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Abstract 
This paper explores the idea of tailoring the profile of reinforcing fibers to improving buckling 

strength of composite plates. This paper analyzes the uniaxial buckling behavior of composite laminates 
with variable fiber spacing using eight node iso parametric finite element methods.  The present 
investigation is limited to single layer composites having parallel fibers.  The non uniform spacing fiber 
results in variable elastic stiffness and non uniform pre buckling stress field, which are shown to have a 
pronounced influence on the buckling strength.  Numerical results are obtained for seven non uniform 
distributions E-glass fibers in epoxy matrix in rectangular plates with types of boundary condition, and 
range of aspect ratio.  The redistributions are seen to increase the buckling load by as much as 75 % for 
proposed distribution equation.   
Keywords: Buckling behavior, Composite plate, Variable fiber spacing, Finite element method 

  الخلاصة
البحـث يحلـل تـصرف الانبعـاج     . هذا البحث يستكشف فكرة صنع ألياف التسليح لتحسين مقاومة الانبعاج للصفائح المركبـة         

الفحـص  .  مؤلفة من رقائق وذات مسافات بين الألياف متغيرة مستخدما طريقة العناصر المحددة ذات الثمانية عقد              المحوري للمركبات ال  
نتائج المسافات الغير منتظمة للألياف تنتج جساءة مرنة متغيرة وإجهادات سـابقة    .  المقدم محدود لطبقة مركبة واحدة تملك ألياف متوازية       

تم إعطاء نتائج عددية لسبعة معادلات توزيع غير منتظمـة  . رها تعطي تأثير واضح على مقاومة الانبعاجللانبعاج غير منتظمة والتي بدو    
إعادة التوزيع أظهرت زيـادة     .  لألياف زجاج مغمورة بالايبوكسي لصفيحة مستطيلة الشكل مع أنواع من الإسناد ومدى من نسبة الإبعاد              

  .ةللمعادلة المقترح% ٧٥في حمل الانبعاج بمقدار 
  السلوك التواء، لوحة المركبة، والمباعدة بین الألیاف المتغیر، طریقة العناصر المحدودة :الكلمات المفتاحية

1. Introduction 
Nowadays, composite laminates have been widely used in modern industry due to 

their high strength-to-weight ratio, high stiffness-to-weight ratio as well as good fatigue 
resistant properties. Moreover, the design ability of this kind of material makes it have 
more development potential than the commonly used metals. Conventional fiber 
reinforced polymer (FRP) composite laminates are commonly manufactured by bonding 
many homogeneous single layers which have unified fiber orientation and fiber volume 
fraction (FVF) together. [Jones,1999].  There are hundreds of published papers dealing 
with the structural analysis (e.g. static deflections and stresses, vibrations, buckling) of 
composite plates. Along with this, various laminate theories have been developed, for 
example, the three-dimensional theories, smeared plate theories, layer-wise models, 
zigzag models, and global-local models. Very few of them consider plates with variable 
fiber spacing. If fiber spacing varies, the analysis is considerably more complicated than 
for uniform spacing. Then the material must be treated as nonhomogeneous on the 
macroscopic scale, as well as on the microscopic. Governing differential equations then 
have variable coefficients, instead of constant ones. If initial, in-plane forces are present, 
the buckling problems require first the solution of the plane elasticity problem to 
determine the internal stress field. For nonhomogeneous plates the same loading 
conditions require solutions which are usually more complicated. Moreover, solutions of 
the subsequent buckling problems are also more complicated [Leissa  and Martin,1990]  
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[Martin and Leissa,1989] investigated the plane stress problem of a rectangular of 
composite sheet with variable fiber content. The single layer composite having fibers 
parallel to the edges are macroscopically orthotropic, but nonhomogeneous. The stresses 
obtained from this analysis were treated as input to the first vibration and buckling study 
of composites with variable fiber spacing. Numerical results are obtained for six 
nonuniform distributions of glass, graphite and boron fibers. The redistribution may 
increase the buckling load by as much as 38%.  

[Leissa and Martin,1990] also presented exact solutions for the stress, strain and 
displacement fields for four types of problems with arbitrary fiber spacing.  

[Kue and Shiau,2009] also used a similar concept to reduce the free edge inter 
laminar stresses. By varying the fiber volume fraction near the free edge, the inter 
laminar normal and shear stresses near the free edges can be significantly reduced. 
[Benatta at al,2008] studied stress concentration around holes in composite laminates 
with variable fiber spacing. [Meftah at all,2008] discussed the effect of different through 
thickness distribution functions of the FVF on the critical buckling loads and resonance 
frequencies of the plate by using the FEM. The purpose of them is to design structures 
with ideal buckling and vibration characteristics via the non-uniform distribution of 
FVFs. From the preceding review of literature, it is clear that there is no study which 
considers the buckling analysis of isolated laminated plate under axial compression load 
by taking into account the variable fiber spacing with sine distribution beside other 
propositions with type of boundary conditions and aspect ratio effect for single layers.  
There is also a little amount of literature that takes into eight node element. 
 
2. Formulation of composite laminated plates 
Consider a composite laminated plate with length a, width b, and thickness h as shown in 
Figure (1). The displacement field with nine degree of freedom per node may be 
expressed as: [Kaw,2006] 
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where uo and vo are the mid-plane in-plane displacement components of the plate. The 
kinematic relation can be determined as 
 

Figure (1): Rectangular composite plate with variable fiber spacing. [Leissa  and Martin,1990] 
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where {εo} and {κ} are the mid-plane strain and plate curvature, respectively. 

The plate is assumed to consist of N layers of orthotropic sheets bonded together. 
Each layer has arbitrary fiber orientation. The fibers in each layer are aligned parallel to 
the longitudinal direction but distributed unevenly in the transverse direction. Hence, the 
fiber volume fraction, Vf, is a function of non dimensional coordinate x having its origin 
at the plate edge of plate as shown in Figure(1). Suppose, for example, the fibers are 
aligned parallel to the x direction and the fiber volume fraction varies parabolically as 
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  2

2
44 x
L

x
L

xV f . The material is all fiber at the plate center (x= a/2), whereas at 

the edges (x= 0, a), it is all matrix. With this variable fiber spacing, the elastic modulus 
E1, E2, v12, G12 for the composite material are also the functions of x.  In this study, the 
formulas used for the calculation of these effective engineering constants are based on the 
rule of mixture. [Leissa  and Martin,1990]. 
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(4) 

The stress–strain relation for the orthotropic sheet with variable fiber spacing can 
be expressed as: 
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(6) 

For a composite laminated plate with N layers, the stress–strain relation of kth layer of 
the plate can be expressed as: 
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      kk Q  (7) 
where Qij are the transformed reduced stiffness. Now the stress–strain relation becomes 
location dependent. The force and moment resultants of the composite laminated plate are 
defined as: [Kuo and Shiau,2009] 
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Where the extensional rigidity [A] and bending rigidity [D] of the panel are defined  as:  
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The total potential energy  of a deformed plate is defined as 

WU                               
(12) 

where U is the potential energy of deformation (strain energy) and W is the potential 
energy of the external loading. 

The state of equilibrium of a deformed plate can be characterized as that for 
which the first variation of the total potential energy of the system is equal to zero. 
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And can be rewritten the above equation as 
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The work done by the in-plane forces, Nx and Ny, in the x and y directions can be 
expressed as: 
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Substituting Equations (15) and (17) into Equation (13) can give the equilibrium 
equations written as: 
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    0  dWdVBu
V

T   (18) 

Where, Ψ represents the sum of external and internal generalized forces and by taking 
appropriate variation of Equation (18) with respect to du: 
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Where [B] is the strain-displacement matrix, thus 
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where [Ko] is the standard or linear stiffness matrix.  From the first term of Equation (19) 
can be written as: 
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L   (21) 

where  K  is a symmetric matrix dependent on the stress level.  This matrix is 
known as initial stress matrix or geometric matrix. So, In the present study the selective 
integration rule has been adopted to compute the integration of the matrices where (3×3) 
is used for bending and membrane energies and (2×2) for transverse shear energies. The 
final form of tangent stiffness such as: 
      KKK oT   (22) 

The term λ in the above equation is the load factor that amplifies this initial stress 
field. As a consequence of equation (4.45), the buckling criterion becomes: 

     0  KKDet o  (23) 
which is an eigenvalue problem, and by solving the problem, the critical buckling load 
Pcr may be found from the lowest eigenvalue of the system.  In the present study was 
used eight-node Serendipity element shown in Figure (3).  This element contains four 
nodes at the corners, four nodes at the mid-sides of the element boundaries.  The topology 
order is counter-clockwise in the sequence from 1 to 8 .[Bathe,1996]. 
 
 
 
 
 
 
 
 

 
 
3. Numerical results 
In order to study the effect of variable fiber spacing, boundary conditions, and aspect 
ratios, on the buckling strength of a rectangular composite plate, several plates are 
analyzed. The correctness of the buckling analysis is first checked with the case studied 
by [Leissa and Martin,1990] and with [Kuo and Shiau,2009]. 
Table(1) shows the non dimensional critical buckling stresses 
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Figure (3): Eight-node quadrilateral iso parametric element. [Bathe,1996] 
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properties of the analyzed plate are (Ef=73.1 GPa, Em= 3.44 GPa,Gf= 29.67 GPa, 
Gm= 1.277 GPa, vf=0.22, vm=0.35, a=b=1.0 m, h=0.01 m).  The critical buckling 
stresses are compared to Leissa and Martin’s study and to Kuo and Shiau’s study. The 
critical buckling stresses for the fiber distributions 3 and 6  not compared to Leissa 
and Martin’s study due to the miscalculation for the fiber volume fraction Vfav in 
the former study.  

For the present study, it is seen that the maximum difference is 6.0% for the 
fiber distribution 1 according to [Leissa and Martin,1990] study and maximum 
difference is 3.5% for the fiber distribution 1 according to Leissa and Martin study.  

 
[Kuo and Shiau,2009] proposed new formula for distribution of fiber such as 
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44 where Vfin is the fiber volume fraction at the 

plate center (x = L/2) and Vfout is the fiber volume fraction at the edges (x = 0,L).  The 
volume fraction index n controls the variation of the volume fraction. The new fiber 
distribution includes the previous six fiber distributions. 
  Figure(4) shows the comparison of the present study with Kou and Shiau 
study for the critical buckling stresses with Vfin for glass epoxy composites with 
fiber distribution        
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It can be noticed that the critical buckling load may be increased by increasing 
the fiber volume fraction. The more fibers distributed in the central portion of the 
plate may efficiently increase the critical buckling load by use of the same fiber 
volume fraction Vfav.  Besides, the fibers distributed in the outer portion of the plate 
may also increase the critical buckling load. 
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Table (1): Comparison of critical buckling stresses for non-homogeneous glass epoxy 
composites 
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New form of distribution fiber spacing was proposed by the present study to 

improve the buckling strength of composite plate which using sine wave distribution 
equation as   
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sin  where n is the waviness number.  Table (2) and Figure 5 

show the effect of waviness number on the non dimensional critical buckling load of 
composite plated used in the previous case.  From this study it can be noticed that the n=4 
gives high strength of buckling and thus will used in the post study. 
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Figure (4): Critical buckling stresses for square glass epoxy composites with different outer 
fiber volume fraction 

Table(2):Comparison of waviness number for critical buckling stresses of composite plate 
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Table (3) shows the comparison between the composite plate with constant 
spacing fiber and with composite plate with variable fiber spacing for the same value of 
volume fraction using seven equations of distribution.  From this table can be noticed that 
the composite plate with variable fiber spacing gives buckling strength greater than the 
composite plate with constant fiber spacing and so the proposed equation of distribution 
gives high buckling strength compared with other equations of distribution fiber. The 
proposed equation gives increasing about 52.3% in the critical buckling strength 
compared with the highest other distribution equation.  
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The effect of boundary condition on the buckling strength of composite plate with 

variable and constant fiber spacing was studied in Table (4). Table(4) shows the non 
dimensional critical buckling stresses for glass epoxy composite plates with seven 
different fiber distributions (Vf) and constant fiber distribution.  The material properties 
of the analyzed plate are (Ef=73.1 GPa, Em= 3.44 GPa,Gf= 29.67 GPa, Gm= 1.277 GPa, 
vf=0.22, vm=0.35, a=b=1.0 m, h=0.01 m). from this table, it can be noticed that the type 
of boundary condition effects on the buckling strength of composite plate and besides to 
this the buckling strength of composite plate with variable fiber spacing much more  the 
composite plate with constant fiber spacing fro all types of boundary conditions. 

 
 
 
 
 
 

Table (3):Comparison of critical buckling stresses for Composite plate with variable 
spacing fiber and constant fiber spacing 
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
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 0.865 0.821 2.860 2.757 1.383 1.267 









L
x4sin

 

1.752 0.850 4.445 2.859 3.628 1.318 

The effect of aspect ratio on the buckling strength of composite plate with 
variable and constant fiber spacing was studied in table (5). The range of aspect ratio 
(1,1.5,2,3, and 4) was respect in the present study.  

Table (5) and Figures 6 and 7 shows the non-dimensional critical buckling stress 
of composite plate with variable and constant fiber spacing.  From this can be noticed that 
the buckling strength of composite plate with variable fiber spacing less than the buckling 
strength of composite plate with constant fiber spacing when the aspect ratio about equal 
and greater than 3 for all equations of distribution except the proposed equation gives 
buckling strength greater than the constant fiber for all range of aspect ratio.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table(4):Critical buckling stresses of Composite plate with variable spacing fiber 
with types of boundary conditions 
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1.752 0.850 1.954 0.67 1.869 0.741 1.607 0.882 1.597 0.730 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table(5):Critical buckling stresses of Composite plate with variable spacing fiber with range of aspect ratios 

Figure(6):Critical buckling stresses of Composite plate with Constant spacing fiber with range of aspect 
ratios 
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3.Conclusions 

Buckling strength of composite laminated plates with variable and constant fiber 
spacing was studied using finite element method. Eight node isoparametric elements with 
five degree of freedom per node were used in the present study. From the present results, 
the following conclusions can be drawn: 
1- The buckling strength of composite plate with variable and constant fiber spacing 

may be increased by increasing the fiber volume fraction. 
2- The more fibers distributed in the central portion of the composite plate may 

efficiently increase the buckling load 
3- The fibers distributed in the outer portion of the plate may increase the buckling 

strength of composite plate. 
4- The buckling strength of composite plate with variable spacing fiber affect by aspect 

ratio where becomes less than the buckling strength of composite with constant 
fiber spacing when the aspect ratio equal to and greater than 3 for all equations of 
distribution fibers except the proposed sine wave equation.  

5- A sine wave distribution fiber gives more efficient equation from other equation to 
improve the buckling strength of composite plate. 
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