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Enhancing Smartphone Authentication by
Integrating Decision-Making Model with Touch
Pressure, Finger Location Data, and Advanced
Cybersecurity Techniques
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Rawan Adel Fawzi Alsharida a,b

a Computer Science Department, College of Computer Science and Mathematics, Tikrit University (TU), Tikrit, Iraq
b Cybersecurity Department, College of Computer Science and Mathematics, Tikrit University (TU), Tikrit, Iraq

ABSTRACT

Smartphone authentication methods face significant challenges in achieving high accuracy, robustness, and usabil-
ity within cybersecurity applications. Traditional methods, such as passwords and biometric recognition, often lack
adaptability and are prone to high false-positive rates, impacting security and user acceptance. This study presents a
novel hybrid approach incorporating machine learning (ML) and the Analytic Hierarchy Process (AHP) in a framework
to facilitate decision-making abilities and improve smartphone authentication. A novel dataset was constructed based
on 3D touch sensor data (pressure levels and spatial dynamics) collected from 20 participants performing tasks per
task over sessions, where AHP was used to rank/choose relevant features. The extracted features were later fed to ML
classifiers—such as Random Forest and Support Vector Machine (SVM) components—for user authentication. The hybrid
model AHP-ML was extensively evaluated, and it underwent simulated attacks for system resilience testing. As a result,
there was a significant difference in the Random Forest model, which achieved an accuracy of 89.7%, precision of 0.88,
and recall of 0.90. On the other hand, the SVM model achieved an accuracy of 86.3% with a precision and recall equal
to 0.85 and 0.87, respectively. Conclusions AHP-based integration improved classification accuracy by 5–8%, reduced
false positives by 4.5% (45 users), and increased legitimate user acceptance of the alarm rate by 6%. The robustness
of the model was also validated during attack testing, where it also showed resistance to mimicry and brute-force
attacks with a success rate of 3% for mimicry and 1% for brute-force attempts using the Random Forest classifier.
The application of AHP in determining feature weighting proves to be a significant step towards achieving an optimal
trade-off between security and usability. However, the study was limited by the small dataset size. This AHP-augmented
machine learning process provides a scalable, flexible solution that strengthens smartphone authentication systems in the
context of cybersecurity frameworks and is of great promise for secure and user-friendly mobile application development.

Keywords: Smartphone authentication, Machine learning, Analytic Hierarchy Process (AHP), Biometric security optimiza-
tion, Attack resilience, Cybersecurity techniques

1. Introduction

The explosion of smartphones has made ensur-
ing safe and convenient ways to authenticate one’s
identity more important than ever before. In Tradi-

tional approaches, there are many traditional ways
of authentication like passwords, PIN-code and some
biometric systems still suffer from very serious lim-
itations (the researcher is referred to [1] for a
survey)—common attacks threaten existing security
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infrastructures as shown by the success of phishing
and other fraud on the internet; and if a password
written down in an accessible point to superficial
attack [2, 3]; most importantly, environmental lim-
itations such as humidity changes that researchers
need to work under put natural barriers against al-
most all these techniques [2, 4]. Anyone with enough
determination can easily steal passwords or PINs.
Although biometrics improves security, it is easily
spoofed by adversaries or affected by the environ-
ment [4–6]. These constraints illustrate the need for
flexible user-centric authentication alternatives that
provide security with convenience.

In recent years, 3D touch sensors have been uti-
lized in various applications to enhance smartphone
authentication systems. Systems leveraging pressure
sensitivity and touch location have been developed
to provide unique interaction patterns for each user,
thereby increasing the security of authentication pro-
cesses [7]. Additionally, these sensors have been
employed in mobile health applications to ensure the
security and privacy of patient data by integrating
them with other technologies, such as audio sensors
[8]. Furthermore, 3D touch sensors have been utilized
in systems combining biometric data, such as EEG
signals, with sensor data to provide advanced levels
of security [9].

Recent advancements in smartphone authentica-
tion have focused on combining 3D touch sensors
with spatial data to capture dynamic and unique
user-specific touch interactions. The improved model
performance in this study is achieved by merg-
ing intuitive decision-making methods, specifically
the Analytic Hierarchy Process (AHP), which in-
cludes scaling functions to rank critical features
systematically. The proposed feature weightings, in
association with the application of machine learning
(ML) models, enable a robust method for enhancing
smartphone authentication systems, demonstrating
significant improvements in accuracy and reliability
through a dynamic and comprehensive analysis of
user-specific interactions.

1.1. Difficulties in merging AHP with
authentication-ML

AHP is a powerful and widely used Multi-Criteria
Decision-Making (MCDM) technique, however, many
challenges arise when combining it with ML for
touch-based authentication systems:

1. Data Variability and Noise: Differences in user
touch behavior and environmental influences in-
troduce noise, which impacts system accuracy.
To overcome this problem, one has to rank fea-

tures using AHP, which minimizes the effect of
noise [10].

2. Real-Time Processing Requirements: ML models
are designed to process data in real-time as per
the requirements, which makes it very necessary
that algorithms should be robust and capable of
fast and accurate analysis [11].

3. Security-Usability Balance: The more secure, the
less usability. However, by using AHP to mini-
mize feature selection, the system can yield such
robust security without being too obtrusive to
the user [12].

This study proposes a user adaptive smartphone au-
thentication framework using the Analytic Hierarchy
Process (AHP) with the ML classifiers it entails. Using
AHP to optimize the feature selection to increase the
accuracy and efficiency of ML models [13]. Combin-
ing 3D touch sensor data and spatial dynamics, this
approach improves security while also ensuring user
comfort.

1.2. Study contributions

This study has several major contributions:

1. Fusion of AHP andML: this is the fusion of AHP
and ML. AHP enables the ML algorithm to focus
on the most critical data points; thus, the model’s
accuracy and robustness are highly increased.

2. Advanced Cybersecurity Techniques: Integra-
tion of simple yet highly accurate ML algorithms
with AHP gives the model a high level of
decision making in line with the current cyber-
security standards.

3. Comprehensive Evaluation: The thorough
tests show that the model has high accuracy and
low false-positive values and recall, making it
resistant against common authentication-related
issues.

4. Real-Time Processing Optimization: High
speed with increased accuracy from ML and
priorities from AHP ensures high values of user-
friendly real-time processing.

5. Enhanced Security Against Impostors: The ex-
perimental outcomes indicate that integrating
AHP with ML classifications correctly reduces
unauthorized access.

Such an integrated approach provides a solid plat-
form for the further enhancement of smartphone
authentication methods in cyberspace. The results
demonstrated the ability of this approach to provide
secure, scalable, and convenient services, paving the
way for more breakthroughs in mobile device secu-
rity.
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2. Related works

With the widespread adoption of smart devices,
more people are using biometric authentication to im-
prove security [14]. Security and usability limitations
have plagued conventional authentication methods
so much that traditional logins (using PIN codes,
passwords, biometrics, etc.) often time out and/or
fail [3, 15]. Different research works suggested other
latent methods that capture machine learning and
sensor data to meet security concerns and enhance
the user experience [4, 16].

2.1. Traditional biometric authentication

Fingerprint & face recognition are other biomet-
ric systems that have begun to be widely used and
contributed by their easiness of use as well as the
security level being better than passwords [17, 18].
However, they face several challenges. High-quality
images or masks can be used to spoof facial recogni-
tion systems. In a like manner, fingerprint sensors are
also frail against ambient conditions such as rain or
dust, as well as failures when working [1, 2, 19, 20].
Such vulnerabilities require developing more resilient
and secure authentication techniques as biometric
systems are prone to spoofing attacks, especially in
high-security environments [21, 22].

2.2. Behavioral biometrics for enhanced security

Traditional biometrics have several limitations;
therefore, the focus has shifted to behavioral bio-
metrics, which identifies people based on behav-
ioral characteristics like touch dynamics, gait, and
keystroke patterns [23, 24]. Fingertips touch has
frequently been regarded as a non-intrusive and
hard-to-replicate type of authentication. Studies have
demonstrated that user-specific analysis of touch pat-
terns can significantly distinguish between authentic
and impostor users, thus delivering continuous, flex-
ible, and unobtrusive authentication [25–27]. For
example, the study Wang et al. used touch dynamics
to identify unique user interactions while inserting
the intended password, which further improved the
overall performance of smartphone authentication
systems [28].

2.3. Machine learning techniques in authentication
systems

Machine learning algorithms, especially for pro-
cessing complex behavioral data, have become a
foundational element of security systems. Classifica-
tion is the core of many models designed for detecting

changes and, as a result, several common algorithms
such as Support Vector Machines (SVM), Random
Forests and Neural Networks are used to classify user
interactions into high classes by learning from past
data gathered through user interaction [29–31]. For
instance, Pryor et al. Using a combination of SVM and
Random Forest classifiers to process touch dynamics
data, an accuracy above 85% was reportedly yielded
for user authentication [32]. Despite their success,
the computational complexity of these ML models can
affect real-time performance, which is a critical factor
for seamless user experience [33].

2.4. The role of AHP in feature selection

In feature selection, the Analytic Hierarchy Process
(AHP) has been successfully used to rank and select
the input features. Such a method brings data down
to lower dimensions, focuses the model on relevant
features, and, subsequently, improves performance
[12, 13]. AHP, in the domain of smartphone authen-
tication, deciphers important features from sensor
data inputs relevant to ML classifiers. Research by
Abushark et al. (2021) showed that AHP was useful
for feature selection and reported improvement in
model robustness through noise reduction and em-
phasis on high-impact features [12].

2.5. Hybrid AHP-ML models for improved
authentication

While numerous works have utilized AHP in the
context of smartphone authentication, in recent
years, few studies have integrated AHP with ML tech-
niques that aim to improve both feature selection and
classification performance. These hybrid models fo-
cus on only those features that contribute effectively
towards user classification with the help of decision-
making capabilities imposed by AHP correctness and
speed [34, 35]. Alharbi et al. Enhancing the perfor-
mance in terms of false positive rates and higher user
acceptance with AHP when coupled with classifiers
like SVM and Random Forests is better suited for a
real-world scenario [35].

2.6. Challenges in balancing security and usability

While biometric or ML-based methods have come
a long way, achieving an ideal balance of security
and usability continues to be a work in progress.
Challenges related to variability in data driven by
environmental factors, the need for real-time pro-
cessing of the generated data, and the requirement
for models that can cater to varying user behav-
iors are still on research detectors [16, 17]. Current
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research addresses adaptive approaches that adapt to
user behavior, multimodal fingerprints, and further
improvements in online processing speed, resulting
in a seamless authentication experience [18, 19].

3. Methodology

The methodology section provides the details of the
work that discusses developing an Android Applica-
tion using Android Studio on a Samsung Galaxy A72
Device and implementing and evaluating a Touch-
Based Authentication System. Utilizing the extensive
data emitted by sensors combines machine learn-
ing and advanced cybersecurity methods to create a
strong yet adaptable authentication model for identi-
fying users from impostors.

3.1. Data collection and preprocessing

The experiments collect precise touch data from the
3D touch sensors and store them in a Samsung Galaxy
A72 device, which includes two types of pressure in-
tensity (applied force) and X-Y spatial coordinates on
the screen (Fig. 1A and Fig. 1B). Twenty participants
participated, and each contributed several pairs of
attempts to capture various contours of a realistic use
case.

3.2. Data capture and environment setup

Set up a controlled environment to mitigate noise
during the experiment (for example, by reducing
unintended touches on the screen from outsiders).
Through this, Samsung Galaxy A72 caught up with
how the Android Studio data were logged, spatial-
temporal high fidelity. This setup allowed for:

1. Pressure Sensitivity:Capturing the force applied
during touch interactions. To handle variability,
the device was calibrated before the experi-
ments.

2. Spatial Coordinates: Captures each touch
point’s precise X and Y locations on the screen.

An experimental Android application was devel-
oped in Android Studio for data acquisition at a high
temporal resolution (in milliseconds). The app offered
participants a series of prompts to complete authen-
tication actions that required tap, press, and swipe
gestures encrypted across the screen.

3.3. Security measures and data integrity

To make sure of the data confidentiality and also
that the privacy standards are met as required, some
security practices were incorporated:

Fig. 1. A and B show the experiment and collect data operations.
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1. AES-256 Encryption: AES-256 was used to
encrypt all touch data while it was being trans-
mitted to ensure its integrity and that it is
firewall-protected from access once it is stored
on the server unauthorized access.

2. Anonymization: All PII (i.e., Personally Iden-
tifiable Information) of participations was re-
moved, each identified only by a randomized
ID with no relation to their identity. This
anonymization step could silence operational
data, putting the data collection within match-
ing parameters with data protection laws and
allowing for privacy and compliance.

3.4. Data preprocessing

Preprocessing consists of steps to prepare for ma-
chine learning analysis:

1. Outlier Removal: Touch data outside the bounds
of normal pressure or spatial norms were filtered
to eliminate unintentional touches and maintain
consistent data integrity.

2. Normalization: Pressure and coordinates values
were normalized to a standard range, creating
consistency in how participants are interacted
with.

3. Feature Engineering: Mean Pressure, Press Vari-
ability, and Touch features were extracted,
such as fluidity, finger speed, distance traveled
between successive trains and the machine-
learning model’s performance.

This created a dataset filled with user-specific data
features on the touch dynamics, allowing for an anal-
ysis of functional and spatial characteristics.

3.5. Feature extraction and cybersecurity analysis

Essential features, including pressure levels, spatial
coordinates, and touch duration, were extracted using
Java code within Android Studio to capture detailed
user interaction data. To enhance data reliability and
security, several cybersecurity techniques were im-
plemented:

A. Noise Reduction Algorithms: Filters were ap-
plied to reduce noise introduced by environmen-
tal factors or device-specific variations, ensuring
the precision and consistency of the captured
data.

Let’s describe the equations of each filter type in
order to apply these noise reduction algorithms effec-
tively in terms of data preprocessing for an effective
touch-based authentication purpose.

1. Median Filter Equation: To elaborate, the me-
dian filter takes several data points x = [x_1,x_2,
. . . ,x_n], as input and replaces each data point
by the median of the surrounding values within
a window W centered around x_i, as in Eq. (1):

Median(xi) = median(xi−k, . . . , xi, . . . , xi+k) (1)

with k being half of the window size. As a spe-
cific example, if the window size is 3, then k = 1
and the filter looks at one data point on each side
of xi [36].

2. Low-Pass Filter (LPF) Equation: The LPF
smooths the data by attenuating higher frequen-
cies. For a simple first-order LPF, the output y_i
at time i is calculated in Eq. (2):

yi = α · xi + (1− α) · yi−1 (2)

where xi is the current input value, yi−1 is the
previous output value, and α(0 < α < 1) is a
smoothing factor that determines the filter’s re-
sponse to noise. A smaller α smooths more but
can slow the response [37].

3. Kalman Filter Equations: The Kalman filter op-
erates in two main steps: prediction and update.
For data point xi:

1. Prediction Step:
a. Predicted state: x̂i = A · x̂i + B · ui
b. Predicted estimate covariance: Pi = A ·

Pi−1 · AT
+ Q

2. Update Step:
a. Kalman Gain: Ki =

Pi·HT

H·Pi·HT+R
b. Updated state estimate: x̂i =

x̂i + Ki(zi − H · x̂i)
c. Updated estimate covariance: Pi = (I −

Ki · H) · Pi
Here, A, B, H, Q, and R are matrices that define
system dynamics, u_i is the control input, and
z_i is the measurement. The Kalman filter recur-
sively refines the estimates, balancing measured
data and predicted noise levels [38].

4. Gaussian Smoothing Equation: In Gaussian
smoothing, apply a Gaussian function G(x) to
each value within the window, thus weighting
them according to how far away they are from
i. The smoothed data point y_i at position i cal-
culates in Eq. (3):

yi =

k∑
j=−k

xi+ j · G( j) (3)

where G( j) = 1
√

2πσ 2 e−
j2

2σ2 , Where σ is the stan-
dard deviation that defines how wide our
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Gaussian kernel should be, and k indicates the
window radius [39].

5. Moving Average Filter Equation: For a win-
dow of size 2k+ 1, the moving average for point
x_i is calculated using Eq. (4):

yi =
1

2k+ 1

k∑
j=−k

xi+ j (4)

with yi = output passed through the filter. This
equation computes the average of points in a
given window, thus smoothing out short-term
fluctuations and highlighting long-term trends
[40].

When combined with the appropriate parameters,
these filters effectively reduce noise without exces-
sively smoothing the characteristic touch dynamics
required to differentiate between genuine users and
impostors for cybersecurity applications.

A. Anomaly Detection: Advanced algorithms were
integrated to identify any unusual patterns or
deviations in user interactions, which may signal
unauthorized access attempts or potential secu-
rity threats [41, 42].

These cybersecurity measures strengthen the data
quality and add an additional layer of security, mak-
ing the authentication model more robust against
both false positives and unauthorized attempts.

3.6. Decision-making using Analytic Hierarchy
Process (AHP)

The Analytical Hierarchy Process (AHP) is a struc-
tured decision-making technique that was used in
this study to prioritize and rank features critical
to distinguishing legitimate users from impostors.
AHP breaks down complex decision-making problems
into smaller, manageable comparisons, allowing for a
more focused selection of high-impact features. This
section provides the procedure and calculations to
perform feature ranking with AHP [12, 13, 34].

A. Feature Ranking and Pairwise Comparison:
The first step of AHP is building a pairwise
comparison matrix for each feature. The matrix
assigns weight (or score) to every feature based
on expert judgment or pre-defined criteria, thus
enabling people to evaluate how critical a par-
ticular feature is compared to others. Key steps
included:

1. Creating the Comparison Matrix: A com-
parison was made of each feature (e.g.,
pressure, spatial coordinates, touch du-

ration) against all others based on the
measurement of importance to differenti-
ate users from non-users. For example, if
the spatial coordinates are considered to
be half as important (in a given sense,
which is problem-dependent) as pressure
sensitivity, they would score this pairwise
comparison with a 2.

2. Calculating Feature Weights: Features
Weights were then calculated for each fea-
ture after creating the pairwise matrix. The
weights are normalized (sum to 1) and pro-
vide a ranking ordering of features. Thus,
the pressure level received 0.5, spatial coor-
dinates 0.3, and touch duration 0.2 would
indicate that pressure level is the dominant
feature for authentication in this case.

3. Eigenvalue Calculation: The specific
eigenvalue of the comparison matrix was
computed, and the matched eigenvector
was applied to calculate the final weight
for each feature. This eigenvector will
convey the feature ranking in a relative
sense.

B. Consistency Check: To ensure that the pairwise
comparisons were logically sound, a Consis-
tency Ratio (CR) was calculated. The CR is
essential in validating the reliability of judg-
ments in the matrix and is derived through the
following steps:

1. Calculating the Consistency Index (CI): CI
is calculated using the Eq. (5) as below:

CI =
λmax − n

n− 1
(5)

where λmax is the largest eigenvalue of the
comparison matrix and n is the number of
features. A lower CI indicates greater con-
sistency in pairwise comparisons [43, 44].

2. Calculating the Consistency Ratio (CR):
CR is calculated using Eq. (6) as below:

CR =
CI
RI

(6)

Here, RI is the Random Index, a standard
value that depends on n. If the CR is be-
low 0.1, the matrix is deemed consistent;
otherwise, the comparisons may need to be
revised to reduce inconsistencies [44].

3. Interpreting Results: A consistent com-
parison matrix supports stable rankings,
strengthening the AHP-based decision-
making process. For instance, if CR was
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found to be 0.05, the pairwise comparisons
would be considered sufficiently consistent.

C. Implementing AHP-Enhanced Feature Selec-
tion in Authentication: After validating the
rankings with a consistency check, AHP was
used to select the top-ranked features (e.g.,
pressure level and spatial coordinates) as the pri-
mary data for further classification in machine
learning models. This AHP-driven prioritization
led to the following benefits:

1. Layered Authentication Strategy: Features
with high-importance rankings were
prioritized, creating a multi-layered
decision-making framework that focused
on security-critical features.

2. Improved Model Robustness: AHP helped
the model emphasize features most rel-
evant to authentication, enhancing the
accuracy of genuine user identification.

3. Adaptability and Scalability: The AHP
framework allows for feature set adjust-
ments in response to evolving cybersecurity
threats, making it suitable for adaptive and
scalable authentication systems.

Through these steps, AHP played a crucial role
in structuring feature importance, ensuring that
only high-impact features were emphasized in
the authentication process. All of this made the
smartphone cybersecurity authentication solu-
tion more resilient, secure, and user-friendly.

3.7. Integrating classifiers with cybersecurity
algorithms

The processed features were then used to train Ran-
dom Forest (RF) and Support Vector Machine (SVM)
classifiers. Some of the Cybersecurity techniques in-
cluded here:

1. Threat Modeling: The system was tested in
various scenarios to ensure resilience against
Spoofing and Mimicry attempts.

2. Access Control and Attempt Logging: Each au-
thentication attempt was logged and monitored
in real-time to identify unauthorized access
promptly.

The dataset was divided into 70% for training and
30% for testing, ensuring a robust training phase and
reliable performance validation [45].

3.8. Evaluation metrics

The performance of the system was validated using
cybersecurity metrics and standard machine learning
metrics, including:

1. Confusion Matrix Analysis: To provide detailed
insights into false positives and false negatives,
the confusion matrix was used to calculate key
performance indicators, including:

• Accuracy: Accuracy evaluates the overall
correctness of the model by measuring the
proportion of correctly classified instances
(both positive and negative) out of the total
predictions, reflecting the model’s general
performance. The calculation process was
performed using (Eq. (7)), as indicated by
[9] and is as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(7)

• Precision (P): Precision measures the accu-
racy of positive predictions, indicating the
proportion of correctly identified genuine
users out of all predicted positive instances,
reflecting the model’s ability to avoid False
Positives. The calculation process was per-
formed using (Eq. (8)), as indicated by [9]
and as follows:

P =
TP

TP+ FP
(8)

• Recall Measure (R): The model can cor-
rectly and effectively identify all True
Positive cases, indicating the extent of
its effectiveness in discovering real users
among all True Positive cases. It is deter-
mined by (Eq. (9)), as shown below [9]:

R =
TP

TP+ FN
(9)

• F1-Score (F1): This metric is a perfor-
mance measure that combines precision
with recall into a single value, providing
a balanced assessment of the model’s ac-
curacy in accurately distinguishing True
Positives while minimizing False Nega-
tives and False Positives. Computed by the
(Eq. (10)) as delineated below [9]:

F1 = 2×
(

P× R
P+ R

)
(10)

The abbreviation TP refers to True Positive, FP
refers to False Positive, and FN refers to False
Negative. These metrics illustrate the model’s
ability to have a comprehensive understand-
ing of correctly and accurately identify genuine
users and reject impostor users [46, 47].
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2. Usability and Acceptance Metrics: To measure
user-friendliness and ensure a balance between
security and ease of use, metrics such as System
Usability Scale (SUS) scores and task completion
rates were utilized. Additionally, a user feedback
score was Us calculated as:

Us =

∑n
i=1 Scorei

n
(11)

where Scorei represents the usability rating
given by the ith user, and n is the total number
of users [48, 49].

These metrics ensured that the evaluation ac-
counted for both technical accuracy and user satis-
faction, which is critical in cybersecurity applications
where human interaction plays a significant role.

3.9. Deployment of the enhanced cybersecurity
authentication system

Finally, a touch-based authentication system inte-
grating AHP and the aforementioned cybersecurity-
enhanced techniques was implemented on the Galaxy
Samsung A72. Real-time monitoring enables the sys-
tem to respond in an adaptable manner when there
is any threat, thus providing a secure as well as user-
friendly experience.

4. Results and discussion

This section presents a detailed evaluation of the
touch-based authentication system, covering classi-
fication accuracy, the impact of AHP on feature se-
lection, confusion matrix analysis, robustness against
attacks, and comparisons with previous works. Both

Table 1. Classification performance metrics.

Model Accuracy Precision Recall F1-score

Random forest 89.7% 0.88 0.90 0.89
SVM 86.3% 0.85 0.87 0.86

machine learning and cybersecurity-specific metrics
are utilized for a comprehensive assessment.

4.1. Classification accuracy and model performance

The Random Forest (RF) and Support Vector Ma-
chine (SVM), the two classification models, were
evaluated on the Analytic Hierarchy Process (AHP)-
based on selected optimal features. Table 1 provides
a summary of key performance indicators.

The Random Forest model also performed better
than SVM, reaching 89.7% accuracy with 0.88 preci-
sion and 0.90 recall. The SVM model also performed
similarly but was a little less effective.

4.2. Impact of AHP on feature selection and model
accuracy

In both models, feature optimization performed
with AHP had a massive contribution as it increased
the accuracy of each model by filtering out non-
relevant features. Implementing AHP resulted in a
5–8% boost in accuracy across the models. Fig. 2 illus-
trates the feature ranking generated by AHP, showing
the importance of touch pressure, X-Y coordinates,
and touch duration.

4.3. Confusion matrix analysis

Confusion matrices provide insight into false pos-
itive and false negative rates. The Random Forest

Fig. 2. AHP feature importance ranking.
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Fig. 3. Random forest confusion matrix.

Fig. 4. SVM confusion matrix.

model’s confusion matrix Fig. 3 reveals that the false
positive rate was relatively low (4.5%), demonstrat-
ing robustness against unauthorized access attempts.
The SVM confusion matrix Fig. 4 shows a similar
trend despite a slightly higher rate of false positives.

4.4. Attack testing and robustness evaluation

The system was subjected to simulated attack sce-
narios, including mimicry and brute-force attempts.
Table 2 compares the system’s resilience to these
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Table 2. Attack resilience comparison.

Method Mimicry attack success rate Brute-force success rate Overall security score

Touch-based with AHP-RF 3% (± 0.5%) 1% (± 0.2%) High
Touch-based with AHP-SVM 4% (± 0.6%) 1.5% (± 0.3%) Moderate
Fingerprint authentication 8% (± 1.0%) 2% (± 0.5%) Moderate
PIN authentication 12% (± 1.5%) 4% (± 0.7%) Low

attacks against conventional authentication methods
such as fingerprint and PIN-based systems.

The touch-based AHP-RF model demonstrated the
highest security score, with only a 3% success rate
for mimicry attacks and a 1% success rate for brute-
force attacks. Traditional methods like fingerprint
and PIN-based systems showed higher vulnerability,
confirming the superiority of the proposed approach.

4.5. User acceptance and usability testing

The system was also reported to be easy to use,
according to the users, and received positive feedback
overall. Our exemplary use case showcased that the
touch-based authentication enhanced by AHP-driven
feature selection was effective and unobtrusive. Over-
all, the system’s usability was rated as easy to use (M
= 4.68 on a scale of 1–5).

4.6. Discussion

The findings show that AHP, combined with ma-
chine learning classifiers, improves authentication
performance and security strength. Focusing on
the necessary functionalities, the decision-making
strength, and the computational complexity of AHP
proves potential and trustworthiness in authorizing
and authenticating behavior, making the calculation
user-friendly. This is another reason for the high
resilience of the system against Mimicry and Brute-
force attacks, making this method a good alternative
to traditional methods.

In summary, the unique idea from this study over-
comes those limitations and provides a solution that
is both scalable and facilitates secure authentication
on smartphones. Future work may forecast further a
fusion of AHP with new machine learning structures
designed to accommodate dynamic cyber security
concerns.

5. Conclusion

This paper presents a touch-based user authentica-
tion system that combines different machine learn-
ing algorithms with the Analytic Hierarchy Process
(AHP) for feature selection to achieve high secu-

rity and reliability compared to existing approaches
in smartphone authentication. The logic behind the
AHP integration permitted systematic ranking and
selection of effective touch and spatial data features,
which were then further processed using machine
learning classifiers—Random Forest (RF) and Support
Vector Machine (SVM)—to enable precise distinction
between true users versus potential impostors. Com-
bining these functionalities deals with the weaknesses
of traditional authentication methods—PIN codes,
passwords, and biometrics by implementing a user-
only specific characteristic interaction capability that
is difficult to reproduce.

Summary and key findings showed a significant
increase in the system’s accuracy, where Random For-
est achieved an accuracy of 89.7%; also, the FP rate
dropped to 4.5%. Attack testing further validated the
defense mechanism, indicating a strong resistance to
mimicry and brute-force attacks with success rates
as low as 1% for brute-force attempts. These re-
sults demonstrate the value of integrating AHP with
machine learning to build a decision-making layer
that improves feature prioritization and model perfor-
mance, hence both real-time security and efficiency
during usage.

The model’s accuracy and security were better than
conventional authentication methods (fingerprint,
PIN, etc.). By directing the classification models on
the parts of data that had more impact, AHP-driven
feature ranking reduced computational overheads
and improved overall model precision with real-time
processing feasible. The system’s usability was con-
firmed in user acceptance testing, where participants
gave high ratings for ease of use to touch-based
authentication, which is probably due to the non-
intrusive character of touch-based biometrics.

We present this study as an aid to the emergent area
of smartphone-based security systems by proposing
a scalable, versatile, and non-intrusive authentica-
tion framework when acknowledging the innate and
behavioral characteristics of how users touch their
devices. A case of AHP in a cyber security con-
text illustrates how decision-making techniques can
complement machine learning models and result in
systems that are not only efficient but also robust.
Future research could explore the potential for ex-
panding this hybrid approach with other machine
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learning models, such as deep learning architectures,
as well as further field-testing in a wider variety of
settings and over a larger, more representative popu-
lation to evaluate generalization.

In the end, the touch-based authentication model
proposed by AHP, with the assistance of touch point
features, provides a trustable framework enhancing
mobile security, which provides insights to help shape
the next generation of mobile authentication systems
with robustness and usability. The study results un-
derscore the viability of combining decision-making
processes with machine learning towards mobile cy-
ber applications and establishing a new level of
performance/quality in balancing security, usability,
and real-time delivery.
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