
1

Database Steganography: Hiding Complete Database In

Another Database.

Dr abdul Latif Ali Hussain

Iraqia University- Education College

Lateef1960@yahoo.com

ABSTRACT:
Data security is one of the most critical and an uttermost challenge in the
digital world. Confidentiality, availability and integrity of data are demanded in
every operation performed on data security. The data security in databases is
also as important.
This paper has presents techniques for the data that can be implemented to
immunize and reinforcement databases, and presents a new secure database
system based on steganography that provides more confidentiality,
authentication, and integrity during access of secrete data.
The proposed database system uses steganography technique to hide a
database records inside another database records, and allows the authorized
user to create tables and records which are hidden from unauthorized users.
 The proposed system attempts to use the properties of the table file structure
in a cover-database, and uses an embedded hidden database with hidden
database management system to manage the hidden database. It can store
and manage a large amount of data easily.

 ملخص:

أين انبياناث أدذ أهى انتذذياث واكثزها دزجا في انعانى انزقًي. ثانىث انًذذوديت، الاتادت،

نهبياناث يطهىب في كم اجزائيت تنفذ عهً أين انبياناث. أين انبياناث في قىاعذ انبياناث وانتكايم

ن قىاعذ تقذو هذه انىرقت انبذثيت تقنياث يًكن تطبيقها نتأيين وتذصي يهى ايضا بنفس انقذر.

انبياناث. وتقذو نظاو قىاعذ بياناث آين يؤسس عهً إخفاء انبياناث يىفز يذذوديت، تخىيم،

 انىصىل نهبياناث انسزيت. عنذ اجزاء عًهيتوتكايم اكبز

لإخفاء قيىد قاعذة بياناث في قيىد قاعذة إخفاء انبياناث تقنيت يستخذو ح نظاو قىاعذ انبياناث انًقتز

غيز يننهًستخذو انًخىل انشاء جذاول وقيىد يخفيت عن انًستخذي بياناث أخزي، ويتيخ

 -زوو اننظاو انًقتزح استخذاو خصائص هيكم يهف انجذول في قاعذة انبياناثي .ينانًخىن

. وانهذف هى اتادت انًخفيت بياناثاندارة قاعذة لا يخفي انغطاء، لاخفاء قاعذة بياناث يع نظاو

 وإدارتها.اخفاء كًيت كبيزة ين انبياناث

أين انبياناث أدذ أهى انتذذياث واكثزها دزجا في انعانى انزقًي. ثانىث انًذذوديت، الاتادت،

نهبياناث يطهىب في كم اجزائيت تنفذ عهً أين انبياناث. أين انبياناث في قىاعذ انبياناث وانتكايم

ن قىاعذ تقذو هذه انىرقت انبذثيت تقنياث يًكن تطبيقها نتأيين وتذصي يهى ايضا بنفس انقذر.

انبياناث. وتقذو نظاو قىاعذ بياناث آين يؤسس عهً إخفاء انبياناث يىفز يذذوديت، تخىيم،

 انىصىل نهبياناث انسزيت. عنذ اجزاء عًهيتوتكايم اكبز

لإخفاء قيىد قاعذة بياناث في قيىد قاعذة إخفاء انبياناث تقنيت يستخذو ح نظاو قىاعذ انبياناث انًقتز

غيز يننهًستخذو انًخىل انشاء جذاول وقيىد يخفيت عن انًستخذي بياناث أخزي، ويتيخ

 -زوو اننظاو انًقتزح استخذاو خصائص هيكم يهف انجذول في قاعذة انبياناثي .ينانًخىن

. وانهذف هى اتادت انًخفيت بياناثاندارة قاعذة لا يخفي انغطاء، لاخفاء قاعذة بياناث يع نظاو

 وإدارتها.اخفاء كًيت كبيزة ين انبياناث

mailto:Lateef1960@yahoo.com

2

KEYWORDS: Steganography, Database security, DBMS, Security
techniques, Cryptography

1. Introduction

The database is a collection
of related data organized in a way
that can be easily stored,
accessed, managed and updated,
constructed from set of tables
which are structured files. A
database management system
(DBMS) is a set of interdependent
data and a set of programs to
access those data [1]. A major
objective of a database
management system is to support
users to get an abstract view of
data, hiding specific details of how
data is manipulated and stored, [2].

The data requires some
security to preserve it where the
level of security depends on the
nature of these data. The security
of data is very important issue for
both organizations and individual
purposes. The security issue must
be characterized by ease of
maintenance and having low
overhead on system resources.

The database security is
substantial because they encounter
security threats that may prove
disastrous if exposed or accessed
publicly. Database system security
is more than securing the
database, and to achieve a secure
database system, we need to
secure: [3]

 Database tables.

 Database management
system .

 Applications development.

 Operating system in relation
with database system.

 Web server in relation with
database system.

 Network environment in
relation with database system.

1.1 Recent Used Database
Security Techniques [4]:

 Cryptography: Cryptography is
the techniques in which the plain
text is converted to a non-
readable and fog text by
encryption.

 Hashing: Hashing is the
transformation of a variable
length data into a fixed length
string using hash functions. The
data retrieval is impossible
without these hash functions.

 Access Control: Access control
mechanisms prohibit the access
to the database to outsiders
except for the authorized users.

 Steganography: Steganography
is the technique of concealing
sensitive data or message in any
type of cover media, so that the
presence of data or the message
itself is hidden. Figure (1).

Figure (1) General Steganography model [5]

3

2. Securing Database using
Steganography
Related works
Steganography Premium: A
software called (Steganography
Premium), 2004, uses a file of the
extension (dbf) as a cover-table.
This attempt did not use the
properties of the structure of the
table file in the cover-table, but it is
dealing with the table file as a plain
text file. The software attaches the
hidden information at the end of the
table in a form of series of bytes,
after it changes the size of the table
to the new size. This method is
very weak in maintaining against
the removal of confidential
information attack, because all
confidential information will be
deleted from the table file in the
first use of the order (Delete / Back)
when the user wants to delete any
entry from the table. As well as a
change of concealment process
occurs in the table file size, which
may raise attention if confidential
data was large to some extent.[6].

[R. Rejani et al, 2013] The
technique proposed in the paper
creates a parallel data structure
based on JSON to store
information within a JPEG image,
embedded in database field, using
LSB based steganography for this
purpose. While at the same time it
is possible to view the image in a
regular image viewer or any other
software. [7].

[Radu Sion et al ,2004] In the paper,
the authors introduce a solution for
relational database content rights
protection through watermarking
numeric relational content. A
significant point should be considered
about watermarking. A watermark
modifies the watermarked item.

Therefore, a watermark cannot be
embedded if the watermarked object
cannot be modified then. Avoiding
change the data is not the critical
issue, but to limit the change to
acceptable levels with respect to the
intended use of the data.[8].

[Almusa, 2006]The aim was to
represent a technique to hide
sporadic data in a memo field in a
record of database tables of types
(dbf, dbc,lbx …etc) [9],[10].
3. Database Environment

The database is a shared
resource therefore each user may
needs a different view of the data
contained in the database. In
general, to fulfill these needs, the
architecture of commercial DBMSs
available nowadays is based to
some extent on the (American
National Standards Institute,
Standards Planning And
Requirements Committee) ANSI-
SPARC architecture. The ANSI-
SPARC model did not become a
standard; however it still provides a
basis for explain some of the
functionality of a DBMS.
The ANSI-SPARC model presents
a three-level architecture
containing an external, a
conceptual, and an internal level,
as illustrated in Figure (2).The
conceptual level affords both the
mapping and the demanded
independence between the
internal and external levels. The
three-level architecture separates
each user’s view of the database
from the way that is physically
represented by the database.
Many reasons make this separation
desirable:

 Users should be allowed to
access the same data with a
different customized view of
that data.

4

 Users should be allowed to
change the way they view the
data, without affect each other.

 Users should be interacted with
the database independently of
storage considerations.

 Users should be prevented to
deal directly with physical
database storage details, such
as hashing or indexing.

 The Database Administrator
(DBA) should be allowed to
change the storage structures

of the database without altering
the users’ views.

 The changes to the physical
aspects of storage should not
be affecting the internal
structure of the database, such
as the changing to a new
storage device.

 The DBA should be allowed to
change the conceptual
structure without affecting all
users.

Figure (2) The ANSI-SPARC architecture. [1]

The users’ view of the database

is presented by the external level.
This level identifies the part of the
database which is relevant to each
user. The in physical
representation of the database on
the computer is presented by the
internal level. This level identifies
the way the data is stored in the
database. The internal level is
involved with such issues as:

• Allocation of storage space for
data and indexes;
• Descriptions of record for
storage, and the stored sizes
devoted to data items;
• Record positioning;
• Data encryption and data
compression techniques.
A physical level is below the

internal level that may be

manipulated by the operating
system under supervision of the
DBMS.

The database schema is the
general description of the
database. Three types of schema
in the database are defined
according to the levels of
abbreviation of the three-level
architecture depicted in Figure (2),
correspond to different views of the
data there are multiple external
schemas. At the conceptual level,
there is the conceptual schema,
which defines all the attributes,
entities, and relationships
simultaneously with integrity
constraints. The internal schema
is at the lowest level of abstraction,
which is a complete definition of the
internal model, containing the

5

definitions of methods of
representation, the stored records,
the data fields, and storage
structures used and the indexes.
Each database has only one
internal schema and one
conceptual schema. Mapping
between the three types of schema
is the responsibility of DBMS.
3.1 Components of DBMS

A DBMS is separated into many
software components, each of
which is appointed a specific
operation. Figure (3) depict the
main software components in a
DBMS environment. The diagram
illustrates the interface between the
DBMS and the other software
components, such as access
methods and user queries (storing
and retrieving data records as
techniques for file management).

i. Query processor: A main
DBMS component that
assigned to transform
queries into a series of low-
level instructions conducted
to the database manager

ii. Database manager: The
(DM) interfaces with user-
submitted queries and
application programs. The
DM receives and accepts
queries and examines the
conceptual and external
schemas to ascertain
required conceptual records
that satisfied the request.
The DM then sends a call to

the file manager to execute
the request.

iii. File manager: The file
manager manages the
underlying storage files and
manipulates the allocation of
storage space on disk. It
creates and conserves the
list of structures and indexes
defined in the internal
schema. It moves the
requests to the proper
access methods, to read
data from or to write data
into the system buffer.

iv. DML preprocessor: DML
statements embedded in an
application program is
converted by this module
into standard function calls
in the host language. To
generate the appropriate
code, the DML preprocessor
must interact with the query
processor.

v. DDL compiler: DDL
statements are converted by
the DDL compiler into a set
of tables containing
metadata. These tables are
stored later, in the system
catalog. Control information
is stored in data file headers.

vi. Catalog manager: This
module manages access to
and maintains the system
catalog. Most DBMS
components access the
system catalog.

6

Figure (3) Components of DBMS [1]

Figure (3) Components of DBMS

3.2 dBASE file

The dBASE database
management system used DBF file
format to store data in tables and
approved later by similar DBMS
packages. The DBF format is not
documented publicly and
completely, and later versions of
dBASE software extended the
origin format to support new
functionality [12] [13] [14].
The DBF file format developed by
Ashton-Tate, but is understood by
FoxPro,Act!, Clipper, Arago, xBase,
Wordtech, and database-related or
similar database products.
Microsoft Excel and Microsoft
Access can also open DBF files
[14].

3.3 Binary, Memo, OLE Fields
and .DBT Files

In DBF file, a separate .dbt
file stored variable-length fields,
such as binary and memo fields.
The values in the .dbf file are index
10-byte entries into the .dbt file.
Many applications of the DBF
format did not support such data
types in contexts unrelated to
dBASE or other general-purpose
database management systems.
[12], [13].

OLE, memo, and Binary
fields store data in .dbt files
composed of blocks numbered
sequentially (0, 1, 2, etc. The head

record resides in the first (512)
bytes in the file and starts at
position (0) of the file. It consists of
a definition of number of text
characters and the type. Text
blocks or the general data follows
head record in the file [14].

4. Proposed Database
Steganography System

The proposed system
attempts to use the properties of
the table file structure of the .DBF
file.
Due to the results from the
techniques used in [9],[10]. The
proposed system aims to develop a
technique to hide a complete
database table in another database
table. The main idea is to hide
structured data, rather than
sporadic general types of data, in
the slack area of the memo field in
a record of database file.
The proposed data hiding will be in
two methods:

 Hidden-database table with
the same structure of the
cover table, but with different
data values.

 Hidden-database table with
a different structure table of
the cover table, with different
data values.

A hidden database
management system (hidden-
DBMS) will be designed to manage
this hidden database tables.

7

Unauthorized user can access
only the data in the cover-
database table through the cover-
DBMS, and cannot access the
hidden data by cover-DBMS while
the authorized user can access the
hidden data using a hidden
database management system,
hidden-DBMS; the compound
database management system will
construct the stego-DBMS, as
shown in Figure (4).

The proposed system will be
constructed from stego-database,
compound from cover-database
and hidden-database. Each stego-
database constructed from cover-
tables and hidden-tables
alternatively, these in turn, consist
of stego-record constructed from
cover-records and hidden -records
alternatively.
4.1 Stego-Database Environment

For single database there is
single conceptual schema and
single internal schema. A stego-
DBMS composite of two databases
a cover-database and a stego-
database. To satisfy the needs of a
stego-DBMS with ANSI-SPARC
model , there will be three-level
architecture Consisting of a stego-

external, a stego- conceptual,
and a stego- internal level, as
shown in Figure (5).
The stego-conceptual level
provides the independence and
mapping between the stego-
external and stego-internal levels in
the same manner of the original
ANSI-SPARC model. The objective
of the stego- architecture is
expanded to separate the
unauthorized user’s view of the
cover-database from the way the
cover-database is physically
represented, in the same time; it
separates the authorized user’s
view of the hidden-database from
the way the hidden-database is
physically represented too.

This separation is desirable
for the same reasons of original
ANSI-SPARC model. For the
proposed system purpose, this
separation is more focused to give
the DBA the ability to change the
database storage structures
without affecting the users’ views,
and the ability to change the
conceptual structure of the
database without affecting all
users.

Figure (4) Simplified stego-DBMS

4.2 Components of Stego-DBMS

8

In a stego-DBMS, the cover-
DBMS and the stego- DBMS are
partitioned into the same software
components depicted in figure (2)
for the traditional DBMS, each of
which has a specific operation. The
main software components in a
stego-DBMS environment are
illustrated in Figure (6).This
diagram shows how the cover-
DBMS and stego-DBMS interface
with other software components.
The user queries in a stego-DBMS
are of two types, authorized users
queries and unauthorized users
queries.

i. Query processor: Authorized
users queries transforms
queries into a series of low-
level instructions conducted
to the hidden-database
manager. Unauthorized

users queries transform
queries into a series of low-
level instructions conducted
to the cover-database
manager.

ii. Database manager: There will be
two DMs. For cover-DBMS, the DM
interfaces with user-submitted
cover- application programs and
unauthorized users queries. For
hidden-DBMS, the DM interfaces
with user-submitted hidden-
application programs and
authorized users queries. Each of
the DMs accepts queries from its
path, and inspects the external and
conceptual schemas to ascertain
required conceptual records that
satisfied the request. The DM then
sends a call to the file manager to
execute the request.

Figure (5) Stego-DBMS with ANSI-SPARC architecture

iii. File manager: The file manager
manages the underlying storage
files and manipulates the
allocation of storage space on
disk. It creates and conserves the
list of structures and indexes
defined in the stego-internal
schema. It moves the requests to
the proper access methods, to

write data into or to read data
from the system buffer.

iv. DML preprocessor Both of cover-
DBMS and hidden-DBMS has its
own DML preprocessor. The
module in the cover-DBMS
converts DML statements
embedded in the cover-
application program into standard
function calls, while The module in

9

the stego-DBMS converts DML
statements embedded in the
hidden- application program into
standard function calls. The DML
preprocessor in the cover-DBMS
must interact with the query
processor of the cover-DBMS to
generate the appropriate code
and the DML preprocessor in the
hidden-DBMS must interact with
the query processor of the hidden-
DBMS to generate the appropriate
code .
v. DDL compiler: In both

systems, the cover-DBMS
and the hidden-DBMS, the
DDL compiler converts DDL
statements into a set of

tables containing metadata.
These tables are then stored
in the system catalog of
each system. Control
information is stored in data
file headers for the cover-
DBMS. For the hidden-
DBMS the control
information must be
managed and stored in the
hidden file headers.

vi. Catalog manager: Each of the
cover-DBMS and the hidden-
DBMS has its own catalog
manager. Each of them manages
access to and maintains its
system catalog.

Figure (6) Components of Stego-DBMS

5. Illustration example for the
proposed system

The following are illustration
examples for the two cases of
methods to hide and retrieve the
data from the proposed system.
The example consists of a (cover-
table) structure with four fields for
each record and the properties of
the structure shown in the table
below:

Table (1) Example of cover-table
structure

Field name Field Field type

length

St_Name 30 Character

St_Date 10 Date

St_Value 3.2 Numeric

St_text 10 Memo

5.1 Hidden-database table with
the same structure of the cover-
table
When the hidden-database table
has the same structure of the
cover-table, each stego-record
consists of a cover-record and a
hidden-record. Both records have
the same field's structure of the
cover-table, except the memo field

10

in the cover-record. The hidden-
record is embedded in the memo
field of the cover-record, and
represents substances for the
same structure.
As a result of the proposed
technique, there will be (46) bytes
represent the complete hidden-
record and they will be embedded
in the hidden part of the memo field
(St_text), of the cover-record. The
first (30) bytes of the hidden data
(hidden-record) will represent the
first field (St_Name) value, the next
(10) bytes will represent the second
field (St_Date) value, and the next
(6) bytes will represent the third
field (St_Value) value.
The cover-record, which appeared
to unauthorized user, will hold
values differ from the hidden
record. The block-Size unit, for the
memo field, must be proper to the
size of a single record defined in
the table header.
In this case, and due to the
similarity of the two records, the
cover-record and the hidden-
record, the role of the hidden-
DBMS is limited to access the
hidden data and retrieve/store it, in
low-level manner. The other data
processing will taken place by the
cover-DBMS.
5.2 Hidden-database table with a
different structure of the cover-
table
When the hidden-database table
has a different structure of the
cover-table, the first hidden record
(records), must hold the (file
header) of the (hidden-table). In
other word it contains the meta-
data about record field's properties.
For the same example above, the
first (hidden-record) will be the text:
M_ID 10.3 N, M_Date 10 D,
M_price 5.2 N
and it represents the structure of
the hidden table.

The rest of (hidden-records) will
hold the substances of these fields
for each record, in the same
manner applied in the previous
case. The deference is that the
hidden-record structure may vary
from the structure of the cover-
record.
5.3 Stego-Database management
system (Stego-DBMS)
The visual programming languages
provide their control objects with
visibility property, to hide an object
at start up. Setting this property in
code enables the programmer to
hide, and later to redisplay, a
control at run time in response to a
particular event. This feature will be
the corner stone, in the proposed
(stego-DBMS) to build a hidden
application programs in the hidden
database management system
(hidden-DBMS) interface, inside
the cover application programs in
the cover database management
system (cover- DBMS) interface.

The cover-DBMS will
manipulate the data stored in the
cover-database in high-level
access method, while the hidden-
DBMS will manipulate the data in
the hidden-database in low-level
access method.
Database files used in the
proposed system are variable
structure file type. The file header
is a system record occupies the
first record in every variable
structure file. The high-level access
method uses the table header to
determine and retrieves the
substances contained in this table.
Therefore cover-DBMS displays
and accesses only a value of a field
defined in the file header, as the
smaller data unit in the database
system. That is, cover-DBMS
cannot access any data in the
table, out of the structure defined in
the file header. Thus the cover-

11

DBMS user, who is unauthorized
user, cannot see and access the
data stored outside the structure of
the record.
The hidden-DBMS uses low-level
commands and functions
supported by the programming
languages, which allows treating
the table file as a stream of bytes,
or even bits. For that, the hidden-
DBMS can display and access any
part of data contained in the table,
even if it is out of the boundaries of
the table structure, defined
previously in the table header to
describe records and fields of the
table.
The hidden-DBMS can be triggered
to operate, by indistinguishable hot
spot (e.g. red object on red
background with same gradient), its
position is known only for
authorized user. Hidden-DBMS
constructed from a complete user
interface set, completely or
partially, differ from user interface
set of the cover-DBMS.
The roll of hidden-DBMS is
different for the two cases of
hidden-database. In the first case,
when the cover-database and the
hidden-database have the same
structure, hidden-DBMS reads the
hidden-record in low-level and
swap it with the cover-record then
the cover-DBMS will treat it as an
ordinary records.
In the second case, when the
cover-database and the hidden-
database have a different
structures, hidden-DBMS reads the
first hidden-record (records) in low-
level , constructs a new table with a
new file header, and creates a new
empty records as needed. The next
hidden-records will be moved to fill
the empty records created earlier.
The cover-DBMS may be not
suitable to manipulate the new
table because of the difference of

the database structure between the
cover-database and the hidden-
database; therefore the hidden-
DBMS must be designed to carry
out this task.
6. Conclusion
6.1 Steganographic process
evaluation
Three evaluation criteria are
considered to measure the
performance of a Steganographic
system. First is the embedding
efficiency of the stego-object
(number of hidden bits embedded
per embedding change), second is
the embedding capacity of the
cover-object, and the third is
robustness [15].
6.2 Embedding efficiency of the
stego-object
The most important feature in this
method is that it does not change
the size of the cover-record, and
does not change the file size. Due
to the difference in the area used to
implement hiding operation; there
will be no change in the cover-
records size, resulted from hiding
the hidden-records. A high
embedding efficiency will be
achieved.
6.3 Embedding capacity of the
cover-object
The internal fragmentation means
that the file uses more space than
the stated size, because the
amount of disks used should be
multiples of the size of a specific
record size. The internal
fragmentation resulted from the
difference between the nature of
the data stored, on the one hand,
and the nature of the file structure
or the method used in the storage
on the other hand. The ratio of the
two sizes of these unused spaces,
expresses the level of efficiency of
the file structure and its suitability
to the nature of the data or the
stored information.

12

In the proposed information hiding
system, the aim to achieve is high
embedding capacity of the cover
database (i.e. increasing the hiding
ratio). Three criteria limit the
embedding capacity of the cover-
database:

1. Length of block size.
2. Length of stored data

in the record.
3. Number of records.

Embedding capacity of the cover-
database can be calculated by the
equation

 ∑ (–)

Where
C = Embedding embedded
capacity
B= Length of block size

ri = Length of stored data in ith
record
n = Number of records

A "bad" data analysis in database
systems, serves the concealment
process more than the efficient
data analysis, because it would
widely allows the existence of
space which is not used in the
records, that is a savings of largest
space to hide secret information,
and enhances the hiding ratio,
while it considered as wasted in
terms of storage efficiency of the
data in database. Storage
efficiency and hiding ratio are
inversely proportional, figure (7).

Figure (7): Storage efficiency and hiding ratio inversely proportional

From the perspective of the
operating system, the dedicated
storage space inside the file will no
longer disk .
6.4 Stego-DBMS and stego-
Database robustness
The robustness of the systems is
high due to the inability to modify
the hidden data out of the control of
the hidden-DBMS.
The hidden data will not affected by
any operation of the cover-DBMS.
The exception is when the record is

deleted entirely, then the data
which is hidden in this record is
deleted entirely too.

References
[1]. Abraham Silberschatz, Henry F.

Korth, S.Sudarshan,"Database
Systems Concepts", 5th Edition,
2006.

[2]. Thomas M. Connolly and
Carolyn E. Begg "Database
systems A Practical Approach

13

to Design, Implementation, and
Management", 6th Edition,
Pearson Education Limited
2005.

[3]. Paul J. Wagner "Database
System Security ", University of
Minnesota Summer School for
Information Assurance, 2008.

[4]. Harshavardhan Kayarkar,
Sugata Sanyal, "Classification
Of Various Security Techniques
In Database And Their
Comparative Analysis", ACTA
Technica Corviniensis, Vol. 5,
Issue 2, April-June 2012, pp.
135-138.

[5]. Birgit P., “Information Hiding
Terminology “, Information
Hiding: First International
Workshop, Proceeding,
Springer, 1996

[6]. Steganography Premium, 2004.
www.clickok.co.uk

[7]. R. Rejani, D. Murugan and
Deepu V. Krishnan "Steganodb
- A Secure Database Using
Steganography", ICTACT
Journal on Communication
Technology, Septemper 2013,
Vol: 04, Issue: 03.

[8]. Radu Sion, Mikhail Atallah and
Sunil Prabhakar,"Rights
Protection for Relational Data",
IEEE Transactions on
Knowledge And Data
Engineering, Vol. 16, No. 6,
June 2004.

[9]. Almusa A. A. Information hiding
in database files using relative
pointers],

[10]. Almusa A. A. "Information
Hiding In Database Files and
Operating Systems", A thesis
Submitted to Al_Rasheed

College of Engineering and
Science, University of
Technology April 2006.

[11]. Michael J. Folk, Bill Zoellick,
Greg Riccadi, “File Structures:
An Object-Oriented Approach
with C++ 3rd Edition”, Addison-
Wesley Longman, Inc, 1998.

[12]. [https://www.loc.gov/preserv
ation/digital/formats/fdd/fdd0003
25.shtml ,dBASE Table File
Format (DBF)]

[13]. [http://www.dbase.com/Kno
wledgeBase/int/db7_file_fmt.ht
m Data File Header Structure
for the dBASE Version 7 Table
File]

[14]. [
http://whatis.techtarget.com/filef
ormat/DBF-dBASE-file ,
DBF File Format]

[15]. R. Böhme, “Principles of
Modern Steganography and
Steganalysis”, Springer, Volume
0 of the series (Information
Security and Cryptography),
pp17,2010.

http://www.do-download.com/download/Steganography-Premium-59111-1.html
https://www.loc.gov/preservation/digital/formats/fdd/fdd000325.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000325.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000325.shtml
http://www.dbase.com/KnowledgeBase/int/db7_file_fmt.htm
http://www.dbase.com/KnowledgeBase/int/db7_file_fmt.htm
http://www.dbase.com/KnowledgeBase/int/db7_file_fmt.htm
http://whatis.techtarget.com/fileformat/DBF-dBASE-file
http://whatis.techtarget.com/fileformat/DBF-dBASE-file

