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Abstract

In this paper, we present a five-step iterative scheme, at the beginning, it seems
complicated and difficult to implement, but in fact it’s not. This scheme is
constructed for (4, p)- firmly nonexpansive mappings in modular function spaces.
Two different p-convergences result has been proved for double schemes under
consideration. In our study there is a comparison between these cases through
answering the question "which one is faster?”” Finally, numerical examples are given
by using MATLAB software program.

Keywords: Modular spaces, Double sequence, Firmly nonexpansive,
Nonexpansive, Iterative scheme, Fixed point.
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1. Introduction

When proving the existence of a fixed point, finding the value of that point is not easy
because some functions are complicated, so researchers use iterative scheme to calculate the
required fixed point. Over time researcher have worked to develop various iterative schemes
to find a faster way to reach the fixed point, many iterative schemes appeared, including
Picard, Mann, Ishikawa, Noor, Abbas and others made several improvements to iterative
sequences to ensure faster access to the fixed point, see [1]. The fixed point theory plays an
important roles in many fields. For instance, it be used in the field of the differential equations
in appropriate function spaces. Moreover, many existence theorems in statistics and physics
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have been reduced to fixed point theorems [2]. The concept of the modular space that has
been used in this work can be found in [3]. Khamsi and Kozlowski (1990) introduced the
concepts fixed point and modular space together with nonexpansive mapping [4]. Ruiz et al.
[5] have discussed the p-firmly nonexpansive mapping in Banach spaces and this concept has
been involved in work of Khan [2] the concept of (4, p) — firmly nonexpansive mapping in
modular spaces. Recently, the present researchers have presented results in this field for a
multi-step iterative sequence adopting (4, p) — firmly nonexpansive mappings (multi-valued
and single-valued), see [6] and [7].

Now, let E be a non-empty convex subset of L, where T:E — 2F and pp(f) =
{9 € T:p(f — g) = dist,(f,Tf)}. The sequence {f,} by the following iterative process

f, € E.
hy = (1 = B fn + Bnln.

In = Un.
Jn = (1 - an)gn + apwy.
fn+1 = My, neN 1)

where {a,} and {8} in (0,1), u, € B (fo), v € B (hy), Wy € P (gn), Mn € B, (Jn).

Let T:E — E, and E be a non-empty convex subset of L,. We introduced the sequence
{f,.}by the following algorithm.

fi €E.

hn = (1 = Bn)fa + BuT fu-

gn =Thy.

Jo=0Q—apn)gn + anTgn.

fa+1 = TJn, neN (2)
where {a, }and {8, } are sequences in (0,1).

Some researchers have worked on this field in Hilbert spaces, Banach spaces, and modular
spaces [8, 9, and 10]. In 2002, Moore [11] introduced the idea of double sequence iterative in
Hilbert spaces and prove the Mann double sequence iteration scheme strongly convergence to
fixed point in pseudo contractive map by using the equation T,x = (1 — a;)w + a,Tx where
w,x € E and a; € (0,1). Razani and Moradi [12] studied the double sequence in modular
spaces. By using p-contractive mapping based on the above equation and presented some
example to show the main results. In 2020, Gopinath et al. [8] introduced the double
sequence S-iteration in Banach spaces by Lipchitz pseudo contractive map depending on the
above equation.

In this paper, we present new double multi step iterative sequences (as in (4) and (5)
below) and study its convergence with some other related results and examples.

2. Preliminaries
This section includes the basic definitions and lemmas which are needed for this work.

Definition 2.1 [9]: Let p: M — [0, o] possesses the following properties:

1- p(0) = 0ifand only if, f = 0, p — a.e. (a. e. means almost everywhere)
2- p(af) = p(f), for every scalar « € C or R.

3-plax + By) < p(x) + p(y) forevery a, B = 0 witha + g = 1.

Where p is called a convex modular.
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Definition 2.3 [13, 14]: If p is a convex modular in M, then L, is called modular function
spaces

L,={f €M:p(Af) — 0as 1 — 0}.
The modular space L,, can be equipped with an F-norm defined by

Ifll, = infle>0: pb) < a}.
If p is a convex modular F-norm if [|f]|, = inf{a > 0 : p(ﬁ) < 1}, then F-norm is called the
Luxemburg norm.

Definition 2.4 [15, 16]: Letp € R

1- A sequence {f, } is p-convergentto f if p(f, —f) — 0asn — oo.

2-A sequence {f, } is p-Cauchy sequence if p(f,, — fn) — 0asn,m = .

3-A set B c L, is called p-closed if for any f, € L, the convergence p(f, — f) — 0Oand
f belongs to B.

4-A set B c L, is called p-bounded if p — diameter is finite p — diameter define as $,,(B) =
sup{p(f —9).f € B,g € B} < .

5-A set B c L, is called strongly p-bounded if there exists g > 1 such that M,(B) =

sup{p(B(f —9)).f € B,g € B} < ».

6-A set B c L, is called p-compact, if for every f, € B, there exists a subsequence {fy, }
and £ in p(fy, = f) = 0.

7-A set B c L, is called p — a.e, closed, if every f, € B, whichp — a.e, converges to
some f, then f in B.

8-A set B c L, is calledp — a.e, -compact, if every f, € B, there exists a subsequence
{fn,} p — a.e -converges to some f in B.

O-Let finL,and B = L, , the p-distance between f and B is defined as

dist,(f,B) = inf{p(f — g),g € B}.

Definition 2.4 [4]: The map T: E — E, where E C L, is said to be p-nonexpansive mapping
if p(Tf —Tg) <p(f—g), forall f,ginE.

Definition 2.5 [2]: The map T: E — E be is said to be (4, p) — firmly nonexpansive mapping
if p(Tf—Tg) <p[A-AD(f —g)+ATf—-Tg)], forall f,ginE and 1 € (0,1).

Lemma 2.6 [2]: Every (4, p)- firmly nonexpansive mapping is a p-nonexpansive mapping.
Now, let L, be a modular space, and N be the set of natural number, then we define the
function w:N XN — L, by w(n,m) = f,,, € L,,.

Definition 2.7 [12]: The double sequence {f,, ,,} is said to be strongly p-convergence to z if
for any e > 0 where N, L > 0 such that p(fy,,, —z) < e forn > N,m > L if forall n,r > N,

m,t > L then p(fn,r - fm,t) <eE€.

Definition 2.8 [8]: The double sequence {f, ,,} is said to be p-Cauchy if for each p(fn_m —
zn) — 0and p(z, —z) — 0, then p(fn’m - z) — 0asn,m — oo.

Lemma 2.9 [17, 18]: Let {p,,} a non-negative sequence such that

Pn+1 < (1 - en)pn + Zn'
where {6, } sequence in (0,1) and {¢,,} sequence in real number such that
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i-lim,_,, 68, =0and };_, 6, = .
ii-lim SUpy—co 2 < 0 OF Tiy ]G] < 00 then limy, e, py, = 0.

3. Main Results

By using the iterative scheme that introduced in equation (2), will study forked type of
sequences as following, let T: E — E, define Ty: E — E,where E is a non-empty convex
subset of L, then we have the following equation

Tif = A =0 ITf + mew, 3)
where 71, in (0,1)and f,w € E.

We introduce the sequence {f} ,} by the following algorithm
1
U =~ Tiefn:

hk,n =(1- Bn)fk,n + ﬁnuk,n-

in = Tehgn-

Jen = 1- an)gk,n + anTkGrn-

fen+1 = TiJins 1, kEN

(4)

where {a,, {B8,} and {n,} are sequences in (0,1) and T, f via equation (3). The sequence
{fun} k = 0,n = 0 is generated by an arbitrary fy o € E

fkl,n = (1 = ¥Yno)Tifin + Ynofin

sz,n = (1 - )/n.l)kak,nl + Vn,lfk,n

fkszn =(1- yn.Z)kak,nz + yn,sz,n

fkr,r;l = (1 - yn.m—l)kak,nm_1 + Vn,m—lfk,n
fem+r =1 — yn.m)kak,nm + Yam/Sin- ©)
Where y,, ; is real sequence in (0,1).
Suppose ¥, m, Nx in equations (3) and (5), so the following three condition are satisfied.
I-1imy, e Vnm = limg_6 m = 0.
ii-Forall f € E,c € R*, p(c(f —w)) < v < o0, where w,v € E.
iii- T}, has unique fixed point and F,(T) # .
Then, we prove the following theorem.

Theorem 3.1: Let p € R be p- complete, convex modular spaces, E subset of L, which is p-
closed, p-bounded and convex,T:E — E is (4, p)-firmly nonexpansive mapping
and Ty: E — E, then {f, ,,} in equation (4) is p-strong convergence to fixed point s of T in E
and p(Tfk,n - fk,n) — 0.
Proof: To prove Ty is (4, p)-firmly non-expansive mapping, let f, g and w in E.
By (3), and T is (4, p)-firmly nonexpansive mapping, we get
p(Tef = Teg) = p((A =0 )Tf +mew — (1 = )Tg — mew)
<@ =n)p(Tf =Tg).
By condition (i) limy_,, 1 = 0.
p(Tif —Trg) < p(Tf —Tg)
<p(A-DF -9+ ATf -Tg))

1

< (L =D =) + Ao Tef = s w = s T + s w)
<p((1 =D —9) + ATif — T g),
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where T is (4, p)-firmly nonexpansive mapping. Now, by condition (iii) let s, be unique
fixed point of T}, in E, to prove p(fin, — sx) — 0asn — oo,
By equation (5) and Lemma 2.6, we get
p(fk,n+1 - Sk) < (1 - Vn.m)p(kak,nm - Sk) + yn,mp(fk,n - Sk)
< (1 - Vn.m)p(fk,nm - Sk) + Vn,mp(fk,n - Sk)
< (1 - Vn.m) [(1 - Vn.m—l)p(fk,nm_l - Sk) + Vn,m—lp(fk,n - Sk)] + Vn,mp(fk,n - Sk)

< ;/n,mp(fk,n - Sk) + (1 - Vn.m) [Vn,m—lp(fk,n - Sk) + (1 - Vn.m—l) [)/n,m—zp(fk,n - Sk)
+ (1 - Vn.m—z)[yn,m—3p(fk,n - Sk) + et (1 - )/n.l) [Yn,op(fk,n - Sk)]]
S0, p(fin+1 — Sk) < UnP (fin — Sk

Where, Un = Vnm + (1 - yn.m) [yn.m—l + (1 - yn.m—l) [yn,m—z + (1 - )/n.m—z) [yn,m—B +

et (1 - Vn.l)[yn,o]] + ]

By condition (i) lim,,_,e ¥nm = 0, and Lemma 2.9 p(fi» — sx) — 0. Now, to prove s is
fixed pointto T in E. By equation (3)

Tisi = (1L = m)Tsg + mew.

Since s is fixed point to T, in E, then s, = (1 — 1) Tsy + n,w. Using condition (ii), to

B 1 Nk _ TNk _ _ Mk
p(sk=Tsk) =p (Sk CEETD) Skt (1—mn) W) -f ((1 — M) w Sk)) = (1 —m) v

Using condition (i), limy_,, 71, =0, then p(sy —Ts,) — 0 as k — oo, hence {si} is
approximate fixed point sequence in T. We have to prove s, is p-Caushy
(Sm—sn) = (1 =0T + Nw — (1 = )Ty — Nuw
= (Mm — 1)W = N (Tsm — Tsp) + (N — M) Tsp — (Tsp — Tsy)
,D(Sm - Sn) =< (nm - Un)P(W) - T]mp(TSm - Tsn) + (nn - nm)p(TSn) - p(TSn - Tsm)
< M = M)PpW) = NP (TS — TSn) + (1 — 1) p(TSn)-
Since T is (4, p)-firmly nonexpansive mapping and by Lemma 2.6.

(S — Sp) < (Z’i—:”op(w) + (Z%T:"Jp(Tsn) , by using condition (i) limy_,e 1, = 0, SO

{s,} is p-Caushy sequence.
Since L, is p-complete, there exists s in E such that p(sy —s) — 0 as k — oo and T is
(4, p)-firmly nonexpansive mapping and by Lemma 2.6
p(Ts, —Ts) < p(si — s) implies that p(T's, —Ts) — 0ask — oo
By using p-Caushy sequence, the sequence {f} ,,} convergence to s. To prove s fixed point of
TinE.
p(Ts —s) < p(Ts —Tsy) + p(Tsi — si) + p(si —s)

< p(s = si) + p(Tsi — i) + p(si — s).
So, p(Ts —s) — 0, s fixed point of T.
Finally, to prove p(T fin — fkn) — 0 as k,n — oo,
S0, p(T fin = fin) < P(Tfien — Tsi) + p(Ts — si) + p(Sk — fin)

< p(fimn = si) + p(Ts = s) + p(sk = fin)

Then p(Tfin — frn) — 0, the proof is complete.
When the value of w = 0, it is possible to discuss this case, so the equation (3) become the
following form.
Tif = (A —nITf (6)
Suppose a,, 5, and n; in equations (4) and (6), the following three conditions are satisfied
I-Ymeo &y = % and lim,,_,, @, = 0.
li-limy, o B = lim,_, o i = 0.
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iii-E, (T) # 0.

Based on equations (4) and (6) in addition to the above three condition, we prove the
following theorem.

Theorem 3.2: Let p € R is p- complete, convex modular spaces, E subset of L, is p-closed,
p-bounded and convex, T:E — E is (4, p)-firmly nonexpansive mapping and Tj:E — E,
then {fi .} in equation (4) is p-strongly convergence to fixed point s of T in E, where
{an}, {B,} and, {n,} be real sequence in (0,1).

Proof: Let s, is the fixed point of Ty, by (4), (6) and Lemma2.6

p(wen — si) = ﬁp(kak,n = sk) < (L =m)p(fien = Si) (7)
So, by (4) and (7)
p(hk,n - Sk) <@1- .Bn)p(fk,n - Sk) + ﬁnp(uk,n - Sk)
< [(1 - ﬁn) + (1 - nk)ﬁn]p(fk,n - Sk)- (8)
Similarity, by using (4), (8) and Lemma 2.6.
p(Grn = sk) < p(Tihin — sk) < [ = B)A =) + 1 = m)2Bulp(fim — sk)- (9)
By the same way, using (4), (9) and Lemma 2.6.
P(Jin = sk) < (1 = a)p(gien — ) + o (TiGien — Sk)
< [(1 - an) + an(l - r]k)]p(gk,n - Sk)
< [(1 = ap) + @ (1 =) = B (L =) + (1 = 1)?Bulp(fin — 5)- (10)
By (4), (10) and Lemma 2.6.
P(fk,n+1 - Sk) < P(Tk]k,n - Sk) <@1- TIk)P(]k,n - Sk) < .Unp(fk,n - Sk) (11)
and Un = [(1 - an)(l - ﬁn)(l - 77k)2 + an(l - ﬁn)(l - nk)B + (1 - an)(l - nk)B,Bn +
anﬁn(l - nk)4]'
Through Lemma 2.9, the first and second conditions above become clear p(fk,n — sk) — 0.
Now, by equation (3)
TS = (1 —ni)Tsy, . Since sy is the fixed point of Ty, Then s, = (1 — 1) Tsy.
p(Tsk — s) = p(Ts — (L = )Tsi) < iep(Tsy)
By condition (ii), p(Ts, — si) — 0, then {s, } is an approximate fixed point sequence of T
S0, (s —sp) = (1 =0, )Tsy, — (1 — ) Tsy
= (nn - T]m)TSn - T]m(TSm - Tsn) - (TSn - Tsm)
,D(Sm - Sn) < (nn - nm)p(TSn) - nmp(TSm - Tsn) - p(TSn - Tsm)
< (nn - nm)p(TSn) - 77mp(TSm - Tsn)-
Since T is (4, p)-firmly nonexpansive mapping and by Lemma 2.6.
P(Sm — sp) < ("1%:’”);)(%,1) , by using condition (ii), limy_,, n, = 0, then {s;} is p-
Caushy sequence.
Since L, is p-complete, there exists s in E such that. p(sy —s) — 0 as — oo, T is (4, p)-
firmly nonexpansive mapping and by Lemma 2.6.
p(Ts, —Ts) < p(sx—5),50 p(Tsy —Ts) — 0.
By using p-Caushy sequence, the sequence {f ,} convergence to s. In the rest of proof, we
show that s is fixed pointof T in E.
p(Ts —s) < p(Ts — Tsy) + p(T'si — si) + p(si — 5)
< p(s —sp) + p(Ts — sp) + p(sp —s)
So, p(Ts —s) — 0, s fixed point of T
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4. Comparison Results
Definition 4.1 [19]: Let {a,},=; and {b, },=, by two iterative scheme sequences converging

to the same fixed point s, and let lim plan=s) _ L, then
n—oo p(bp—5)

1- If L = 0 then {a, };=, converges faster than {b, },—, to fixed points.
2-1f1 < L < oo then {a,},=; and {b, }y= they reach to the fixed point at the same speed.

Theorem 4.2: Let p € R, E be a non-empty p-bounded, p-closed and convex E c L,
andT:E — E, be (4, p)-firmly nonexpansive multivalued mapping T: E — E be (4, p)-
firmly nonexpansive multivalued mapping, let {a,}, {8}, {nx} be real sequences in (0,1),
then the iterative scheme in (4) by using equation T, f = (1 —n,)Tf faster of iterative
scheme in (4) by using equation Ty f = (1 — n)Tf + nw.
Proof: By using equations (3) and (4), convexity of p, Definitions 2.4 and 2.5 and Lemma
2.6, implies that
p(fint1 = Sk) = P(Tidkn — sk) < (L= 0)p(Jien — k) + Mep(W — Sk
< (1 —n)[( = a)p(gin — k) + @np(TeGrn — Sk )] + Mep(W — si)
< [ =)A= @) + an (1= m)?10(gin = i) + [Enme (1= mi) + melp(w — 5)
<[ =)A= @) + (1 = 1) 1p (i — si) + [(1 = 1) (1 — @)y +
antie(1 = m)? + ani (1 = M) + mdp(w — )

< :unp(fk,n - Sk) + Ynp(w — sp).
Where

Un = [(1 - an)(l - ,Bn)(]- - 77k)2 + an(l - ﬁn)(l - nk)3 + (1 - an)(l - nk)gﬁn +

anﬁn(l - nk)4] .
and

Yn = [(1 = a) (A = midni + an(1 = m)? i + (1 = mid) @y + 0 (1 = 1)* (1 — @) B +

N @B (1 — i) + 1]
Then

p(fk,n - Sk) < (#n)n+1(fk,0 - Sk) + (1 + Up t (.un)z T+ +(/"n)n)¢np(w - Sk)- (12)
By the same of previous proof and by using (6), we get

p(fien = sk) < W)™ (fio — sk)- (13)
By definition 4.1 and equations (12) and (13). The proof is completed.

Below we present an example illustrating the previous theorem

Example 4.3: Let L, =R, the set of real number, p be absolute value and T:E — E,
E =[0,0), T be define by Tf = f Ty: E — E, Ty, define by (6), and the double sequence
define by (4), the fixed point of T is s =0, where a, = S, = 0.5, 1 =ﬁ, and let
k =100, and by using (6) then the iterative scheme will become

2

_ 1 2\ fioom _ _ hioon
Uioon = n+1 (;) 4 ! thO,n - 0-5]“100,71 + 0-5u100,n v d100n = ) "2
2

2 ; J100,
]100,n = 0-59100,n + 0.5 (;) g110n1 f100,n+1 = (;) %, neNn.
Tablel and Figurel show the numerical results with some step, when fi401 = 1.5.

Also, see Table2 and Figure2 when u;qq, = : (3) f“:"", hi00n = 0.8fi00n + 0.2Us00.n

n+1\7
_ {2\ h1oon
dioon = (7) P

2\ G100, 2\ J1o0,
J1i0o,n = 0.89100n + 0.2 (;) % ) f100,n+1 = (;) %, nen.
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k

Table 1: Shown f;, in (3) by using equation (5), where a,= f,= 0.5, n, = P k=
100 with fi9, = 1.5.

n f100 U000 hion Y100 J100n

1 15 0.053571 0.77679 0.055485 0.029724
2 0.0021231 5.0551e-005 0.0010868 7.7632e-005 4.1588e-005
3 2.9706e-006 5.3046e-008 1.5118e-006 1.0799e-007 5.785e-008
4 4.1322e-009 5.9031e-011 2.0956e-009 1.4969e-010 8.0189e-011
5 5.7278e-012 6.8188e-014 2.898e-012 2.07e-013 1.1089e-013
6 7.9209e-015 8.0825e-017 4.0008e-015 2.8577e-016 1.5309e-016
7 1.0935e-017 9.7636e-020 5.5164e-018 3.9403e-019 2.1109e-019
8 1.5078e-020 1.1966e-022 7.5987e-021 5.4277e-022 2.9077e-022
9 2.0769e-023 1.4835e-025 1.0459e-023 7.4705e-025 4.0021e-025
10 2.8586e-026 1.8562e-028 1.4386e-026 1.0276e-027 5.5048e-028
11 3.932e-029 2.3405e-031 1.9777e-029 1.4126e-030 7.5677e-031
12 5.4055e-032 2.9701e-034 2.7176e-032 1.9412e-033 1.0399e-033
13 7.4279e-035 3.7897e-037 3.7329e-035 2.6663e-036 1.4284e-036
14 1.0203e-037 4.8585e-040 5.1257e-038 3.6612e-039 1.9614e-039
15 1.401e-040 6.2544e-043 7.0362e-041 5.0258e-042 2.6924e-042
16 1.9232e-043 8.0805e-046 9.6562e-044 6.8973e-045 3.695e-045
17 2.6393e-046 1.0473e-048 1.3249e-046 9.4633e-048 5.0696e-048
18 3.6212e-049 1.3613e-051 1.8174e-049 1.2981e-050 6.9543e-051
19 4.9674e-052 1.7741e-054 2.4926e-052 1.7804e-053 9.5378e-054
20 6.8127e-055 2.3173e-057 3.418e-055 2.4414e-056 1.3079e-056

Figure 1: The function fi90n, 1001 R1001 91000 AN J100 7, Where a,= 5,= 0.5, 1y =

y k=100 Wlth f100,n = 1.5.
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k

ﬁn: 0.2, Nk =:;:ZB! k =

n f100n U100,n hioon Y100 J100n

1 15 0.053571 1.2107 0.08648 0.070419
2 0.0050299 0.00011976 0.0040479 0.00028914 0.00023544
3 1.6817e-005 3.003e-007 1.3514e-005 9.6527e-007 7.86e-007
4 5.6143e-008 8.0204e-010 4.5075e-008 3.2196e-009 2.6217e-009
5 1.8726e-010 2.2293e-012 1.5026e-010 1.0733e-011 8.7395e-012
6 6.2425e-013 6.3699e-015 5.0067e-013 3.5762e-014 2.9121e-014
7 2.08e-015 1.8572e-017 1.6678e-015 1.1913e-016 9.7002e-017
8 6.9287e-018 5.499e-020 5.554e-018 3.9671e-019 3.2304e-019
9 2.3074e-020 1.6481e-022 1.8492e-020 1.3209e-021 1.0756e-021
10 7.6826e-023 4.9887e-025 6.1561e-023 4.3972e-024 3.5806e-024
11 2.5576e-025 1.5224e-027 2.0491e-025 1.4636e-026 1.1918e-026
12 8.513e-028 4.6775e-030 6.8197e-028 4.8712e-029 3.9666e-029
13 2.8333e-030 1.4455e-032 2.2695e-030 1.6211e-031 1.32e-031
14 9.4287e-033 4.4899e-035 7.552e-033 5.3943e-034 4.3925e-034
15 3.1375e-035 1.4007e-037 2.5128e-035 1.7948e-036 1.4615e-036
16 1.0439e-037 4.3863e-040 8.3603e-038 5.9716e-039 4.8626e-039
17 3.4733e-040 1.3783e-042 2.7814e-040 1.9867e-041 1.6177e-041
18 1.1555e-042 4.3441e-045 9.253e-043 6.6093e-044 5.3818e-044
19 3.8442e-045 1.3729e-047 3.0781e-045 2.1986e-046 1.7903e-046
20 1.2788e-047 4.3496e-050 1.0239e-047 7.3136e-049 5.9554e-049

“ k.

k

Figure 2: The function fig04, U100, R100.n 91000 @8N J100 7, Where a,= 5,= 0.2, 1y =
y k == 100 With f100,n == 1.5

k+40

In the above example, it is clear that the iterative scheme presented in equation (4)
approaches the fixed point at a record speed. In addition, when a,= B,= 0.5 it is faster to
reach the fixed point when a,,= 5,=0.2.
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5-Conclusions

A new five step iterative scheme have been presented in this paper with double sequence
in (4, p)-firmly nonexpansive mapping of modular function spaces. As well as a new formula
for the T, function has been defined through Theorem 4.2, where it has been shown the
special case of equation (6) is faster to reach the fixed point than equation (3). In addition, as
the value of n increases than the double sequence {f;, ,,} approaches the fixed point, as shown
in example 4.3. It is worth nothing that we aspire to obtain results related to what Tarsh and
Abed presented in [20].
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