2018 dubmd] « g yutidlg coobhdl ddid] guiss Bullyll Ml ¢ Gl ilag] ddano

High Performance Scalable Big Data and Machine Learning using

Apache Mahout

L.A ABDUL RASUL AL WAILI
College of Education — University Of Wasit

Abstract

Big Data Analytics and Machine learning refers to the intelligent and dynamic response
by the software or embedded hardware programs depending upon the input data.
Machine learning is the specialized domain that operates in association with the
artificial intelligence to have strong predictions and analysis. Using this approach, there
is no need to explicitly program the computers for specific applications rather the
computing modules evaluates the dataset with its inherent behavior so that real time
fuzzy based analysis can be done. The programs developed with machine learning
paradigms focuses on the dynamic input and dataset so that the custom and related
output can be presented to the end user. This manuscript underlines the high
performance big data based execution and machine learning using effectual approach

of Apache Mahout.

Keywords: Big Data, High Performance Computing, Machine Learning

Introduction

A number of application domains exist where big data processing [1] and machine
learning [2] approaches are widely used including fingerprint analysis, multidimensional
biometric evaluation, image forensic, pattern recognition, criminal investigation,
bioinformatics, Biomedical informatics, Computer vision, Customer relationship

management, Data mining, Email filtering, Natural language processing, Automatic

296

2018 dubmd] « g yutidlg coobhdl ddid] guiss Bullyll Ml ¢ Gl ilag] ddano

summarization, Automatic taxonomy construction, Robotics, Dialog system, Grammar
checker, Language recognition, Handwriting recognition, Optical character recognition,
Speech recognition, Machine translation, Question answering, Speech synthesis, Text
simplification, Pattern recognition, Facial recognition system, Handwriting recognition,
Image recognition, Search engine analytics, Recommendation system and many

others.

A number of approaches are implemented to machine learning but in traditional
integrations the Supervised and Unsupervised Learning [3] is widely used. In
supervised learning, the program is trained with a specific type of dataset with the
target value. After learning and deep evaluation of the input data and corresponding
target, it starts giving prediction. The common examples of supervised learning
algorithms include artificial neural networks, support vector machines and the
classifiers. In case of unsupervised learning, the target is not assigned with the input
data. In this approach, the dynamic evaluation of data is done with the high
performance algorithms including k-means, self-organizing maps (SOM) and clustering
techniques. Other prominent approaches and algorithms associated with Machine
Learning includes Dimensionality reduction, Decision tree algorithm, Ensemble
learning, Regularization algorithm, Supervised learning, Artificial neural network, Deep
learning, Instance—-based algorithm, Regression analysis, Classifiers, Bayesian
statistics, Linear classifier, Unsupervised learning, Artificial neural network, Association
rule learning, Hierarchical clustering, deep cluster evaluation, Anomaly detection,

Semi-supervised learning, Reinforcement learning and many others.

Free and Open Source Tools for Machine Learning
e Apache Mahout
e Scikit-Learn
e OpenAl

297

2018 dubmd] « g yutidlg coobhdl ddid] guiss Bullyll Ml ¢ Gl ilag] ddano

e TensorFlow

e Char-RNN

o PaddlePaddle

e CNTX

e Apache Singa

e DeepLearning4J
e H20

e GNU Octave

e R

e Orange

e WEKA

e Torch

e Yooreeka

e Shogun

e Massive Online Analysis (MOA)
e Mallet

e ELKI

Apache Mahout: The Scalable High Performance Machine Learning Framework

URL: mahout.apache.org

298

2018 dutmd] « g yuisidfg (oo bhdf did] guiss Suif ol Sl ¢ lusno iy ddino

What is Apache Mahout?

The Apache Mahout™ project’s goal is to build an environment for quickly creating
scalable performant machine learning applications.

Apache Mahout software provides three major features:
« A simple and extensible programming environment and framework for ‘ download
building scalable algorithms

« A wide variety of premade algorithms for Scala + Apache Spark, H20,

Apache Flink Latest release version 0.13.0 has
« Samsara, a vector math experimentation environment with R-like Apache Mahout Samsara Environment includes
syntax which works at scale « Distributed Algebraic optimizer
Read an Overview of programming a Mahout Samsara Application, learn » R-Like DSL Scala API
How To Contribute to Mahout, report an issue, bug, or suggestion in our « Linear algebra operations
JIRA, see the Samsara bindings for Scala and Spark, and contact us on « Ops are extensions to Scala
our mailing lists « |Scala REPL based interactive shell
« Integrates with compatible libraries
13 May 2017 - Apache Mahout website beta release e :
» Runs on distributed Spark, H20, and
Docs available here Flink

Figure 1: Official Portal of Apache Mahout

Apache Mahout [4[is the powerful and high performance machine learning framework
for the implementation of machine learning algorithms. Apache Mahout is traditionally
used for the integration of supervised machine learning algorithms with the target value
assigned to each input data set. Apache Mahout can be used for assorted research
based applications including Social Media Extraction and Sentiment Mining, User Belief

Analytics, YouTube Analytics and many related real time applications.

In Apache Mahout, a Mahout refers to the object which drives or operates the
elephant. The mahout act as the master of elephant in association with Apache
Hadoop and it is presented in the logo of elephant. Apache Mahout runs with the base
installation of Apache Hadoop and then the machine learning algorithms are

implemented with the features to develop and deploy the scalable machine learning

299

2018 dubmd] « g yutidlg coobhdl ddid] guiss Bullyll Ml ¢ Gl ilag] ddano

algorithms. The prime approaches like recommender engines, classification problems

and clustering can be effectively solved using mahout.

Corporate Users of Mahout includes the following
e Adobe
e Facebook
e LinkedIn
e FourSquare
o Twitter

e Yahoo

Installation of Apache Mahout
To start with the Mahout installation, first of all Apache Hadoop is required to be setup
on the Linux Distribution. To get ready with Hadoop, the installation is required to be

updated as follows in the Ubuntu Linux.

8 sudo apt-get update

3 sudo adadgroup hadoop

8§ sudo adduser ——ingroup hadoop hadoopuser]

8 sudo adduser hadoopuser] sudo

8 sudo apt-get install ssh

8 su hadoopuser]

$ ssh—keygen —t rsa

$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
$ chmod 0600 ~/.ssh/authorized keys

& ssh localhost

Installing the Latest Version of Hadoop

300

2018 dubmd] « g yutidlg coobhdl ddid] guiss Bullyll Ml ¢ Gl ilag] ddano

$ wget http://www-us.apache.org/dist/hadoop/common/hadoop—

Hadoop Version/hadoop—HadoopVersion.tar.gz

& tar xvzf hadoop—HadoopVersion.tar.gz

$ sudo mkdir —p Jusr/local/hadoop

$ cd hadoop-HadoopVersion/

$ sudo mv * Jusr/local/hadoop

$ sudo chown -R hadoopuser| :hadoop /ust/local/hadoop

The following files are required to be updated next
e ~/.bashrc
e core-site.xml
e hadoop-env.sh
e hdfs—site.xml
e mapred-site.xml

e yarn-site.xml

$ hadoop namenode —format
$ cd Jusr/local/hadoop/sbin
& start-all.sh

Web Interfaces of Hadoop

MapReduce: http://localhost:8042/

NameNode daemon: http.//localhost: 50070/

Resource Manager: htip://localhost:8088/
SecondaryNameNode:: http://localhost: 50090/status. html

The default port to access Hadoop is 50070 and using http://localhost:50070/ on Web

Browser

301

http://www-us.apache.org/dist/hadoop/common/hadoop-HadoopVersion/hadoop-HadoopVersion.tar.gz
http://www-us.apache.org/dist/hadoop/common/hadoop-HadoopVersion/hadoop-HadoopVersion.tar.gz

2018 dubmd] « g yutidlg coobhdl ddid] guiss Bullyll Ml ¢ Gl ilag] ddano

After installation of Hadoop, the setup of Mahout is required as follows.

$ wget http://mirror.nexcess.net/apache/mahout/(). 9/mahout-Distribution. tar.gz

& tar zxvf mahout-Distribution. tar.gz

Implementation of Recommender Engine Algorithm

Now days, we shop on the online shopping platforms like Amazon, E-Bay, SnapDeal,
FlipKart and many others. We generally see that most of these online shopping
platforms give us suggestions or recommendations [5, 6] about the products which we
like or earlier purchased. This type of implementation or suggestive modeling is known
as recommender engine or recommendation system. Even in YouTube, we see the
number of suggestions regarding related videos which we view. Such online platforms
integrate the approaches of recommendation engines by which the related best fit or

most viewed items are presented to the user as recommendations.

Apache Mahout provides the platform to program and implement the recommender
systems. For example, the Twitter HashTag Popularity can be evaluated and ranking
can be done based on the visitor count or popularity or simply hits by the users. In
YouTube, the number of viewers is the key value which determines the actual
popularity of that particular video. Using Apache Mahout, such algorithms can be

implemented which are covered under high performance real time machine learning.

For example, a data table which presents the popularity of products after online
shopping by the users is recorded by the companies so that the overall analysis of
popularity of products can be done. The rating from (-5 is logged from the users so
that the overall prominence of the product can be evaluated. This dataset can be

evaluated using Apache Mahout in Eclipse IDE.

302

http://mirror.nexcess.net/apache/mahout/0.9/mahout-Distribution.tar.gz

2018 dubmd] « g yutidlg coobhdl ddid] guiss Bullyll Ml ¢ Gl ilag] ddano

For integration of Java Code with Apache Mahout Libraries on Eclipse IDE, there are
specific JAR files which are required to be added from Simple Logging Facade for Java
(SLF4J).

Following is the Java Code Module with the methods which can be executed using

Eclipse IDE with the JAR files of Mahout to implement Recommender Algorithm

DataMode!/ dm = new F/VeDaz‘a/I/loa’e/(neW F/Ye('inputdata))

UserSimilarity us = new PearsonCorrelationSimilarity(dm);

UserNeighborhood un = new Thresh0/dUserNe/ghborhood(Threshold I/a/ue), us, dm),'
UserBasedRecommender r=new GenericUserBasedRecommender(dm, un, us),
List<Recommendeditem> rs=recommender.recommena(UserlD, Recommendations);
for (Recommendedltem rc : rs) {

System.out.printin(rc);

—~ =
SLF4

#7 S S—— “ul

= 5% % Simple Logging

Facade for Java

e

SLF4] Project

Introduction

Download
Documentation

License

News

Support

Mailing Lists

Bug Reporting

Source Repository
Support offerings
Mative implementations
Logback

Wrapped implementations
JDK14

Logdy

Simple

Simple Logging Facade for Java (SLF4J)

The Simple Logging Facade for Java (SLF41) serves as a simple facade or abstraction for various logging
frameworks (e.g. java.util.logging, logback, log4j) allowing the end user to plug in the desired logging
framework at deployment time.

Before you start using SLF4], we highly recommend that you read the two-page SLF4] user manual.

Note that SLF4J-enabling your library implies the addition of only a single mandatory dependency,
namely slf4j-api.jar. If no binding is found on the class path, then SLF4] will default to a no-operation
implementation.

In case you wish to migrate your Java source files to SLF4], consider our migrator tool which can

migrate your project to use the SLF41 APT in just a few minutes.

In case an externally-maintained component you depend on uses a logging API other than SLF4J, such
as commons logging, log4j or java.util.logging, have a look at SLF4J's binary-support for legacy APIs.

Copyright @ 2004-2017 QOS
We are actively looking for velunteers to proofread the documentation. Please send your corrections or suggestions for
improvement to "corrections@qos.ch”. See also the instructions for contributors.

ch

Figure 2: Simple Logging Facade for Java

303

2018 dubmd] « g yutidlg coobhdl ddid] guiss Bullyll Ml ¢ Gl ilag] ddano

-

Sl FA4

3 ; g ¥ B 8 L |
. 4
4 m\ Simple Logging

= i E acade for Java
TS

SLF4] Project
Introduction

Download
Documentation

License

News

Support

Mailing Lists

Bug Reporting

Source Repository
Support offerings
Native implementations
Logback

Wrapped implementations
JDK14

Log4j

Simple

Latest STABLE version

Download version 1.7.25 including full source code, class files and documentation in ZIP or TAR.GZ
format:

« s5lf4j-1.7.25.tar.gz
« slf4j-1.7.25.zip

Java 9 Modularized EXPERIMENTAL version

Download version 1.8.0-alpha2 including full source code, class files and documentation in ZIP or
TAR.GZ format:

« 5if4j-1.8.0-alpha2.tar.gz
« slf4j-1.8.0-alpha2.zip

Previous versions

Previous versions of SLF4] can be downloaded from the main repository.

Figure 3: Stable JAR Files from SLF54J Portal

Implementation Scenario of Recommendation Engine

Phase — 1 : Products Table

Table 1 — Product Table of User Purchase

Price Product

100 Product-1
100 Product-1
80 Product-2
80 Product-2
40 Product-3
30 Product-4
20 Product-5

304

2018 dubmd] « g yutidlg coobhdl ddid] guiss Bullyll Ml ¢ Gl ilag] ddano

20 Product-5

Phase — 2 : Products Occurrences Count

Table 2 — Product Occurrences

Price | Occurrences Product

100 2 Product-1
80 2 Product-2
40 1 Product-3
30 1 Product—4
20 2 Product-5

Phase — 3 : Sorting

Table 3 — Sorted Product Occurrences

Price | Occurrences Product

100 2 Product-1
80 2 Product-2
20 2 Product-5
40 1 Product-3
30 1 Product—4

305

2018 dubmd] « g yutidlg coobhdl ddid] guiss Bullyll Ml ¢ Gl ilag] ddano

Phase — 4 : New Arrivals Products Table

Table 4 — New Arrival of Products

Price Product

120 Product-3
90 Product-6
150 Product-7
90 Product-7
190 Product-3

Phase - 5 : Recommendations (Classical Approach)

New Arrival Products — Array (=> Product-3 => Product-6 => american Product-7

=> Product-7 => Product-3)

Table 5 — Recommendations in Classical Approach

Price | Recommended Puchase Item | Price | Earlier Similar Puchased ltem

190 | Product-3 40 Product-3

Execution Time —> 1.0321700572968 MicroSeconds

Phase — 1 : Products Table

Table 6 — Product Table

306

2018 dubmd] « g yutidlg coobhdl ddid] guiss Bullyll Ml ¢ Gl ilag] ddano

Price Product

100 Product-1
100 Product-1
80 Product-2
80 Product-2
40 Product-3
30 Product-4
20 Product-5
20 Product-5

Phase — 2 : Products Occurrences Count

Table 7 — Product occurrences

Price | Occurrences Product

100 2 Product-1
80 2 Product-2
40 1 Product-3
30 1 Product—4
20 2 Product-5

307

2018 dubmd] « g yutidlg coobhdl ddid] guiss Bullyll Ml ¢ Gl ilag] ddano
Phase — 3 : Sorting

Table 8 — Sorted Product occurrences

Price | Occurrences Product

100 2 Product-1
80 2 Product-2
20 2 Product-5
40 1 Product-3
30 1 Product—4

Phase — 4 : New Arrivals Products Table

Table 9 — New Arrival of Products

Price Product

120 Product-3
90 Product-6
150 Product-7
90 Product-7
190 Product-3

Phase - 5 : Recommendations (Proposed Approach)

308

2018 dubmd] « g yutidlg coobhdl ddid] guiss Bullyll Ml ¢ Gl ilag] ddano

Table 10 — Recommendations in Proposed Approach

Price Product
90 Product-6
90 Product-7

Execution Time —> (0.042825937271118 MicroSeconds

Comparative Analysis

Table 11 — Comparison of Execution Time

Proposed

Approach

Classical

Approach

0.29401683807
373

1.06206083297
73

0.22601199150
085

1.05906009674
07

0.05900311470
0317

1.06506109237
67

0.05700302124
0234

1.06206107139
59

0.03200197219
8486

1.07406210899
35

0.03800201416

1.08206200599

309

2018 dubmd] « g yutidlg coobhdl ddid] guiss Bullyll Ml ¢ Gl ilag] ddano

0156

0.02600193023
6816

67

1.04006004333
5

0.02900195121
7651

0.07700395584
1064

1.02605891227
72

1.02605915069
58

0.03100085258
4839

1.04129910469
06

0.03300213813
7817

1.04038310050
96

0.03700208663
9404

1.03823590278
63

0.03400206565
8569

1.03217005729
68

310

2018 dubmd] « g yutidlg coobhdl ddid] guiss Bullyll Ml ¢ Gl ilag] ddano

12

Comparison - Execution Time

——— et s

0.8

0.6

—#— Classical Approach
—l—Proposed Approach

Execution Time (ms)

04

1 2 3 4 5 6 7 B 5 10 11 12 13

Execution Attempt

Figure 4 — Comparison of Execution Time

Pragmatic Comparative Analysis

Proposed Classical

Approach Approach
91 83
93 85
97 87
91 84
92 89
91 80
91 81
97 90

311

2018 duimid] « g9yl o bidl diditd] < s Bullsdll bl ¢ it] ddano

97 83
94 90
97 89

Comparison - Performance
E 92 {
H
"E 87 A A f\\ & —— Classical Approach
£ N \ / v v —— Proposed Approach
82 V
77
1 2 3 4 5] 7 B 9 10 11 12 13
Execution Attempt
Figure 5: Comparison of Performance
85

Comparison - Cost Factor

75

Cost Factor

—#— Classical Approach

70

LN A

1 2 3 4 5 6 7 8 9 10 11 12 13

—— Proposed Approach

Execution Attempt

Figure 6: Comparison of Cost Factor

312

2018 dubmd] « g yutidlg coobhdl ddid] guiss Bullyll Ml ¢ Gl ilag] ddano

Conclusion

The research problems can be solved effectively using Apache Mahout with the

customized algorithms in multiple applications including Malware Predictive Analytics,

User Sentiment Mining, Rainfall Predictions, Network Forensic and Network Routing

with deep analytics. Now days, the integration of deep learning approaches can be

embedded in the existing algorithms so that higher degree of accuracy and

optimization in the results can be achieved.

References

Ji C, Li Y, Qiu W, Awada U, Li K. Big data processing in cloud computing
environments. InPervasive Systems, Algorithms and Networks (ISPAN), 2012
12th International Symposium on 2012 Dec 13 (pp. 17-23). IEEE.

Madden S. From databases to big data. IEEE Internet Computing. 2012
May;16(3):4-6.

Schlesinger MI, Hlavac V. Supervised and unsupervised learning. Atrtificial
Intelligence.;1:48.

Schelter S, Owen S. Collaborative filtering with apache mahout. Proc. of ACM
RecSys Challenge. 2012.

Sarwar B, Karypis G, Konstan J, Riedl J. Item-based collaborative filtering
recommendation algorithms. InProceedings of the 10th international conference
on World Wide Web 2001 Apr 1 (pp. 285-295). ACM.

Gori M, Pucci A, Roma V, Siena I. ItemRank: A Random-Walk Based Scoring
Algorithm for Recommender Engines. In IJCAI 2007 Jan 6 (Vol. 7, pp. 2766~
2771).

John Walker S. Big data: A revolution that will transform how we live, work, and
think.

Swan M. The quantified self: Fundamental disruption in big data science and

biological discovery. Big Data. 2013 Jun 1;1(2):85-99.

313

2018 dubmd] « g yutidlg coobhdl ddid] guiss Bullyll Ml ¢ Gl ilag] ddano

e Provost F, Fawcett T. Data science and its relationship to big data and data-
driven decision making. Big Data. 2013 Mar 1;1(1):51-9.

e Boyd D, Crawford K. Critical questions for big data: Provocations for a cultural,
technological, and scholarly phenomenon. Information, communication & society.
2012 Jun 1;15(5):662-79.

e Lohr S. The age of big data. New York Times. 2012 Feb 11;11(2012).

314

