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ABSTRACT

The loop closure detection is crucial for global mapping and route correction in multi-robot simultaneous localization
and mapping (SLAM). However, including loop closure detection algorithms in MR-SLAM increases the computational
complexity and the required resources on the robot board and at the base station. In this paper, An Enhanced Multi-Robot
Fast Localization Odometry and Mapping (EMR-FLOAM) to deal with computation complexity issue. The EMR-FLOAM al-
gorithm addresses computational complexity and resource requirements by utilizing a two-stage non-iterative distortion
compensation technique, resulting in optimized code and accelerated localization and map construction processes. The
simulation of the proposed work has been tested on the outdoor dataset tailored for multi-robot systems and the indoor
environment constructed by the Gazebo simulator. The simulation results have been compared with Enhanced Multi
Robot An improved Localization odometry and Mapping (EMR-ALOAM) algorithm and it was noted that EMR-FLOAM
shows an enhancement in reducing the error drift, but the error is still larger than that of EMR-ALOAM, while the
computational complexity in EMR-FLOAM is smaller than that of EMR-ALOAM.

Keywords: Scan Context descriptor, Centralized SLAM, Loop closure detection, LiDAR, Multi-Robot SLAM (MR-SLAM)

1. Introduction

Odometry data integration is essential for accurate
route prediction and global map development in the
dynamic field of SLAM. Odometry tracks movement,
but loop closure solves drift by recognizing previously
studied terrain. Lengthy procedures need this since
even slight error can substantially change a robot’s
course [1].

In Multi Robot Simultaneous Localization and Map-
ping (MR-SLAM) scenario, robots collaborate to com-
prehend the environment and construct an accurate
global map to achieve the specified task. Conse-
quently, it is crucial to address the revisited area
information acquired by either a single robot or mul-
tiple robots to rectify the accumulated errors resulting
from the multi-robot operation. This correction is es-

sential for aligning the local maps from individual
robots, ensuring the creation of a consistent, drift-free
global map [2]. This introduces two important con-
cepts in multi-robot loop closure detection: intra-loop
closure detection and inter-loop closure detection.
Intra-loop closure detection concentrates on identi-
fying loop closures within the trajectory of a single
robot, aiming to minimize drift errors as the robot
navigates through the scene. On the contrary, inter-
loop closure detection is concerned with identifying
loop closures across distinct robots. It entails locating
areas of overlap between maps generated by different
robots. This process facilitates map fusion, enabling
the creation of a consistent global map that integrates
information from various robots [3].

In recent times, 3D LiDAR sensors have become
widely employed in MR-SLAM applications, spanning
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diverse fields like intelligent vehicles, warehouses,
and mines detection. This is attributed to the sensor’s
capability to exhibit robustness against illumination
changes and furnish high-resolution data across a
broad volumetric field of view. These capabilities
significantly enhance its effectiveness in providing a
more accurate understanding of the environment, en-
abling seamless cooperation among robots to achieve
tasks effectively.

This work is an extension of our prior research [4],
which introduced a centralized MR-SLAM structure
based on a LiDAR sensor. The earlier work encoun-
tered challenges with accumulated errors, causing
deviations in robot trajectories and resulting in the
construction of an inconsistent global map. In re-
sponse, this study introduces a novel loop closure
procedure aimed at improving the estimated trajec-
tories of the robots and ensuring the creation of a
more accurate global map. Additionally, a considera-
tion has been given to computation time, recognizing
its significance as a crucial factor in some applica-
tions. The proposed loop closure procedure consists
of two essential components. The first part is executed
directly on the robots, utilizing the ScanContext de-
scriptor [5]. The second part, managed at the central
station, involves identifying overlapping areas within
the local map. This identification is achieved through
the extraction of Fast Point Feature Histogram (FPFH)
descriptors [6]. Following this, Singular-Value De-
composition (SVD) [7] and FAST_VGICP [8] are
employed to determine the transformation within
these overlapped areas.

2. Related work

In the context of MR-SLAM, the front-end oper-
ations, encompassing feature extraction and loop
closure detection, and the back-end tasks involv-
ing optimization and estimation may not necessarily
be carried out entirely on a single robot. This
depends on the specific architecture employed in
multi-robot systems [9]. Accordingly, we will review

relevant literature concerning loop closure detection
in MR-SLAM, considering the variations in system
architecture.
Distributed Loop Closure Detection: In this archi-

tecture, individual robots perform feature extraction
and share information for both intra- and inter-loop
closure detection, as well as individual state esti-
mation. An object-based module utilizing Persistent
Feature Histogram (PFHRGB) [10] for inter-loop clo-
sure detection has been proposed in [11] employing
the Distributed Gauss-Seidel (DGS) algorithm [12]
for optimization. However, the challenge of storing
numerous object models to account for intra-class
variations exists. DiSCo-SLAM [13] addresses the ef-
ficient use of communication resources by employing
compact ScanContext descriptors [14] for inter-loop
closure detection. The Perspective Consistency Maxi-
mization (PCM) method [15] and a two-stage global
and local optimization further improve accuracy.
Swarm-SLAM [16] prioritizes sparse inter-robot loop
closure based on algebraic connectivity maximiza-
tion and uses optimization methods like Graduated
Non-Convexity (GNC) and Georgia Tech Smoothing
and Mapping (GTSAM). DCL-SLAM [17] employs iris
descriptors[18] derived from LiDAR data, utilizing
Hamming distance and KD-tree methods for inter-
loop closure detection. Table 1 shows brief details
for the above work, including the features utilized
in inter- and intra-loop detection algorithms, the
optimization method, the outlier rejection module,
and the source code links. Despite the performance
advantages of this MR-SLAM architecture, it still
faces several challenges, including communication
overhead, data fusion intricacies, consistency and
synchronization issues, and algorithmic complexities.
Centralized Loop Closure Detection: In this

method, the central station is responsible for inter-
loop closure detection, and in some designs, it may
also handle intra-loop closure detection, depending
on the application or available resources. Detecting
loop closures by finding overlapped areas between
maps has gained popularity in centralized LiDAR-
based MR-SLAM [20]. The place recognition module

Table 1. Brief details for the distrusted MR-SLAM.

Works Intra-Loop features Inter-Loop features Optimization method Outlier rejection Source code

[19] PFHRGB PFHRGB DGS Not support https://cognitiverobotics.github.io/
distributed-mapper/

[13] Corner and surface
features

Scan context DGS PCM https://github.com/
RobustFieldAutonomyLab/DiSCo-
SLAM

[16] FPFH Scan context GNC and GTSAM PCM https://github.com/MISTLab/
Swarm-SLAM

[17] Edge and surface
features

LiDAR Iris DGS PCM https://github.com/PengYu-Team/
DCL-SLAM

https://cognitiverobotics.github.io/distributed-mapper/
https://cognitiverobotics.github.io/distributed-mapper/
https://github.com/RobustFieldAutonomyLab/DiSCo-SLAM
https://github.com/RobustFieldAutonomyLab/DiSCo-SLAM
https://github.com/RobustFieldAutonomyLab/DiSCo-SLAM
https://github.com/MISTLab/Swarm-SLAM
https://github.com/MISTLab/Swarm-SLAM
https://github.com/PengYu-Team/DCL-SLAM
https://github.com/PengYu-Team/DCL-SLAM
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Table 2. Brief details for the centerlized MR-SLAM.

Outlier Optimization 3D or
Works Sensor Local SLAM Inter-Loop method rejection method 2D

[23] LiDAR Pose-Graph SLAM Segment matching No iSAM2 3D
[24] Camera Pose-Graph SLAM SURF feature matching PCM iSAM 2D
[25] LiDAR, camera LOAM SLAM Scan matching ICM GTSAM 3D
[22] LiDAR, camera LeGO-LOAM ORB feature matching PCM GTSAM 2D
[26] LiDAR, camera LOCUS or Egin value-based ICM GTSAM + Leven-berg 3D

Hovermap [29] matching Marquard
Our work LiDAR FLOAM FPFH matching Confidence score GTSAM 3D

is utilized to detect the overlapped areas. Once
the place recognition matches are determined, geo-
metric estimation is performed to find the relative
pose between the corresponding places. However, in
LiDAR-based MR-SLAM, finding the overlapped area
with 3D point clouds is a challenge due to the dense
nature of the data and the lack of expressive features
for place recognition. Compact global point cloud
descriptors [21] have been developed to address the
above challenge by providing a condensed represen-
tation of the point cloud data and enabling efficient
comparison.

Another popular approach recently used for loop
closure in this architecture involves extracting fea-
tures from point clouds. These features are not only
utilized in place recognition but also provide ini-
tial estimates for later geometric alignments, as seen
in DARE-SLAM [22], which employs the Iterative
Closest Point (ICP) algorithm [8]. However, ICP re-
lies on good initial guesses, which are not readily
available between the local maps of different robots
in multi-robot operations. Therefore, using ICP di-
rectly may not be suitable in such scenarios. A place
recognition method presented in [23] is based on
a segment-matching algorithm. Each robot indepen-
dently calculates the odometry factors, scan matching
factors, and the segmented point cloud. All this in-
formation is then transmitted to the central station
for the processes of place recognition and pose graph
optimization.

The robustness of loop closure detection algorithms
depends heavily on the robot’s environment. In some
cases, these algorithms may struggle to recognize re-
liable loop closure candidates. For example, when
different places are incorrectly identified as the ex-
act location, it can result in inaccurate loop closure
detection, a phenomenon known as the perceptual
aliasing problem. This issue has been addressed in
[24], where a selection algorithm was introduced
to filter out false-positive loop closure candidates
and choose reliable loop closures for accurate map
merging. Another example is that environments with
long corridors and tunnels may experience perceptual
degradation due to their symmetrical and featureless

walls, a challenge addressed in LAMP [25], which
uses Incremental Consistent Measurement (ICM). De-
rived works from [25], namely LAMP 2.0 [26] and
[27] have been presented to tackle large-scale multi-
robot SLAM in subterranean environments. In these
works, the loop closure detection algorithm relies on
the Graph Neural Network (GNN) [28] to predict
unreliable loop closures.

Additionally, a prioritization system is employed
to prioritize feature-rich loop closures and filter
out feature-poor loop closure candidates. However,
LAMP and LAMP 2.0 have not been tested for indoor
environments such as warehouse applications and
don’t support 3D mapping. Table 2 provides concise
details for some of the surveyed works for the central-
ized MR-SLAM, including the used sensor, local SLAM
used approach for inter-loop closure detection, op-
timization method, outlier rejection module, source
code link, and its support for 3D mapping.

Despite the large amount of research on MR-SLAM,
it still suffers from some limitations, such as the
need for a large amount of training data to recog-
nize revisited places, computational complexity, and
spatial distribution issues, as clarified in Table 3. For
example, the work [1] suffers from training and com-
putational complexity issues but does not suffer from
the spatial distribution issue.

In this work, we propose a centralized LiDAR-based
MR-SLAM system with a novel loop closure detection

Table 3. Some limitations in the reveiwed works.

Computation Spatial
Required complexity on distribution

Works training the robot board issue

[19] 3 3 8

[13] 8 3 8

[17] 8 3 8

[16] 3 3 8

[23] 3 3 3

[24] 8 3 8

[25] 8 3 3

[22] 8 3 3

[26] 8 3 3

Our works 8 8 8

(EMR-FLOAM)
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procedure. The approach carefully addresses the com-
putational complexity and time required to build a 3D
consistent global map by distributing computations
between the robots and the central station. Specifi-
cally, intra-loop closure detection is implemented on
the robot itself using Scan Context descriptors. At the
same time, a robust map fusion algorithm can identify
overlapped areas (place recognition) between local
maps at the central station, thereby preventing the
need for an inter-loop closure detection algorithm.

This approach streamlines the fusion process by di-
rectly recognizing common regions in the local maps
without explicitly relying on inter-loop closure detec-
tion. Table 2 provides brief details for the reviewed
centralized MR-SLAM and our work, including the
sensor used, local SLAM method, inter-loop closure
approach, outlier rejection method, source code, and
map style.

The contributions of this work are outlined as fol-
lows:

1. Development of a novel centralized MR-SLAM
based solely on LiDAR sensor data, supporting
the creation of 3D maps.

This contribution is significant as it addresses the
need for efficient 3D mapping in centralized MR-
SLAM. LiDAR-based SLAM is crucial for accurate 3D
mapping, especially in applications like autonomous
vehicles, where precise spatial information is re-
quired; providing a centralized MR-SLAM solution
that relies on LiDAR data is valuable.

2. FLOAM SLAM features to address MR-SLAM
speed and computational complexity issues.

This approach addresses a significant challenge
in MR-SLAM: computational complexity. Implement-
ing FLOAM SLAM methods in real-time MR-SLAM
systems could improve efficiency by decreasing com-
putational complexity and accelerating local map
generation. Robotic applications need rapidity and
effectiveness.

3. A pioneering technique is adopted to resolve the
loop closure problem.

Loop closure detection is vital to making sure maps
are accurate when robots try to figure out where
they are and build a map at the same time (i.e.,
SLAM). Our new way does this by using robots that
can scan their surroundings and an intelligent way
to combine maps to recognize places they’ve seen
before. You’ve pushed this technology forward by
introducing a fresh approach to finding these loops
with MR-SLAM.

This research looks at problems with MR-SLAM,
like the difficulty of computations, creating 3D maps,

and finding loop closures. Making progress in these
areas could help make systems that map and locate
using multiple robots work better in various uses.

3. Theoretical foundations

The following theoretical postulates underpin the
suggested technique.

3.1. Registration and odometry estimation

Environmental resilience and location estimate ac-
curacy are hallmarks of LiDAR-based SLAM. For 3D
mapping, its three-dimensional viewpoint is essential.
Traditional odometry estimation uses the Iterative
Closest Point (ICP) approach to align scans using
point cloud distance reduction. Processing several
points makes this method computationally ineffi-
cient. Numerous examples include FLOAM [30],
LeGO-LOAM [31], SA-LOAM [32], and more.

In our work, we utilize FLOAM for odometry es-
timation and intra-loop closure detection. FLOAM
stands out due to its non-iterative two-stage distortion
compensation method. It identifies edge and plane
characteristics within point clouds based on their
level of smoothness, where high smoothness indicates
edges and low smoothness indicates planes.

Smoothness(α) =
1

n, ‖pi‖

∥∥∥∑n

j=1, j 6=i
(p j − pi)

∥∥∥ (1)

In this context, pi represents the target point, ‘n’
denotes the number of adjacent points, and p j stands
for the source point in the same ring. Given that 3D
LiDAR operates at a frequency exceeding 10 Hz, with
very short intervals between consecutive scans, the
first stage of distortion compensation assumes con-
stant angular and linear velocity to estimate motion
and correct distortion within a brief timeframe. The
second stage involves reevaluating distortion after the
pose estimation process, and the recalculated undis-
torted features are then updated in the final map. The
two-stage processes are described below. To estimate
the transformation between two consecutive scans
using linear interpolation over a small period of time
1t:

Tk(1t) = Tk−1 · exp(1t · ξ ) (2)

Tk−1 represents the transformation at the previ-
ous frame, ξ denotes the twist vector representing
instantaneous motion, which contains the vector of
angular velocities and linear velocities, and the exp(·)
function is used to convert the twist vector into a
transformation matrix. The undistorted features are
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expressed as follows.

p̃k =
{
Tk(1t)pm,nk |p

m,n
k ∈ pk

}
(3)

Which is used in the final pose estimation as below
equation:

T ∗k = minTk
∑

(w1dei)+
∑

(w2dp j) (4)

where T ∗k represents the current pose estimation,
where w1 and w2 denote the weights used to balance
the matching process further, which can be calculated
based on the local smoothness defined previously.
The variable dei indicates the separation between a
specific edge feature (the i-th one) and the line sub-
map. Similarly, dp j shows how far apart a particular
plane feature is (in this case, j-th in sequence) from
its corresponding plane sub-map. The primary goal of
this section is to introduce a non-iterative two-stage
distortion compensation method as an alternative to
the computationally inefficient iterative method. Ad-
ditionally, scan-to-submap matching is employed for
pose estimation. These two steps significantly reduce
computational complexity, leading to faster process-
ing and improved overall system performance.

3.2. Intra-Loop closure detection and optimization

Existing LiDAR-based loop closure detection meth-
ods grapple with two primary challenges. Firstly, they
strive to develop descriptors that attain rotational
invariance, irrespective of changes in viewpoint. Sec-
ondly, these methods address the issue of noise
handling concerning spatial descriptors. Next, man-
aging the noise levels is yet another focus area
for these spatial identifiers. This is because a point
cloud’s resolution can fluctuate based on distance,
and its associated normals are typically speckled with
cacophony [5]. Current methods primarily rely on
histograms [33, 34], and [35] to tackle the mentioned
challenges. While the histogram method provides a
random gauge of the scenario, it lacks in portray-
ing an elaborate layout or structure of surroundings.
This constraint makes it difficult to develop a unique
enough descriptor for location recognition, which
may result in false positives.

According to [33], a two-phase matching technique
is used in conjunction with Scan Context descriptors
in this study. By providing an effective bin encoding
method while maintaining the point cloud’s underly-
ing structure, the Scan Context descriptor converts a
full 3D scan point cloud into a matrix. At the same
time, in order to achieve a reasonable search dura-
tion when matching, the two-phase matching method
is employed. This synergy produces a stable loop

(a) (b)
Fig. 1. Scan Context Description: (a) rings and sectors construction
(b) how the sectors and rings are represented in a 2D matrix.

closure algorithm that is independent of the LiDAR
perspective.

3.2.1. Scan context
Shape Context, proposed by [36], is a model for

scan contexts that uses geometric encoding to capture
the shape of a point cloud surrounding a local key
point. Partitioning the 3D scan into Nr rings and Ns
sectors is shown in Fig. 1a. Afterwards, each bin is
given a single real value based on the z-coordinate of
the point cloud inside that bin. This real value, de-
noted as νi j serves as the pixel value when translating
the bin to a pixel, as depicted in 1b. Ultimately, a scan
context, denoted as SC, is represented as a Nr x Ns
matrix, as follows:

SC = (νi j) ∈ RNrxNs, νi j = maxp∈pi jz(p) (5)

Here, pi j represents a group of points found within
the specific grid compartment determined by ring (i)
and sector (j). The function z(·) is used to tell us about
this point’s exact position (p) in terms of its vertical
or ‘z-coordinate’.

3.2.2. Loop closure detection
After converting the 3D LiDAR scan to the Scan

Context matrix, the similarity score can be calculated
between the source (SCs) and the candidate (SCc) Scan
Context matrixes based on the distance measurement.
Both SCs and SCc are compared in a column-wise
manner. Or put another way, a cosine distance (csj, c

c
j)

is deployed to ascertain the gap between two column
vectors at an identical index. The question of this
‘distance’ can be framed as follows:

d(SCs, SCc) =
1
Ns

∑Ns

j=1

(
1−

csjc
c
j

‖csj‖‖c
c
j‖

)
(6)

However, revisiting the same location from a differ-
ent direction or corner caused shifts in some columns
in SCc. As demonstrated in the equation, the minimal
distance was determined utilizing all column-shifted
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scan contexts to solve this issue:

D(SCs, SCc) = minn∈|Ns|d(SCs, SCc) (7)

n∗ = argminn∈|Ns|d(SCs, SCcn) (8)

Where SCcn represents the candidate scan context
shifted by n columns from the source SCs scan context.
This shift information may be an excellent starting
point for localization refinement like ICP.

3.2.3. Search algorithm
In the realm of context-place recognition searching,

three primary approaches are commonly employed:
pairwise similarity scoring, sparse optimization, and
nearest-neighbor search [37]. The search method
hierarchically blends pairwise scoring and closest
neighbor search to reach a realistic search time. As
a rotation-invariant descriptor retrieved from a scan
context, the ring key information is crucial to the
search process. Each row in the scan context, de-
noted as undergoes encoding into a single real value
through the function 2(r). These resulting values are
then represented by an Nr-dimensional vector as fol-
lows:

K = {2(r1), . . . ,2(rNr )}, where 2 : ri− > R (9)

The ring key attains rotation invariance through
its encoding function’s reliance on the occupation ra-
tio, which remains consistent regardless of viewpoint.
Moreover, its inherent simplicity, lacking detailed
information, streamlines the search process for po-
tential candidates or loops. The source’s ring key finds
comparable keys and obtains their scan indexes using
vector K to build a KD tree. Their scan context is
compared to the source’s operating distance (6) to
discover the top comparable keys. After accepting a
candidate, the nearest place is revisited.

c∗ = argminck∈CD(SCs, SCck), s.t D < t (10)

In this context, C represents a set of indexes of
candidates extracted from the KD tree, where c∗ is the
index of the identified loop, and t is a predetermined
acceptance threshold. The pose graph is optimized us-
ing Incremental Smoothing and Mapping (ISAM) once
coil closure detection is finished. This optimization
stage is essential for fixing the robot’s trajectory drift
and making the produced local map more accurate
and high-quality. By including ISAM, a more accu-
rate and consistent representation of the environment
is created, which helps to fix any path-related mis-
takes or inconsistencies that may have built up over
time.

Fig. 2. EMR-FLOAM block diagram.

4. The proposed algorithm

Fig. 2 depicts the proposed algorithm diagram.
Some robots in this setup estimate odometry, detect
intra-loop closures, and optimize and construct local
maps. After that, the locally produced maps are for-
warded to the central station to identify inter-loop
closures and implement fusion. The system accu-
rately identifies candidates for intra-loop closure and
performs place recognition between local maps by
distributing computations between the robots and the
central station. By taking this route, we can speed up
the process of creating a world map while using our
resources more efficiently.

The core idea behind map fusion algorithms is
to find the places where local maps overlap, match
them, and then figure out how to alter them such that
they create a coherent global map. It is possible to
think of the overlapping areas as inter-loop closures
or places that are visited by numerous robots [20].
At the central station, local maps are collected, out-
liers are removed, and the maps are down-sampled
to reduce computations. The following steps are then
implemented to detect the overlapped areas:

• Surface Normal Estimation: As a preprocessing
step, vectors perpendicular to the surface are
determined in the vicinity of each point by per-
forming least-squares plane fitting estimation for
each point neighborhood to determine the orien-
tation of the estimated normal.

• Keypoint Detection: To enhance matching effi-
ciency, key points are extracted from the point
clouds to reduce the number of points in each
map. Since the point cloud contains only coor-
dinate information without additional data, the
Harris 3D keypoint detector is employed for this
purpose.

• Descriptor Computation: Fast Point Feature His-
togram (FPFH) descriptors are computed for their
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Algorithm 1. Matching approach using k-nearest matches vali-
dated with reciprocal matching.

Input: D1, D2 set of descriptors
Output: set of matches between D1, D2
1: function matchReciprocalK (D1, D2)
2: M = {}
3: for all di ∈ D1 do
4: N ← k-nearest neighbors of di in D2
5: for all dj ∈ N do
6: N′ ← k-nearest neighbors of dj in D1
7: if di ∈ N′ then
8: M← M ∪ {(di, dj)}
9: end if
10: end for
11: end for
12: return M
13: endfunction

effectiveness in handling geometric information
and superior processing speed.

• Matching Process: The objective is to identify de-
scriptors from all sets of detected descriptors that
describe the same place (inter-loop closure). This
task poses a challenge as the descriptors may
be less descriptive than desired. Consequently,
the correct match may not always be the closest
descriptor but rather the k-nearest descriptor. Re-
ciprocal matching is utilized in this work to find
the matching relationship in bidirectional (d(i)↔
d(j)) and provide mutual agreement as clarified in
Algorithm 1.

• Pair-Transform Estimation: The Random Sample
Consensus (RANSAC) technique finds matching
inlier descriptors and estimates their transform us-
ing Singular-Value Decomposition. FAST_VGICP
refines estimated transform.

• Global transform estimation: An approximation
of the transition between regional maps and a
worldwide standard is provided by the map-merge
graph. The match graph, similar to a pose graph,
is formed, and the most significant connected
component is determined, excluding matches with
confidences below 1.0. After selecting the global
reference frame from the maximum spanning tree,
only one path is supplied from the nodes to it.
Finally, tree and pairwise transforms estimate the
global transform.

• Map Merging: When the maps and their trans-
forms are obtained, the 3D global map is con-
structed by combining them. This can be ex-
pressed mathematically by the equation below:

Mglobal = UiTi(Mi), s.t Ti > Con f.Th (11)

Ui represents the union operation, combining the
transformed local maps, Ti(Mi) denotes the applica-
tion of the transformation Ti to the local map Mi. The

pairwise transformation Ti should satisfy the confi-
dence threshold Con f.Th.

Place recognition occurs during the map fusion
stage, eliminating the necessity for inter-loop closure
algorithms. This omission stems from the reliance
on the map-merge graph. Unlike graph-based SLAM,
where loop closures are crucial, they are typically
non-essential for optimal performance in standard
setups of map-merging graphs. In SLAM graphs,
measurements linked with edges are influenced by
Gaussian noise. However, map-merging graphs rely
on pairwise estimates derived from the geometry of
entire maps, encompassing a significant number of
points. These pairwise estimates tend to be precise,
covering extensive sections of the environment. Eval-
uation metrics, such as confidence thresholds, are
in place for these pairwise estimates, ensuring the
utilization of robust estimates within the graph [38].

5. Simulation results

The proposed work was implemented on a lap-
top featuring an Intel(R) Core(TM) i7-7500U CPU
clocked at 2.70 GHz (with a boost up to 2.90 GHz),
accompanied by 12.0 GB of RAM and running on a 64-
bit operating system. For virtualization, VirtualBox
software was utilized and configured with Worksta-
tion Pro settings, including four processors and 8
GB of memory. This virtual environment facilitated
the installation of Ubuntu 20.04 and ROS (Robotic
Operating System) Noetic version. Initially, the sys-
tem’s performance and accuracy were assessed using
real-world data, comparing it with other LIDAR-based
SLAM methods. Afterwards, a Gazebo-created virtual
environment was used to mimic the implementation.
This dual method allowed virtual testing and real-
world validation to thoroughly evaluate the proposed
technology.

5.1. Real world dataset

Our method was compared against cutting-edge
LiDAR-based MR-SLAM systems using a real-world
dataset of outdoor surrounds [39]. This dataset was
chosen since it was the first open-source multi-robot
dataset. Six LiDAR-equipped robots generate a com-
plex and diverse real-world scenario ideal for system
evaluation and benchmarking.

5.2. Use the outdoor environment dataset to assess
the suggested algorithm

A. Testing without Loop Closure Detection: To
compare results, the proposed system was tested
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Table 4. Details of the selected dataset.

File name Size (GB) Length (m) LiDAR data topic

Acl_Jackal.bag 8.0 784.998 /acl_jackal/LiDAR_points
Sparkal1-001.bag 10.86 1225.951 /sparkal1-001/LiDAR_points

(a)                          (b)

(c)                                 (d)

(e)
Fig. 3. Path Estimation, Local Maps, and Global Map Produced by MR-FLOAM: (a & c) illustrate the estimated trajectories by FLOAM for
each robot, (b & d) depict the local maps built by FLOAM for each robot, (e) the global map constructed by the MR-FLOAM.

against A-LOAM, a LiDAR-based SLAM solution.
Table 4 shows that two robots evaluated dataset se-
quences 1 and 4. These sequences were chosen to
improve review and introduce tough loop closure
conditions. This technique lets us compare our system
against A-LOAM in detail.

We first employed MR-FLOAM and MR-ALOAM
SLAM systems individually without a loop closure

method. The paths, local maps, and global maps cre-
ated by each system are shown in Figs. 3 and 4.
Table 5 shows each system’s computation time and
difficulty. The table also displays how much RAM
each system requires to store its global map, indicat-
ing its size. This early study lays the groundwork for
evaluating system performance without loop closure
detection. The formula calculates each robot’s Root
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(a)                                (b)

(c) (d)

(e)
Fig. 4. Path Estimation, Local Maps, and Global Map Produced by ALOAM: (a & c) illustrate the estimated trajectories by ALOAM for each
robot, (b & d) depict the local maps built by ALOAM for each robot, (e) the global map constructed by the MR-ALOAM.

Mean Square Error (RMSE), which may be used to
assess path estimate precision and accuracy:

RMSE =

√√√√1
n

n∑
i=1

(xest − xgt )2+ (yest − ygt )2+ (zest − zgt )2

(12)

where (xest , yest , zest ) signifies the predicted posture
coordinate, and (xgt , ygt , zgt ) represents the ground

Table 5. Average computing time and global map size for each
algorithm.

MR-implementation Average computation Global map
method time size

MR-ALOAM 103665.5735 ms 3688037 point
MR-FLOAM 8173.136616 ms 1096696 point

truth coordinates. The RMSE value for each robot is
clarified in Table 6.
B. Testing with Loop Closure Detection: In this

section, we reintroduce the previously mentioned sys-
tems with the integration of our proposed intra-loop
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(a)                                  (b)

(c)                                (d)

(e)
Fig. 5. Path Estimation, Local Maps, and Global Map Produced by Enhanced FLOAM:(a & c) illustrate the estimated trajectories of the robots
using enhanced FLOAM, (b & d) depict the local maps generated by enhanced FLOAM for each robot, (e) the global map constructed by
the enhanced MR-FLOAM.

Table 6. RMSE values for each robot in both algorithms.

MR-implementation method ROBOT1 ROBOT2

MR-ALOAM 8.685816 (m) 2.914255 (m)
MR-FLOAM 13.122269 (m) 18.340151 (m)

detection approach, paying close attention to the
computation time and the size of the global map.
Furthermore, we evaluate the values of the RMSE
for each robot to assess the effectiveness of our pro-
posed loop closure detection method. The simulation
outcomes for the enhanced multi-robot Fast Local-
ization Odometry and Mapping (EMR-FLOAM) and
the enhanced multi-robot an Improved Localization
Odometry and Mapping (EMR-ALOAM) are eluci-
dated in Figs. 5 and 6, as well as Tables 7 and 8.

Table 7. Average computing time and the map size with loop closure
algorithm.

MR-implementation Average computation Global map
method time size

EMR-ALOAM 87017.23542 ms 2772359 points
EMR-FLOAM 43213.38074 ms 841450 points

Table 8. RMSE value for each robot in both enhanced approaches.

MR-implementation
method ROBOT1 ROBOT2

EMR-ALOAM 8.903713 (m) 2.709052 (m)
EMR-FLOAM 9.446425 (m) 13.120242 (m)
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(a)                                       (b)

(c)                           (d)

(e)
Fig. 6. Path Estimation, Local Maps, and Global Map Produced by Enhanced ALOAM: (a & c) illustrate the estimated trajectories of the
robots using enhanced ALOAM, (b & d) depict the local maps generated by enhanced ALOAM for each robot, (e) the global map constructed
by the enhanced MR-ALOAM.

5.3. Evaluation of the proposed algorithm in the
simulated world

A virtual warehouse environment has been con-
structed using the Gazebo simulator, featuring two
simulated robots designed to navigate within the en-
vironment. These robots are equipped with Velodyne
sensor simulation (VLP-16), gathering information in
point cloud format. Fig. 7 provides a visual depiction
of the simulated environment and the robots. The
proposed system will undergo testing in two phases,
outlined as follows:

A. Testing the Proposed Algorithm without In-
cluding Intra Loop Closure Algorithm: This section

focuses on utilizing only the overlapped area for de-
tecting the revisited location. The local maps exhibit a
small overlapping region marked with a red circle, as
depicted in Fig. 7. The green and blue circles indicate
the areas that will be detected by Robot 1 and Robot
2, respectively.

Robot 1 will commence its journey from point (1,
0, 0) and navigate back to the same point, thereby in-
troducing a loop closure challenge. In contrast, Robot
2 will initiate its path from point (1, 1, 0) without
returning to the initial position. Fig. 8 illustrates the
generated local maps, the inferred paths for each
robot, and the resultant global map. Table 9 provides
details on the RMSE values, computing time, and
local map size for each robot.
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Fig. 7. Warehouse simulated environment.

Table 9. RMSE, local map size, and the total computing time aver-
age to construct the global map.

RMSE Map size Computing time

Robot1 0.014373 16274 points 252.090525
Robot2 0.015164 25970 points

B. Testing the Proposed System, including the
Intra Loop Closure Algorithm: In this phase, each
robot has been equipped with an intra-loop detec-
tion algorithm. The effectiveness of the algorithm
has been evaluated in the environment illustrated in
Fig. 7, featuring a small overlapped area. The result-
ing global map is presented in Fig. 9.

As depicted in Fig. 9, there were inaccuracies in
the merging of the local maps. Consequently, ad-
justments were made to the simulated environment
to enhance information sharing among the robots,

(a)                            (b)

(c)
Fig. 8. Local maps and the global map: (a) and (b) represent the local maps and the estimated path for robot1 and robot2, respectively, and
(c) illustrates the global merged map.

Fig. 9. Inconsistent global map.

thereby expanding the overlapped area, as illustrated
in Fig. 10. Fig. 11 displays the local maps and the
resulting global map. Additionally, Table 10 presents
the corresponding RMSE values and computing times.

6. Disccusion of the simulation results

6.1. Path estimation and map construction

Our proposed MR-FLOAM system demonstrates
faster path estimation when compared to MR-
ALOAM, leading to accelerated global map construc-
tion, as detailed in Table 5. While both global and
local maps generated by MR-LOAM exhibit intricate
details, they come at the cost of a more significant
memory allocation (map size). Notably, in the ab-
sence of the loop closure detection algorithm, the
Root Mean Square Error (RMSE) values for each
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Fig. 10. Modified warehouse environment, red circle represents the
overlapped area, and green and blue circles represent the detected
area by robot1 and robot2, respectively.

robot’s path experience a noticeable increase. This
increase is particularly evident in Robot1’s trajectory,
as indicated in Table 6. The rise in RMSE values
signifies a drifting phenomenon in Robot1’s path,
which is further illustrated by the unclosed trajectory
in Figs. 3a and 4a. Consequently, this drift leads to
inconsistencies in local and global map construction,
as depicted in Figs. 3b, 3e, 4b, and 4e.

6.2. Drift correction and map improvement

Figs. 5a, 5b, 6a, and 6b shed light on the im-
provement in path estimation and local maps, with

(a)                                 (b)

(c)
Fig. 11. Simulation result after enhancement, (a) and (b) represent the local maps and the estimated paths for robot1 and robot2, respectively
and (c) represent the complete global map.

Table 10. RMSE, local map size, and the total computing time
average to construct the global map.

RMSE(m) Map size Computing time(ms)

Robot1 0.008618 39206 points 616.3846
Robot2 0.009492 61329 points

drift correction becoming evident in both MR-FLOAM
and MR-ALOAM following loop closures. The RMSE
values in both systems have decreased, indicating suc-
cessful drift correction, as demonstrated in Table 8.
While the enhanced MR-ALOAM exhibits lower RMSE
values, signifying higher precision, the enhanced
MR-FLOAM still offers the advantage of reduced com-
puting time, as shown in Table 6. It’s noteworthy that
both systems have witnessed improvements in their
global and local maps. However, it’s worth mention-
ing that the enhanced MR-ALOAM produces a global
map with more detailed information, necessitating a
more significant memory allocation, as outlined in
Table 7. Conversely, the improved MR-FLOAM re-
quires less memory to store the global map while
maintaining essential information content.

6.3. Robustness in simulated environments

In the simulated environment tests, our proposed
MR-FLOAM consistently generates a global map, even
in scenarios with small overlapped areas, as depicted



IRAQI JOURNAL FOR COMPUTER SCIENCE AND MATHEMATICS 2025;5:310–325 323

in Fig. 8c. In the second part of the test, despite incor-
porating the intra-loop closure detection algorithm,
the system produces an inconsistent global map, as
shown in Fig. 9. Consequently, we modified the envi-
ronment to increase the overlapped area, resulting in
Fig. 10. This modification led to a consistent global
map, as observed in Fig. 11c. Furthermore, Robot1’s
trajectory achieved loop closure, as evidenced in Fig.
11a, accompanied by a low RMSE value, as detailed
in Table 10.

7. Limitation and future directions

The proposed centralized LiDAR-based MR-SLAM
system has shown promising results; however, we
have identified several areas that present challenges
and offer opportunities for further advancement:

1. Perceptual Aliasing: The robustness of our loop
closure detection algorithm is heavily influenced
by the environmental context, with symmetrical
and featureless structures presenting a particular
challenge. To address this, future research will
look into more robust feature descriptors or ma-
chine learning classifiers (SegMatch, Range++)
that can enhance discrimination between visu-
ally similar environments, thereby mitigating
the perceptual aliasing issue.

2. Memory Requirements: The high precision of
our enhanced MR-ALOAM system comes with
significant memory demands for storing detailed
global maps. To save space and keep map details
safe, upcoming projects will look into ways to
shrink and store data more efficiently.

3. Challenges with 3D Point Clouds: It’s tough to
spot areas that overlap in dense clouds. To get
better at finding places and combining maps,
we’re going to work on making better ways to
show features.

4. Sharing the computing work between robots and
the central station makes things simpler but can
lead to delays because of slow communications.
Future studies will work on improving how com-
puting tasks are divided and how devices talk to
each other to make the system work better and
faster in real-time.

We’re working on making our method better so
that when robots or areas barely touch, they can still
connect better. We’re also adding extra details in our
maps to help robots know more about where they are,
which makes them more competent in deciding and
makes the maps better, too.

We hope to use this method for smart cars, auto-
mated storage places, and digging sites. We want to

see how well our method works in these different
places. We’ll keep trying new things in the world of
many robots working together.

8. Conculsion

This study expands upon our prior work [4] by
presenting a new method for identifying loop clo-
sures in centralized multi-robot LiDAR-based SLAM.
We successfully decreased the robot’s path predic-
tion drift by applying a strategy that takes into
account both intra- and inter-loop closures and by
using scan context descriptors for intra-loop detec-
tion. As a result, trajectory mapping is now more
precise. Our approach (EMR-FLOAM) has helped gen-
erate a consistent global map, and its performance
in pose estimation has been especially noteworthy.
Computability and optimization of resources were
key design goals for the suggested method because of
their importance in some applications. Cases where
careful allocation of computing resources is critical
have shown promising results for our approach. The
work done here is a significant advance for SLAM,
which relies on centralized multi-robot LiDAR. We
have proven that our method works and highlighted
how crucial it is for robotic mapping and navigation
systems to have accurate data and well-managed re-
sources. Our research provides strong evidence that
robotic perception and mapping technology can con-
tinue to advance.
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