Antibacterial Effect of some Herbal plants against Pathogenic Bacteria Isolated from Patients with Urinary Tract Infections (UTI)

Farah Mohommed Saleh Al-Qurashi and Zahraa I.Abudal Kadhum Al Yarmouk University collage /Department of medical laboratories / Baghdad / Iraq.

Abstract

The antibacterial activity of ethanol and water extracts of borage officinal's Eucalyptus leaves, and Cinnamon, were investigated in vitro using disk diffusion method. All Extracts were tested against four pathogenic bacteria (**Staphylococcus aureus**, **Klebsiella spp**, **Pseudomonas aregenosia and Proteus spp**). Cinnamon ethanol extract exhibited better antibacterial activity against gram positive and gram negative bacteria then aqueous extract gave the same effect against the same bacteria. Cinnamon ethanol extract gave highest effect against **S. aureus**, then lower effect on **Klebsiella spp** and **Proteus spp**, and no effect against **P. aregenosia**.

borage officinal's ethanol extract gave the highest effect against **S.aureus**, then very lower effect was shown against **P.aregenosia**, while no effect was observed against **Klebsiella** spp and **Proteus spp**. Eucalyptus leaves ethanol extract gave high effect on **S. aureus**, while low effect was observed against **P. aregenosia** and **Proteus spp**, no effect was shown against **Klebsiella spp**. In conclusion the antibacterial activity of the plant extracts studied showed a better effect on Gram positive bacteria as compare with Gram negative bacteria.

Keywords: Antibiotics, antimicrobial resistance, antibacterial effect , bacterial cell wall herbal plants.

التأثير المضاد للبكتيريا لبعض الأعثياب ضد البكتيريا المعزولة من الأشخاص المصابين

بالالتهاب المجاري البولية

تم التحقيق في النشاط المضاد للبكتيريا من مستخلصات الإيثانول والمستخلصات المائية من أوراق الأوكالبتوس لسان الثور والقرفة ، في المختبر باستخدام طريقة نشر القرص. تم اختبار جميع المستخلصات ضد أربعة أنواع من البكتيريا المسببة للأمراض (Staphylococcus aureus (المكورات العنقودية الذهبية المذهبة) مستخلص الإيثانول من القرفة نشاطًا مصادًا للجراثيم بشكل أفضل من المستخلص المائي للقرفة ضد البكتيريا موجبة والسالبة لصبغة جرام الذي أعطى تأثير ضد البكتيريا نفسها. مستخلص المائي للقرفة الخربة الذهبية على تأثير ضد المكورات العنقودية الذهبية المذهبة S. aureus من المستخلص المائي للقرفة الخربة الفرفة على تأثير ضد المكورات العنقودية الذهبية المذهبة S. aureus ثائير أقل على Klebsiella spp و به متخلص الإيثانول من القرفة الذهبية المذهبة على تأثير ضد البكتيريا نفسها. مستخلص الإيثانول من القرفة الم على تأثير ضد المكورات العنقودية الذهبية المذهبة S. aureus ثائير أقل على Proteus spp و به متخلص الإيثانول من القرفة الذهبية المذهبة المذهبة S. aureus و المواني القرفة من القرفة المرابي الموجبة والسالبة لصبغة جرام الذي أعطى أثير خليسة S. من المنتخل المن القرفة الزنوبة المواني القرفة المرابي الموجبة والسالبة لصبغة جرام الذي أعطى تأثير ضد المختيريا نفسها. مستخلص المائي للقرفة العلى أعلى أعلى تأثير ضد المكورات العنقودية الذهبية المذهبة S. aureus من المواني ألم على Proteus spp و المواني المواني القرفة المواني المواني المواني النوبة المذهبة P. aregenosia المواني القل على Proteus spp و المواني المواني المواني الربة المواني الزيجارية على من المواني الزيجارية P. aregenosia المواني المواني

أعطى مستخلص الإيثانول من لسان الثور borage officinal أعلى تأثير ضد المكورات العنقودية الذهبية المذهبية *Klebsiella أعلى تأثير ضد P.aregenosia أعلى تأثير ضد S.aureus بينما لم يلاحظ أي تأثير ضد spp* و spp.

أعطى مستخلص الإيثانول من أوراق الأوكالبتوس تأثيرًا كبيرًا على المكورات العنقودية الذهبية المذهبة ، بينما لوحظ تأثير منخفض ضد الزوائف الزنجارية و Proteus spp ولم يظهر أي تأثير على Klebsiella spp. في الختام ، أظهر النشاط المضاد للبكتيريا في المستخلصات النباتية التي تمت دراستها تأثيرًا أفضل على البكتيريا الموجبة للجرام مقارنة بالبكتيريا سالبة الجرام.

Introduction

Several pathogens still represent a major public health problem in both developed and developing countries. Salmonella Clostridium spp., perfringens, Campylobacter, Vibrio parahaemolyticus, and enteropathogenic Escherichia coli cause over 90% of all cases of food poisoning. The extensive use of antimicrobials has driven increasing resistances among several bacterial species and, as a matter of fact, the efficacy of these inhibition compounds is seriously decreased. In the recent decades emerge of antibiotic resistant pathogens has been a worldwide problem. The undesirable side effects of some of antibiotics made us to search for new sources to combat these problems (1, 2, 3)

The researchers are showing interest towards natural products with bactericidal activity. Several compounds found in plants, which have long been used as agents for food preservation, represent natural alternatives to chemicals for the maintenance or shelf-life extension of new food products. Search for materials to fight against this problem seems necessary (4).

The plant world is the source of many medicines. Recently, researchers have estimated that there are about 400,000 species of plants worldwide, including about a quarter or a third have been used by companies for medicinal purposes .Humans use plants for thousands of years to treat various diseases, in many developing countries; much of the population relies on traditional doctors and their collections of medicinal plants to cure them (5). Herbals can play an important role in conserving biodiversity. These plants are actually very familiar to rural people who are very sensitive to their scarcity and their disappearance. Indeed, medicinal plants play an important role of health care population and represent a significant source of income for many families in the country side and cities (6).

Borage is a large hairy annual herb that is a member of Boraginaceae family. It grows in mostof Europe, in the Mediterranean region, and also in northern parts of Iran. The flowers are bright blue and star-shaped and the fruit consists of four brownish-black nutlets. Borage flourishes in ordinary soil and may be propagated by division of rootstocks and by cuttings of shoots in sandy soil in a cold frame in summer and autumn or from seeds sown in good light soil from mid of March May (7,8). Borage to constituents have been isolated by different investigators; they include gamma-linolenic acid (GLA), alphalinolenic acid(ALA), delta6-fatty acyl delta8-sphingolipid desaturase. desaturase and due to its content in gamma linolenic acid (GLA), borage is gaining increasing agricultural interest because GLA seems to have antiinflammatory effects. Borage flower might have an antioxidant effect, and No adverse effects have been found. Although no side effects have been reported, but borage leaves, flowers, and seeds contain small amounts of pyrrolizidine alkaloids that may be hepatotoxic (damaging to the liver) especially at high doses for long periods of time (9).

Benefits of Borage has been used by Iranian folk as a mood enhancer, an anxiolytic, anti inflammatory, anti laxative, an emollients and also it has been use for treatment of infectious diseases ,skin disorders including eczema,

seborrheic dermatitis, and

neurodermatitis. It is also use for rheumatoid arthritis (RA), stress, diabetes. attention deficithyperactivity disorder (ADHD), acute respiratory distress syndrome, alcoholism, and stroke. The flowers and the leaves of borage are used medicinally in France as an antifebrile, anti-depressive, for the treatment of stress and of circulatory pulmonary heart diseases. for complaints, poultice as a for inflammatory swellings, and for a hormone problem called adrenal insufficiency, for "blood purification," to increase urine flow, to prevent inflammation of the lungs, as а sedative, and to promote sweating. Borage is also used to increase breast milk production and to treat bronchitis and colds (10,11,12).

Cinnamon species are the most important and popular spices used worldwide not only for cooking but traditional and also in modern medicines. The most important constituents of cinnamon are cinnamaldehyde and transcinnamaldehyde, which are present in the essential oil, thus contributing to the fragrance and to the various biological activities observed with cinnamon (13,14). Cinnamon bark contains procyanidins and catechins, components of procyanidins The include both procyani-din A-type and B-type linkages These procyanidins extracted from cinnamon and berries also possess antioxidant activities

(15,16). Benefits of cinnamon In addition to being used as a spice and flavoring agent, cinnamon is also added to flavor chewing gums due to its mouth refreshing effects and ability to remove bad breath. (17).

Cinnamon can also improve the health of the colon, thereby reducing the risk of colon cancer Cinnamon is a coagulant and prevents bleeding Cinnamon also increases the blood circulation in the uterus and advances tissue regeneration This plant plays a vital role as a spice, but its essential oils and other constituents also have important activities. including antimicrobial, antifungal, antioxidant, and antidiabetic (18,19).

Cinnamon has also been traditionally used as tooth powder and to treat toothaches, dental problems, and oral microbiota. (20). Several antimicrobial activities of cinnamon and its oils have been reported in various studies For example, Matan *et al*.2006 reported the effects of cinnamon oils on different bacteria, fungal, and yeast species (21).

Eucalyptus actually refers to a large genus of flowering trees that has over 700 different species, most of which are located in Australia and New Zealand, although some of the more widespread species can be found throughout Southeast Asia. Due to the diverse uses of eucalyptus, it has been naturalized in various other tropical and temperate regions throughout the world .Benefits of Eucalyptus leaves are first Respiratory Health, eucalyptus leaves act as expectorants, helping to remove excess phlegm and mucus from the sinuses and respiratory tracts, eliminating the natural environment for bacteria and other pathogens to multiply and spread. In terms of bronchitis, the common cold, and even flu symptoms. Second is Immune System booster; third is Skin Health the natural antibacterial properties of eucalyptus make it ideal for protecting skin health as well. Diabetes management and prevention although the exact chemical pathway is unknown, research has shown that brewing eucalyptus leaves into tea can be an effective preventative measure or treatment for diabetes (22).

Aim of study: our study foxing on the detection of antibacterial effects of borage officinal's, Eucalyptus leaves, and Cinnamon.

Material and Method

Preparation of the herbal powder: The herbal plants (borage officinal's, Eucalyptus leaves, and Cinnam) were collected from the local market of Baghdad.

Preparation of extraction: Herbal powder (500 gram) was extracted in 1500 ml of either ethanol or water for 12 hours by mixing on a magnetic stirrer, and filtered by whatman filter paper NO 1. Supernante was collected. Then the filtrates were divided into portions and left to dry at 55 °C. Different weights 0.4g, 0.3g, and 0.62g of herbal obtain from ethanol extract were mix with 1.5ml of DMSO, then filtered the mixture through Millipore filter 0.22 microfilter and stored as stoke solution at 4C until use .Then concentration of this ethanol many extraction was prepared (borage officinal's 0.4g/1.5mland Eucalyptus 0.2g/1,5ml),(leaves 0.62g/1.5ml and 0.31g/ 1,5ml), (Cinnamon 0.3g /4 ml and the concentration of Cinnamon Distilled water extraction 1.87g /4 ml).

Isolation and identification of bacteria:

Twenty four samples of urine were collected from patients with UTI

(urinary tract infection) from Ibn Al-Nafees Hospital .All samples were cultured on blood and MacConkey agar, then Gram stain, Urease test , Catalase test and other media like mannitol salt agar, nutrient agar and milk agar was done for further isolation and identification of pathogenic bacteria.

Antibacterial activity of the ethanol and aqueous herbal extracts:

Disk diffusion method on Mueller -Hinton agar was used to search for antibacterial activity.(34)

Turbidity standard: Prepare the turbidity standard by compare the turbidity of bacterial suspension which be cultured on Mueller -Hinton agar with turbidity of machferland tube number 1 (Approx. cell density (1X10^8 CFU/mL) : 3.0). (33) Disc dispenser can be used to apply the discs to the inoculated plate. A maximum of four discs can be placed on a 9-10 cm plate, approximately 15 mm for edge of plate. Each disc should be gently pressed down to ensure even contact with the medium. The plate should be placed in an incubator at 37°c for overnight incubation, the diameter of each zone (inoculating the diameter of the disc) should be measured and recorded in mm. The results should then be interpreted according to the critical diameters. The measurements can be made with a ruler on the under-surface of the plate without opening the lid.

Results and *Discussions* Isolation and identification of bacteria:

The result of isolation and identification of bacterial isolates were presented in the Table (1) indicated the morphological and some biochemical characteristics of bacteria isolated from the patients with UTI.

Antibacterial activity

Ever increasing demands from consumers for use of natural agents as additives and food preservatives, and the increased incidence of new and reemerging infections, has led to a search for new and more effective antimicrobial compounds that have diverse chemical structure and novel mechanism of action. Plants are an invaluable source of pharmaceutical products, because they have an almost infinite ability to synthesize compounds with different antimicrobial activity against various pathogenic and opportunistic microorganisms (23). Each extracts were tested against the four isolates and identified bacteria (S. aureus, P. aeruginosa, *Klebsilla.spp* and Proteus.spp) The antibacterial . activity of the extracts were recorded as the mean diameter of the resulting inhibition zones of growth measured in (millimeters). The antibacterial activity of herbal extracts are summarized in Table (2,3,4 and 5).

In this study all herbal used on *S.aureus* have antibacterial effects ,but some of these herbal used have effects or no effect on gram negative bacteria ,as seen in table (2,3,4and 5),and figure (1,2and 3).

Table (1): the morphological and characteristics of bacteria on different culturemedia with some biochemical test

No.	Bacteria	Blood agar	MacConky agar	Mannitol- salt agar	Nutrient agar or milk agar	Gram stain	Catalase test	Urease test
6,1,9,	Klebsiella	White colony, no hemolysis	Pink mucoid colony	*	White colony	G-ve rod	#	-
22,10,2	Proteus	Swarming , no hemolysis	Pale colony N.L.F	*	White colony	G-ve rod	#	+ pink
4,7,20	P.aregenosia	White colony with B-hemolysis	Pale colony N.L.F	*	Blue to green color	G-ve rod	#	-
5, 8, 16,19	S.aureus	B-hemolysis	*	Mannitol fermenter	White colony	G + grape like clusters	+ bubbles	#

Notes:* no growth , # not done this tes

Table (2): Diameter of inhibition zone of different plant are reputation againstS.aureus

bacteria	Type of plants	Concentration of ethnolic extract or D.W	Size of inhibition zone
S.aureus	borage officinal's	0.4 g /1.5 ml	20 mm
D.uur cus	U	0.2 g /1.5 ml	16 mm
	Cinnamon	0.3 g /4 ml, D.W 1.87g/4ml	21 mm,16mm
	Eucalyptus leaves	0.62 g /1.5 ml	21 mm
	J 1	0.31 g /1.5 ml	20 mm

Fig(1):- Inhibition zone with different types and concentration of plant extracts against S.aureus, which cultured on Mueller -Hinton agar

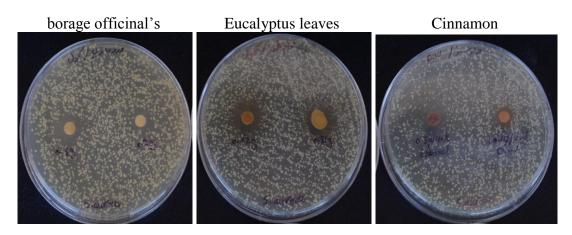


Table (3) : Diameter of inhibition zone with different types and concentration of
plant extracts against Proteus.spp

bacteria	Type of plants	Concentration of ethnolic extract or D.W	Size of inhibition zone
proteus	borage officinal's	0.4 g /1.5 ml	R
proteus	C	0.2 g /1.5 ml	R
	Cinnamon	0.3 g /4 ml, 1.87g/4ml D.W	9 mm, 8 mm
	Eucalyptus leaves	0.62 g /1.5 ml	15mm
	51	0.31 g /1.5 ml	10 mm

Fig(2):- Inhibition zone with different types and concentration of plant extracts
against Proteus spp, which cultured on Mueller -Hinton agar
Eucalyptus leavesEucalyptus leavesCinnamonborage officinal's

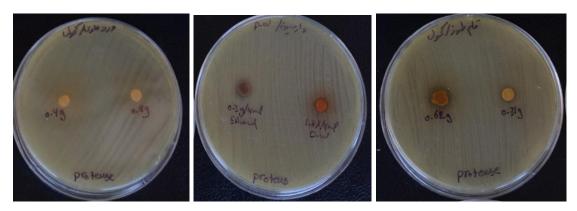
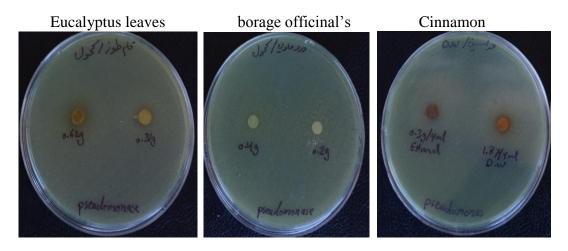


Table (4): Diameter of inhibition zone with different types and concentration ofplant extracts against Klebsilla.spp.

bacteria	Type of plants	Concentration of ethnolic extract	Size of inhibition	
		or D.W	zone	
Klebsilla	borage officinal's	0.4 g /1.5 ml	R	
	e	0.2 g /1.5 ml	R	
	Cinnamon	0.3 g /4 ml, (1.87g/4ml D.w)	15 mm, 7mm	
	Eucalyptus leaves	0.62 g /1.5 ml	R	
	V 1	0.31 g /1.5 ml	R	


Fig(3):- Inhibition zone with different types and concentration of plant extracts against Klebsilla spp, which cultured on Mueller -Hinton agar

borage officinal's Cinnamon Eucalyptus leaves

piani extracts against P.aeruginosa.				
bacteria	Type of plants	Concentration of ethnolic extract	Size of	
			inhibition zone	
P. aeruginosa	borage officinal's	0.4 g /1.5 ml	8mm	
		0.2 g /1.5ml	R	
	Cinnamon	0.3 g /4 ml,(1.87g/4ml DW)	R, R	
	Eucalyptus leaves	0.62 g /1.5 ml	8mm	
		0.31 g /1.5ml	8mm	

Table (5): Diameter of inhibition zone with different types and concentration ofplant extracts against P.aeruginosa.

Fig(4):- Inhibition zone with different types and concentration of plant extracts against P.aeruginosa, which cultured on Mueller -Hinton agar.

The main factors that determine antibacterial activity are type, composition of the extract used, pH and temperature of the environment (27). The pH may effects on the antibacterial activity of extract like *R*. *sativus* had excellent antibacterial activity at acidic pH, and that increasing the pH of the extracts toward alkaline led to a significant drop in their inhibitory action. It has been reported that antibacterial

compounds seemed to be stabilized in cationic forms that may interact with and disrupt the negatively charged bacterial cells (28).

Successful extraction of bioactive compounds from plant material depends on the solvent used in the extraction procedure. the extraction of the plant with the organic solvents methanol, ethyl acetate, and chloroform resulted in much greater antibacterial activity against all the health-damaging bacteria than extraction with water (29), and this study agree with (syed)as ethanol extract of Cinnamon give batter results on bacteria then Cinnamon water extract on the same bacteria.

The activity of cinnamon is due to the presence of cinnamaldehyde, an aromatic aldehyde that inhibits amino acid decarboxylase activity (30), and has been proven to be active against bacteria pathogenic (*31*). many Cinnamon bark is rich in cinnamaldehyde (50.5%), which is highly electro-negative. Such electronegative compounds interfere in biological processes involving electron transfer and react with nitrogencontaining components, e.g. proteins and nucleic acids, and therefore inhibit the growth of the microorganisms.

Another study done by Fyfe *et.al.* (32) Demonstrated that cinnamon and clove significantly decreased the production of enterotoxin A and enterotoxin B of *staphylococcus aureus*.

Gram-negative bacteria are in general more resistant to large number of antibiotics and chemotherapeutic agents than are gram-positive bacteria. A survey of recently reported antibiotics of natural origin showed that >90% lacked activity against E.coli, although they were active against gram-positive bacteria (24). Mechanisms of Antimicrobial

Resistance Prevention of accumulation of antimicrobials either by decreasing uptake or increasing efflux of the antimicrobial from the cell ,Changes in outer membrane permeability Drug molecules to a cell can be transferred by diffusion through porins, diffusion through the bilayer and by self-uptake. The porin channels are located in OM(outer membren) of Gram-negative small hydrophilic bacteria. The molecules (β -lactams and quinolones) can cross the OM only through porins. The decrease in number of porin channels, lead to decreased entry of βlactam antibiotics into the cell, hence resistance .(25,26)

Plasmid Mediated Drug Resistance by Conjugation between the commensalcommensal, commensal-pathogen and pathogen-pathogen are responsible for the development of resistance in bacteria. Acquisition of resistance by transduction is common in gram positive bacteria like Staphylococcus (penicillinase plasmid); where as in gram negative bacteria conjugation is a major mechanism of transfer of drug resistance and can occur in unrelated genera (35).

The cell wall of Gram-positive bacteria is formed of a thick layer of peptidoglycan that protects against osmotic rupture. The basic subunit of the peptidoglycan component is a disaccharide monomer of N acetylglucosamine (NAG) and N acetylmuramic (NAM) pentapeptide. The pentapeptide consists of amino acid residues alternating between Land D-stereoisomers and terminating in D-alanyl-D-alanine. A stem peptide of variable length and composition is attached to the third amino acid of this pentapeptide. Pentapeptides are then joined with stem peptides to form a cross-link between polysaccharide chains. This reaction is catalyzed by a transpeptidase. This transpeptidation reaction is sensitive to inhibition by β penicillin-sensitive lactams. The reactions are catalyzed by a family of closely related proteins, penicillinbinding proteins (PBPs). β-Lactam antibiotics produce their lethal effect on bacteria by inactivation of multiple **PBPs** simultaneously, and thus inhibiting cell wall synthesis. The inhibition of PBPs also leads to disruption of a crucial event probably at the time of cell division. This morphogenesis disturbed is hypothesized to initiate cell death (25).

In conclusion cinnamon, borage officinal's and Eucalyptus leaves were found to have important antibacterial activity against *S. aureus*. In this regard, the use of them as natural preservatives in food products (to prevent food poisoning by *S. aureus*) may be alternative of chemical additives they can be also incorporated into creams, lotion to treat diseased caused by *S. aureus*, and may addition these herbals to sapon to decrees the urinary tract infection. The study also shows that further research on the effects of spices and essential oils on microorganisms can be rewarding to

References:-

1. Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Scienc. 1994; 264:375-82.

2. Lai, Tremblay, & Déziel, 2009; SCENIHR, 2010.

3. Friedman, Henika, & Mandrell, 2002; Wilson & Droby, 2000

4. Ahmad I, Beg AZ. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multidrug resistant human pathogens. J Ethanopharmacol. 2001; 74:113-23.

5. N. Achak, A.Romane, M.Alifriqui, M.Markouk. Chemical Composition, Organic and Mineral Contents of Leaves of Tetraclinis articulata (Vahl) Masters. From the Tensift Al Haouz, Marrakech region (Morocco); Journal ofbEssential oil-Bearing Plants.2009, Jeobp, 12(2), 198-204.

6. A.Barréro, M.M.Herrador,
P.Arteaga, J.Quitz, M.Aksira,
F.Mellouki, S.Akkad. Chemical composition of essential oils of leaves and wood of Tetraclinis articulata (Vahl) Masters; J. Essent. Oil Res., 200517, 166-167.

7. Zargari A. Medicinal plants.
4th edition, University Press, Tehran, Iran 1989:510-39.

8. Grieve M, Borage. <u>http://www.botanical.com/bot</u>

anical/mgmh/b/borage66.html.

9. Sperling P., Libisch B., Zahringer U., et al. Functional identification of a delta8-sphingolipid desaturase from

pursue in the search for new broad spectrum antimicrobial agents.

Borago officinalis. Arch Biochem Biophys 2001; 388(2):293-8.

10. Abolhassani M. Antiviral activity of borage (Echium amoenum). Arch Med Sci. 2010;6(3):366–9.

11. Kast RE. Borage oil reduction of rheumatoid arthritis activity may be mediated by increased cAMP that suppresses tumor necrosis factor-alpha. Int Immunopharmacol. 2001; 1(12):2197-9.

12. Kapoor R., Klimaszewski A. Efficacy of borage oil in patients with atopic eczema. Br J Dermatol1999; 140(4):685-8.

13. A. Sangal, "Role of cinnamon as beneficial antidiabetic food adjunct: a review,"Advances in Applied Science Research,vol.2,no. 4, pp. 440–450, 2011.

14.M.Vangalapati,N.SreeSatya,D.Sury aPrakash,andS.Avani-gadda,"A review on pharmacological activities and clinical effects of cinnamon species," Research Journal of Pharmaceutical, Biological and Chemical Sciences,vol.3,no.1,pp.653– 663,m2012.

15. G.-I. Nonaka, S. Morimoto, and I. Nishioka, "Tannins and related compounds. Part13. Isolation and structuresof trimeric, tetrameric, and pentameric proanthicyanidins from cinna-mon," Journal of the Chemical Society, Perkin Transactions 1,pp.2139–2145, 1983.

16. X. Peng, K.-W. Cheng, J. Ma et al., "Cinnamon bark proanthocyanidins

as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts,"Journal of Agricultural and Food Chemistry ,vol.56,no.6,pp.1907–1911,2008.

17.Jakhetia,R.Patel,P.Khatrietal.,"Cinn amon:apharmacolog-ical review," Journal of Advanced Scientific Research,vol.1,no.2, pp. 19–12, 2010.

18. N. Hossein, Z. Zahra, M. Abolfazl,
S. Mahdi, and K. Ali, "Effect of Cinnamon zeylanicum essence and distillate on the clotting time,"Journal of Medicinal Plants Research,vol.7,no.19,pp.1339–1343, 2013.

19. S.-T. Chang, P.-F. Chen, and S.-C. Chang, "Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum,"Journal of Ethnopharmacology, vol.77, no.1, pp.123–127, 2001.

20. K. Aneja, R. Joshi, and C. Sharma, "Antimicrobial activity of dalchini (Cinnamomum zeylanicumbark extracts on some dental caries pathogens," Journal of Pharmacy Research, vol.2, no. 9, pp. 1387–1390, 2009.

21.N. Matan, H. Rimkeeree, A. J. Mawson. Ρ. Chompreeda. V.Haruthaithanasan, and M. Parker, "Antimicrobial activity of cinnamon clove oils under and modified atmosphere conditions, "International Journal Food of Microbiology,vol.107,no.2, pp. 180-185, 2006.

22. Espinosa-Garcia, F. J. 1996 Review on allelopathy of Eucalyptus L'Herit. Boletin de la Sociedad Botanica de Mexico 0:55-74.). 23. Cowan MM (1999) Plant products as antimicrobial agents. ClinMicrobiol Rev 12:564–582.

24. Vaara M. Antibioticsupersusceptible mutants of Escherichia coli and Salmonella typhimurium. Antimicrob Agents Chemother 1993;37:2255–60.

25. Nikaido H, Vaara M. Molecular basis of bacterial outer membrane perme-ability. Microbiol Rev 1985;49:1–32.

26. Ple´siat P, Nikaido H. Outer membranes of gram-negative bacteria are permeable to steroid probes. Mol Microbiol 1992;6:1323–33.

27. O. Sağdiç: Sensitivity of four pathogenic bacteria ot Turkish thyme and wild marjoram hydrosols. Lebensm Wiss Technol, Vol. 36, 2003, pp. 467-473.

28. Rhodes PL, Mitchell JW, Wilson MW, Melton LD (2006) Antilisterial activity of grape juice and grape extracts derived from Vitis vinifera variety Ribier. Int J Food Microbiol 107:281–286. doi: 10.1016/j.ijfoodmicro.2005.10.022.

29. Syed Sultan Beevi Lakshmi Narasu Mangamoori Naveen Anabrolu, Comparative activity against pathogenic bacteria of the root, stem, and leaf of Raphanus sativus grown in India, World J Microbiol Biotechnol (2009) 25:465–473,DOI 10.1007/s11274-008-9911-3.

30. Wendakoon CN, Sakaguchi M (1995). Inhibition of amino acid decarboxylase activity of *Enterobacter aerogenes* by active components of spices. J. Food Prot. 58: 280-283. 31. Suresh P, Ingle VK, Vijayalakshima V (1992). Antibacterial activity of eugenol in comparison with other antibiotics. J. Food Sci. Technol. 29: 254-256.

32. L. Fyfe: Antimicrobial agents and chemotherapy. Journal of Medical Microbiology, Vol. 53, No. 10, 2004, pp. 1023-1027.

33. The nephelometer :an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. Joseph Mcfarland, M.D. JAMA. 1907; XLIX(14):1176-1178. 34. Winn, Jr., W., et al. 2006. Konemann's color atlas and diagnostic text of microbiology, 6th ed., p. 945–1021. Lippencott Williams & Wilkins Publishers, Philadelphia, PA.

35. John, D.T. and James, H.J. Antimicrobial susceptibility testing: General considerations. In: Manual of Clinical Microbiology. Eds. P.R. Murray, E.J. Baron, M.A. Pfaller, F.C. Tenover and R. Yolken. American Society for Microbiology, Washington DC. P. 1469, 1999.