

<u>2-9.Theorem :-</u> If $f:(X,T) \to (Y,\xi^{\alpha})$ is onto and continues function then λ -normal is a topological property with respect to the same function f.

Proof:- Let A,B be two ξ^{α} -closed sets such that $A \cap B = \phi$, since f is continuous then $f^{-1}(A)$, $f^{-1}(B)$ are T-closed sets and since every T- closed is λ -closed then $f^{-1}(A)$, $f^{-1}(B)$ are λ -closed such that $f^{-1}(A) \cap f^{-1}(B) = \phi$, now since X is λ -normal then there exist two λ -open sets U,W $\subset X$ such that $f^{-1}(A) \subset U$, $f^{-1}(B) \subset W$, $U \cap W = \phi$, from that we get $A \subset f(U)$, $B \subset f(W)$. Since f is λ -open mapping, f(U), f(W) are λ -open in Y also $f(U) \cap f(W) = \phi$. Then (Y, ξ, ξ^{α}) is λ -normal.

<u>**2-10.Theorem:-**</u> If $f:(X,T) \rightarrow (Y,\xi^{\alpha})$ is onto continuous mapping then λ -T₄ space is a topological property.

Proof:- Since λ -T₁ is a topological property and by theorem (2-9) λ -T₄ space is a topological property.

3- Graph function:-

<u>**3-1.Definition:**</u> Let $f:(X,T,T) \rightarrow (Y,\xi,\xi)$ be a mapping , the mapping $g:X \rightarrow X \times Y$ defined by g(x)=(x,f(x)), for each x in X is called the graph of f and denoted by $G(f)=\{(x,f(x)), x \in X\}$

<u>3-2.Definition :-</u> The graph G(f) is called λ -closed graph if and only if $x \in X$,

 $y \in Y$ such that $y \neq f(x)$ there exist λ -open set U containing x in X and λ -open set V containing y in Y such that $(U \times cl(V)) \cap G(f) = \phi$.

<u>3-3.Example:</u>- Let X= $\{a,b,c\}$, T= $\{X,\phi,\{a\}\}$, T^{α}= $\{X,\phi,\{a\},\{a,b\},\{a,c\}\}$

 $Y = \{1,2,3\}, \xi = \{Y,\phi,\{1\},\{2,3\}, \xi^{\alpha} = \{Y,\phi,\{1\},\{2,3\}\} \text{ then }$

 λ_{x} -open={X, ϕ ,{a}{b,c}},

 λ_{Y} -open={Y, ϕ ,{1}{2}{3}{1,2}{1,3}{2,3}}

Let $f:(X,T,T) \rightarrow (Y,\xi,\xi)$ be a mapping defined by f(a)=1,f(b)=f(c)=2, then $G(f)=\{(a,1),(b,2),(c,2)\}\}$ is the graph of f and this graph is λ -closed.

<u>**3-4.Theorem:</u>**-Let $f(X,T) \rightarrow (Y,\xi)$ has a closed graph G(f), if</u>

 $f:(X,T,T^{\alpha}) \rightarrow (Y,\xi,\xi^{\alpha})$ has a graph G(f) then G(f) is λ -closed graph.

Proof: let $x \in X$, $y \in Y$ such that $y \neq f(x)$, since G(f) is closed graph there exist

T-open set U, ξ -open set W such that $x \in U, y \in W$, $(U \times cl(W)) \cap G(f) = \phi$,

since every T-open set and ξ -open set is λ -open in X, Y respectively U,W are λ -open sets. Then G(f) is λ -closed graph.

References

1- J .N . Sharma, "Topology", Meerut college, Meerut,(1977).

- 2- Luay A. A. AL-Swidi, "Mapping and graphs", Jun, 1990
- 3- Yiezi Kadham Mahdi ,"study special case of Bitopological Spaces", to appear 2006.

ملخص البحث:-

في هذا البحث ناقشنا بعض الصفات التبولوجية لبديهيات الفصل وذلك بعد مناقشة الاستمرارية في الفضاءات ثنائية التبولوجي (X,T,T^a) مع دراسة بعض نظريات الاستمرارية في هذا الفضاء.