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Abstract

A one-dimensional finite element model for predicting the behavior of deformed
bars embedded in concrete is developed. In this model, the bond between steel and
concrete is simulated with discrete springs that connect the bar to concrete along the
anchorage length, whereas the reinforcing bar is subdivided into axial elements. This
technique involves the construction of the total tangent stiffness matrix of the
anchorage for use in an incremental solution algorithm of the nonlinear problem.

The proposed model is used for simulating the behavior of bonded bar with
common types, such as the anchored bars in beam-column connections and spliced
bars of the reinforcement lap splices. The analytical results are compared with
available results of pull- out and flexural tests, and suitable agreement is found.

Notations

d, : Bar diameter S : Displacement (or slip) of node i

E, : Steel modulus of elasticity c : Minimum thickness of concrete
surrounding the bar

fc’ :  Cylinder conc. comp. Strength oy Steel stress of element i

feu : Cube conc. comp. strength o, : DBondstressof node i

Ky ¢ Stiffness of spring i fy  : Yield strength of steel

K : Stiffness of bar element i Ls : Splice length

K : Stiffness of spring per unit area o, : Steelstress atsplice end

K¢ . Total stiffness matrix f : Tensile strength of concrete

1 : Length of bar segment i ’

P : Applied load at node i

1. Introduction

The interaction of deformed bars with concrete is a complex phenomenon that
has important effects on the response characteristics of reinforced concrete elements
and structures under static and dynamic loads. For example, the beam fixed-end
rotation that contributes significantly to the overall beam deflections is caused by
pullout of beam longitudinal bars anchored in beam-column connections?, as shown
in Fig.(1). Also, in case of discontinuity of reinforcing bars which is often
encountered in concrete structures, lap splices are preferred means for providing
continuity because of their practical and economical characteristics®, as shown in
Fig.(2). The presence of lap splices are generally recognized to represent potential
weakness in components of concrete structures®.

A common way to describe the bond between a steel bar and concrete is through
the relationship between the local bond stress and the relative slip of the bar. The
bond stress versus slip relationship represents the overall behavior at the interface
between a steel bar and concrete. The bond stress distribution along the bar is of
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major importance and attempts to predict the bond stress distributions were found in
many works. Martin® derived a solution utilizing the ascending part of the bond-slip
relationship which was found too complicated for calculations®. The complexity of
the bond-slip law led some of the works to numerical solution of the equilibrium
differential equation by stepwise integration, using small increments of length The
bond stress distribution may be predicted using the finite elements method, where the
bar-concrete interface is modeled either by springs or by special interface
elements®Y,

Tepfers™ utilized modulus of displacement theory to determine the distribution
of bond and steel stresses along bars of the lap splice with and without interaction of
surrounding concrete.

2. Objectlve And Importance Of The Present Study

In this paper a one-dimensional finite element model for predicting the behavior
of deformed bars anchored in concrete is developed. In this model, the steel bar and
concrete are subdivided into finite elements and the bond between steel and concrete
is simulated with discrete springs that connect the bar to concrete along the anchored
length. This technique involves the construction of the tangent stiffness matrix of the
anchorage zone for use in an incremental solution algorithm.

The proposed model can be used for simulating the behavior of bonded bars
with common types, as in single anchored bars and lap spliced bars, which can mostly
encountered in construction of reinforced concrete structures. The model can be used
for efficient idealization of anchorages in analytical studies of structural
subassemblies and complete structural systems.

3. Bonded Bar Model

In two and three dimensional finite element modeling of reinforced concrete,
the bond between steel and concrete is usually idealized by discrete springs
connecting the bar at different points along its length to the concrete®41%19) |n this
study, the idea of idealizing a bond with discrete springs is employed, whereas the
reinforcing bar is subdivided into finite axial elements (i.e. truss element). The
proposed model is shown in Fig.(3). Each spring in this model represents the bond
resistance along its tributary length of the bar. The concrete strains are assumed to
have negligible effects on an anchored bar behavior, and thus the springs are assumed
to be rigidly fixed at the ends connected to concrete.

4. Formulation Of Total Stiffness Matrix

Construction of the tangent stiffness matrix of this bonded model at any stage
during the loading history requires knowledge of the steel and bond constitutive laws.
With these values available, the bond tangent stiffness per unit interfacial area k and
the steel tangent stiffness k can be evaluated. Then the stiffness for the steel segment
Ksi and for bond spring Ky, can be computed respectively as follows:

N2
ksi _ksi ZdbEs
Ksi = and ksi B T T T T teseserescsssevesssssnssssrsssanene (1)
—ksi ksi /fi
K = (0 Ay) L5 K ooveoeeeeeeeeeesseeeseeseseseeesseesssssssssssessesssessesssnsssessssennes 2)

where:
dy = bar diameter
li = length of the ith steel segment
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E; = steel modulus of elasticity.
k; = the bond tangent stiffness per unit area, which represents the slope of ascending
branch of the available bond-slip constitutive relationship.
The total tangent stiffness matrix KT of the idealized system shown in Fig.(3),
with N degree of freedom (N is number of discrete points along the bar length), can
then be constructed as follows:

'k, +K,, -k 0 0 0 0
—ky  Katke g 0 0 0
+ Ky,
k k
0 _ks2 s2 T K3 —ks3
+K,; 0 0
K. =
' k53 +ks4
0 0 -k
+Ky,
Kno2) + Kooy
+Kpnony - Koy
L - Ksny Kiv |
.......................................................................................................... (3)

This tangent stiffness matrix of Equation (3) defines the relationship between
the incremental nodal forces (AP1, AP,, APy) and the incremental nodal displacements
(or slips) values along the bar length (Ad;, Ady,..., Ady), as follows:

AP, AS,
AP AS

E K T b e 4
APy AS

or assuming that inversion of stiffness matrix,

Fr = K (5)
Then

A3, AP,

AS AP

L m R (6)
A3, AP,

From Equation (6) and taking advantages of the fact that in anchored bars the loads
are applied only at one end, as in pullout bars and bars of lap splices, then it can be
concluded that
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AJ, 0

AS, 0

: e ORI @)
Ay 0

ASy APy

ASI fI,N

AS, fon

AS £

or CEEAPY] T b s (8)

AsN*l fN—I.N

ASy .

Equation (8) gives the incremental nodal displacement (or slip) values (Ag;)in
terms of the incremental end force (APy\), where f;  is the element in the ith row and
N the column of matrix F.

5. Bond And Steel Constitutive Laws

The local bond stress-slip relationship adopted in the present study consists of
two branches. There are elastic branch and flat plastic branch with yielding point
represents the bond stress necessary for split cracking t, as shown in Fig.(4).

The slope of ascending branch k is evaluated as follows "

k, =2.4f, (N/mm”) for steel of Grade 40 .........cccoeovrvrne (9a)

k, =3.4f,, (N/mm”) for steel of Grade 60............ccceorrrrnnee. (9b)

where fe, he cubic compressive strength of concrete so the bond stress for split
cracking (1) is calculated as follows 2

Ty = ‘f; (1.30¢+0.15d,) for single bar ...............c....... (10a)
b
. = zf(; (130c+0.15d,) for spliced bar.................... (10b)

b

For steel, a simple bilinear constitutive law, as shown in Fig.(5) is used. Both
the steel and bond constitutive laws are incorporated into Equation (3) for deriving
and updating the total stiffness matrix of bonded bar.

6. Solution Algorithm Of The Nonlinear Problem
The procedure adopted in the nonlinear solution of the present work involves
the following steps:
a. For the nth loading increment, add the current increment of load A to the previous
total load p"?,

P = P b AP e et naes (1D

b. Evaluate the stiffness of each element (steel bar and bond element) in accordance to
the stress level reached, as described in item (4) above. These stiffnesses are
assumed to get the total tangential stiffness matrix according to Equation (3).
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c. The system of equations is solved for incremental displacement (or slip) A&
according to Equation (8).

d. Add incremental displacements to the total displacements (or slips) of the previous
load step, to get:

B = B AT e (12)
e. 1. For each discrete spring i, calculate the bond stress og;,

Ol = KE BT ovveeeeseeeeveeeeeessae st (13)
2. Forﬁeach steel bar element i, calculate the steel stress o

" = 6?“[ G B oo (14)

f. According to the current stresses, the stiffness of each element (steel bar element,
bond element) is evaluated and stored for the next increment of load (n+1).

g. At this point, the load increment for the next load step Ap™" is added and go back
to step (a).

A computer program NABB 1 (Nonlinear Analysis of Bonded Bar in One
Dimension) is written for the solution algorithm illustrated above. The flow chart of
this program is shown in Fig.(6).

7. Numerical Examples And Results
Two examples of typical comparisons between the analytical and experimental

bonded bar are made in this section.

A. In the first®, a deformed bar of diameter (25-mm) and yield strength of (450-MPa)
were anchored in concrete specimen with a compressive strength of (30-MPa), as
shown in Fig.(7a). The anchored bar in the test specimen is modeled as shown in
Fig.(3), with (10) springs simulating the bond between steel and concrete. In this
model, thickness of concrete surrounding the bar was four times the bar diameter
on each side.

Fig.(7-b) compares the experimental and theoretical end force end slip
relationship for the above specimen tested under monotonic pull only, and good
agreement can be observed.

B. Specimen of reinforced concrete beam containing tensile reinforcement lap splices
and subjected to a constant moment have been studied *®. The geometric and
material properties of the tested specimen are shown in Fig.(8.a). The
measurements of the steel strains were recorded at selected point of lap region for
two steel stress levels at spliced end, 133 MPa and 309 MPa. The spliced bar is
modeled as shown in Fig.(3), with 20 springs simulating the bond between steel
and concrete.

Comparison of measured steel strains with those calculated from the proposed
model are described in Fig.(8.b), for reinforcing bar coming from right side of the lap
region. Again, suitable consistent between the experimental and analytical results can
be concluded.

8. Summary and Conclusions

A new modeling technique based on one-dimensional finite element method of
analysis, is developed for predicting the behavior of deformed bar embedded in
concrete. In this model, the bond between steel and concrete is simulated with discrete
springs connecting the bar to concrete along the anchorage length, whereas the
reinforcing bar is subdivided into several axial elements. The global tangent stiffness
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matrix is built up for use in an incremental solution algorithm of the nonlinear
problem.

Two types of bonded bars are considered: anchored bar under effect of pull-out
and spliced bars of tensile reinforcement lap splices. In spite of its simplicity, the
proposed model to be efficient and it is capable of estimating test results with suitable
accuracy.
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Fig.(1) Beam fixed end rotation resulting from anchored bar pullout
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Fig.(2) Beam with tensile reinforcement lap splices
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Fig.(3) Proposed model of anchored bar with discrete springs

representing bond
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Fig.(4) Typical bond stress — slip relationship adopted in the present
study
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Fig.(5) Typical stress- strain relationship adopted in the present study for steel
bar
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START

Input the data of the
problem
> Input the load
increments

Compute the current material
properties, k; and Eg

Find the total stiffness matrix ,
Kr

Solve the system of Equation
(8) to find the incremental and
the total displacements of nodes

Loop of load increment s

Find total stress for both bond
elements and steel bar elements

Check criteria of split cracking)|

and yielding. The updating the

/ Print results /

Fig.(6) Flowchart of computer program NABBL.
(Nonlinear Analysis of Bonded Bar in One Dimension)
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(b)
Fig.(7) Comparison of experimental and theoretical results for specimen

subjected to monotonic pull-out load
(a)Test specimen, (b) Results of end force - end slip relationship
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Fig.(8) Comparison of experimental and theoretical results for
reinforced concrete beam containing tensile reinforcement lap splices
a) Test specimen , b) Result of steel strains along spliced bar coming

from right side
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