
Data Hiding in MIDI File

Mohammed abed al-Hadi Daikh

Thi-Qar university-Education College –Computer Science Department

Abstract

Data hiding is the transfer of data or information between two points to prevent any not authorized person
to access about them .This paper concerned with hiding the data in the file of the type of MIDI file (Musical
Instrument Digital Interface) to prevent hackers from obtaining confidential data .To increasing the the data
security , the data encrypted before hide them using RC5 algorithm . In this paper ,we use the last significant
bit algorithm to hide the data and we depending on the value of velocity for each tone in order to hide
largest possible amount of information , so the listener to a file cannot recognize if the file contains
additional or factual information for velocity . from the experiences, we have seen that is we cannot hide the
data or information in all the tone values that representing the MIDI file because we can notice the change on
the file , but when we use the velocity values to hide, that there is no great difference between the file

contain the hidden data and the original file where we made matching using the meldistance function .

Key word:- data hiding, MIDI file,Velocity,LSB

في ملف المیدیاإخفاء البیانات

محمد عبد الھادي دایخ

قسم الحاسبات-كلیة التربیة للعلوم الصرفة–جامعة ذي قار

الملـخـص

یھتم ھذا البحث بإخفاء . شخص غیر مخول من الاطلاع علیھا وعدم السماح لايھو نقل بیانات أو معلومات بین نقطتین أخفاء البیانات
لمنع المتطفلین من الحصول على البیانات السریة ولغرض زیادة السریة تم تشفیر البیانات قبل إخفائھا Midi Fileالبیانات في الملفات من نوع

في إخفاء البیانات وتم الاعتماد في الإخفاء على قیم LSBتم استخدام خوارزمیة الثنائیات الأقل أھمیة . خوارزمیات التشفیر باستخدام أحدى
velocity)(إمكانیة الشخص المستمع للملف على التمییز بان الملف كذلك عدمة وذلك لإخفاء اكبر كمیة ممكنة من المعلومات ومن كل نغم

انھ لا یمكن إخفاء البیانات او،لاحظنا من خلال التجارب) velocity(یحتوي على معلومات أضافیة غیر المعلومات الحقیقیة الخاصة ب
قیموبعد إجراء الإخفاء باستخدام . ملف المیدیا حیث سوف یمكن ملاحظة التغییر على الملففي المعلومات في كل القیم الممثلة لكل نغمة

)Velocity(لوحظ لایوجد اختلاف كبیر بین الملف الذي یحتوي على البیانات المخفیة والملف الأصلي حیث تم عمل مطابقة بین من كل نغمة
.meldistanceلفین باستخدام دالة الم

LSBالثنائیات الأقل أھمیة،)velocity(السرعة ,إخفاء البیانات ، ملف المیدیا :الكلمات المفتاحیة

1.Introduction

The process of embedding information
into digital content without causing

perceptual degradation is called data
hiding. A special case of data hiding is
steganography. Steganography is a useful
technique for secure communication for
hiding existence of communication itself.

It is achieved by insertion of secret
messages into public communication or
information media. Recently,
steganography has been researched as an
application of information hiding with
prevalence of digitized multi-media

contents [1], [2].

Information hiding, accomplished by
exploiting a computer's file system and

various other operating system
characteristics can take on many forms. In
many cases, information hiding is a
intentional activity that an individual
employs to store away sensitive
information in an attempt to make it
invisible to everyone else. However, there
are some exceptions, such as digital
watermarking, that are used for

appropriate purposes [1].

This paper about data hiding in MIDI
files. These files are popular musical files;
however the main difference between this
file and other popular files such as .wav
and .mp3 is that the MIDI files are
command files. They contain of commands
for the music performance. This fact
makes them much smaller than other types
of files where the musical wave should be
recorded.

The early method of embedding
information in MIDI file would be to insert
additional events (for example may be
Meta-events)it would be easy to add
events but this method is very
problematic because the original file size

would increase significantly[4]

The aim of this paper is to develop
another MIDI data hiding method with
high Capability to hide data. In this paper,
we propose a MIDI hiding method
technique which embeds information in
Velocity. To get addition security the
encryption RC5algorithm is used before
data hiding by manipulating the last
significant bit of velocity usually does not
affect the user’s perception of the object.

2. MIDI File Structure

The standard MIDI file(SMF) is a file
format specifically designed to store the
data that a sequencer records and plays
(whether that sequencer be software or
hardware based). This format stores the
standard MIDI messages (i.e., status bytes
with appropriate data bytes) plus a time-
stamp for each message (i.e., a series of
bytes that represent how many clock
pulses to wait before playing the event).
The format allows saving information
about tempo, pulses per quarter note
resolution (or resolution expressed in
divisions per second, i.e, SMPTE setting),
time and key signatures, and names of
tracks and patterns. It can store multiple
patterns and tracks so that any application
can preserve these structures when loading
the file. The format was designed to be
generic so that any sequencer could read
or write such a file without losing the
most important data, and exible enough for
a particular application to store its own
proprietary, extra data in such a way that
another application won’t be confused
when loading the file and can safely ignore
this extra stuff that it doesn’t need. Think
of the MIDI file format as a musical
version of an ASCII text file (except that
the MIDI file contains binary data too),
and the various sequencer programs as
text editors all capable of reading that file.
But, unlike ASCII, MIDI file format saves

data in chunks (i.e., groups of bytes
preceded by an ID and size) which can be
parsed, loaded, skipped, etc. Therefore, it
can be easily extended to include a
program’s proprietary info. For example,
maybe a program wants to save a flag byte
that indicates whether the user has turned
on an audible metronome click. The
program can put this flag byte into a
MIDI file in such a way that another
application can skip this byte without
having to understand what that byte is for.
In the future, the MIDI file format can
also be extended to include new official
chunks that all sequencer programs may
elect to load and use. This can be done
without making old data files obsolete
(i.e., the format is designed to be
extensible in a backwardly compatible
way). In conclusion, any software that
saves or loads MIDI data should use SMF
format for its data files. Standard MIDI
files provide a common file format used
by most musical software and hardware
devices to store song information including
the title, track names, and most
importantly what instruments to use and
the sequence of musical events, such as
notes and instrument control information
needed to play back the song[3].

A MIDI file always starts with a header
chunk, and is followed by one or more
track chunks. Some numbers in track
chunks are represented in a form called a
variable-length quantity. These numbers
are represented 7 bits per byte, most
significant bits first. All bytes except the
last have bit 7 set, and the last byte has bit
7 clear. If the number is between 0 and
127, it is thus represented exactly as one
byte. Here is the syntax of an MTrk (track)

chunk:

<track data> = <MTrk event>+

<MTrk event> = <delta-time> <event>

<delta-time> is stored as a variable-
length quantity. It represents the amount
of time before the following event. If the
first event in a track occurs at the very
beginning of a track, or if two events occur
simultaneously, a delta-time of zero is

used. Delta-times are always present.

<event> = <MIDI event> | <sysex
event> | <meta-event>

<MIDI event> is any MIDI channel
message. Running status is used: status
bytes may be omitted after the first byte.
The first event in a file must specify status.
Delta-time is not considered an event
itself: it is an integral part of the
specification. Notice that running status

occurs across delta-times.

<meta-event> specifies non-MIDI
information useful to this format or to

sequencers, with this syntax:

FF <type> <length> <bytes>

All meta-events begin with FF, then have
an event type byte (which is always less
than 128), and then have the length of the
data stored as a variable-length quantity,
and then the data itself. If there is no data,
the length is 0. As with sysex events,

running status is not allowed.

3. Data Hiding Model
Data hiding is the technology to embed

the secret information into a cover data,
and to make the secret information

invisible. Figure (1) shows the general
model of the information hiding [1]. The

model consists of three processes,
embedding, transmitting and extracting.

In this example, 3 bits are hiding. The
last there bits from the velocity parameter
were set to 011.

We divide the system to two layers for
data hiding in MIDI file they are:

 Information embedding
 Information extraction

5.2.Powerful Encryption

We used RC5 algorithm to encrypt the
message before hiding for further security
purpose [6]. RC5 algorithm consist of
three phases one for key expansion,
encryption and decryption.These
algorithm use the following three
preemptive operations(and their inverses

)

a. Two`s complement addition of
words denoted by “+”,this is modulo-

2w addition.

b. Bit-wise exclusive-OR of words
denoted by

c. A Left rotation (or ‘left-spin’) of
words. The rotation of the word X left
by Y bits is denoted X<<<Y.Only the
log(w) low-order bit of Y are used to
determine the rotation amount ,so

that y is interpreted modulo w.

5.3. Information Embedding

Each tone of MIDI file is classified one or
more notes ,in embedding procedure by
the proposed system, information
embedding is achieved with replacement
the hiding message in velocity parameters
.Take an MIDI files which plays for
different time . It has more than 4KB . a
matrix representation of note events in a
MIDI file contains the information (onset
(beats), duration(beats), MIDI channel and
pitch ,Velocity, onset(sec) duration(sec))
we use LSB of the velocity parameters to
embedding message Figure (2) illustrates
note message structure. Information
embedded to the file by changing velocity

parameters.

Transmitting
Cover data

Embedded data

Embedding

Stego

data

Stego

data

Extracting

Embedded data

Figure (1): Illustrated general model of the information hiding

5.3.1.Embedding Algorithm :

__

Input: Encrypted message, cover MIDI fil

Step1.Read message

Step2:Convert the message to binary

Step3. Extract the velocity from each tone
in MIDI file

Step4.Extract the LSB from velocity

Step5. While not end of the (secret
message) do

4.1 Get next note

4.2 Convert velocity value to binary

4.2.2 Replace LSB velocity with bit
from message

End {While}

End

5.4. Information Extraction

The procedure of information extraction
is similar to the information embedding
The proposed method uses extract LSB bit
from each tone (from velocity value) for
determination of embedding bit, based on
size of message after extract hiding
message perform Decryption The LSB bits

to get the original character .

5.4.1.Extracting Algorithm:

Input: MIDI file

Step1. Extract velocity value from first
tone from MIDI file

Step2. Extract the LSB from velocity.

Step3. while secret message not
completed do

3.1 Get next note

3.2 Extract velocity value from tone

3.3 Extract LSB

end{while}

Step4. Decode secret message bits

Output: Secret message

Figure (2): Illustrate note message structure

5. 5Velocity CHART

We use velocity chart to comparing the
cover file(MIDI file) after and before
hiding operations .To explain dissimilarity
between them

6. Experimental Result

In order to compare our approach
against other techniques for data hiding in
MIDI file , We hiding data in multi Midi file
using our method discussion in paper
(using velocity value) and using all
parameter of note value in midi file .We
observe that the time to hiding data and
extracting are minimal from MIDI file in
our approach and when we hiding data in
all parameter of tone, the file is changed
and the listener can observe that .The
Table(1) below show the statistics of the
data hiding in value of velocity in midi file,
the table (2) show the statistics of the

data hiding in all tone parameters value in
midi file . Two comparing between two
file(Source file and secret file) we used

the function (meldistance.[10]) this
function Calculates the dissimilarity
between two Midi file in a particular
representation.

Through the blow tables we note that
difference ratio between two files is
increase in case of hiding in all the values
that represent each tone7. Conclusion

This proposed system is to provide a
goodand efficient method for hiding the

data from hackers and sent to the
destination in a safe manner. MIDI files
are very popular for data hiding this make
them good choice for this purposes .The
embedding and extraction procedures are
easy and fast. The hiding information with
MIDI file in this manner cannot recognize

Original file

File after hiding operation

Figure (3) illustrate Velocity CHART

by listener. Also to increase security, we
used the encryption system.

8. References

[1] B. Pfitzmann, “Information Hiding
Terminology”, First International

Workshopon Information Hiding,
May 30 – June 1, 1996, Cambridge, UK, pp.
347-350.

[2] Rade Petrovi, Kanaan Jemili, Joseph M.
Winograd, Ilija Stojanovi and Eric Metois,
“DATA HIDING WITHIN AUDIO SIGNALS”,

June 15, 1999, MIT MediaLab, Series:
Electronics and Energetics vol. 12, No.2,
pp.103-122.

[3] M. A. Raju, B. Sundaram, and P. Rao,
TANSEN: “A Query-By- Humming

basedMusic Retrieval System”, In Proc.
National Conference on

Communications(NCC), 2003

[4] Matsumoto, Inoue, Kitabayashi, “An
Information Hiding Method for Standard
MIDI File”, Symposium on Cryptography

and Information Security, SCIS2000-
C03, Jan..

[5] Kotaro Yamamoto, Munetoshi Iwakiri ,
“An Information Hiding and

 "Performance Rendering to Tempo
by Delta-time Control”, Proceeding of

CSS2006, pp.549–554, 2006

[6]Biham.E and A.Shamir ,”A differential
cryptanalysis of the data encryption
standard”. Berlin:springer-verlay,1993

[7]Adli, A., Nakao, Z.: “Three
Steganography Algorithms for MIDI

Files”. In:Proceedings of 2005
International Conference on Machine

Learning andCybernetics,
Guangzhou, China, August 2005, vol. 4, pp.
2404–2407 (2005)

[8] MIDI Manufacturers Association,
http://www.midi.org

[9] Kotaro Yamamoto, Munetoshi Iwakiri :
“A Steganography to Music Code With
Adaptation in Musical Expression”,

Transactions of IPSJ, Vol.47, No.8,
pp.2724-2732, 2006.

[10] Tuomas Eerola & Petri
Toiviainen,”MATLAB Tools for Music

Research”University of
Jyväskylä: Kopijyvä, Jyväskylä, Finland.

Electronic version available from:
http://www.jyu.fi/musica/miditoolbox/

http://www.midi.org

Source file Secret file Place data hiding Time Comparing
result (original
file with secret

file)

Sample1 Sample11 Velocity value 25Sec. 0.220

Sample2 Sample22 Velocity value 25Sec. 0.11

Sample3 Sample33 Velocity value 30Sec. 0.234

Sample4 Sample44 Velocity value 30Sec. 0.220

Sample5 Sample55 Velocity value 25Sec. 0.61

Sample6 Sample66 Velocity value 25Sec. 0.323

Sample7 Sample77 Velocity value 30Sec. 0.33

Sample8 Sample88 Velocity value 30Sec. 0.12

Sample9 Sample99 Velocity value 25Sec. 0.44

Sample10 Sample1010 Velocity value 25Sec. 0.23

Sample11 Sample1111 Velocity value 30Sec. 0.44

Sample12 Sample1212 Velocity value 30Sec. 0.55

Sample13 Sample1313 Velocity value 25Sec. 0.55

Sample14 Sample1414 Velocity value 25Sec. 0.88

Sample15 Sample1515 Velocity value 30Sec. 0.45

Source file Secret file Place data hiding Time(sec Comparing result
(original file with secret

file)

Sample1 Sample111 All tone parameter 25Sec. 2.3

Sample2 Sample222 All tone parameter 27Sec. 4

Table (1): below show the statistics of dissimilarity between two file (data hiding in value of velocity)

Table (2) :Show the statistics of dissimilarity between two file (data hiding in all note parameters valuein MIDI file)

http://www.jyu.fi/musica/miditoolbox/

Sample3 Sample333 All tone parameter 30Sec. 1.9

Sample4 Sample444 All tone parameter 34Sec. 2.4

Sample5 Sample555 All tone parameter 25Sec. 3.4

Sample6 Sample666 All tone parameter 29Sec. 3.7

Sample7 Sample777 All tone parameter 30Sec. 3.560

Sample8 Sample888 All tone parameter 35Sec. 1.5666

Sample9 Sample999 All tone parameter 25Sec. 1.899

Sample10 Sample10101 All tone parameter 27Sec. 1.988

Sample11 Sample11111 All tone parameter 30Sec. 2.777

Sample12 Sample12122 All tone parameter 34Sec. 2.47

Sample13 Sample13133 All tone parameter 25Sec. 3.89

Sample14 Sample14144 All tone parameter 25Sec. 3.747

Sample15 Sample15155 All tone parameter 30Sec. 3.848

