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Abstract

This paper explores the idea of tailoring the profile of reinforcing fibers to improving buckling
strength of composite plates. This paper analyzes the uniaxial buckling behavior of composite laminates
with variable fiber spacing using eight node iso parametric finite element methods. The present
investigation is limited to single layer composites having parallel fibers. The non uniform spacing fiber
results in variable elastic stiffness and non uniform pre buckling stress field, which are shown to have a
pronounced influence on the buckling strength. Numerical results are obtained for seven non uniform
distributions E-glass fibers in epoxy matrix in rectangular plates with types of boundary condition, and
range of aspect ratio. The redistributions are seen to increase the buckling load by as much as 75 % for
proposed distribution equation.
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1. Introduction

Nowadays, composite laminates have been widely used in modern industry due to
their high strength-to-weight ratio, high stiffness-to-weight ratio as well as good fatigue
resistant properties. Moreover, the design ability of this kind of material makes it have
more development potential than the commonly used metals. Conventional fiber
reinforced polymer (FRP) composite laminates are commonly manufactured by bonding
many homogeneous single layers which have unified fiber orientation and fiber volume
fraction (FVF) together. [Jones,1999]. There are hundreds of published papers dealing
with the structural analysis (e.g. static deflections and stresses, vibrations, buckling) of
composite plates. Along with this, various laminate theories have been developed, for
example, the three-dimensional theories, smeared plate theories, layer-wise models,
zigzag models, and global-local models. Very few of them consider plates with variable
fiber spacing. If fiber spacing varies, the analysis is considerably more complicated than
for uniform spacing. Then the material must be treated as nonhomogeneous on the
macroscopic scale, as well as on the microscopic. Governing differential equations then
have variable coefficients, instead of constant ones. If initial, in-plane forces are present,
the buckling problems require first the solution of the plane elasticity problem to
determine the internal stress field. For nonhomogeneous plates the same loading
conditions require solutions which are usually more complicated. Moreover, solutions of

the subsequent buckling problems are also more complicated [Leissa and Martin,1990]
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[Martin and Leissa,1989] investigated the plane stress problem of a rectangular of
composite sheet with variable fiber content. The single layer composite having fibers
parallel to the edges are macroscopically orthotropic, but nonhomogeneous. The stresses
obtained from this analysis were treated as input to the first vibration and buckling study
of composites with variable fiber spacing. Numerical results are obtained for six
nonuniform distributions of glass, graphite and boron fibers. The redistribution may
increase the buckling load by as much as 38%.

[Leissa and Martin,1990] also presented exact solutions for the stress, strain and
displacement fields for four types of problems with arbitrary fiber spacing.

[Kue and Shiau,2009] also used a similar concept to reduce the free edge inter
laminar stresses. By varying the fiber volume fraction near the free edge, the inter
laminar normal and shear stresses near the free edges can be significantly reduced.
[Benatta at al,2008] studied stress concentration around holes in composite laminates
with variable fiber spacing. [Meftah at all,2008] discussed the effect of different through
thickness distribution functions of the FVF on the critical buckling loads and resonance
frequencies of the plate by using the FEM. The purpose of them is to design structures
with ideal buckling and vibration characteristics via the non-uniform distribution of
FVFs. From the preceding review of literature, it is clear that there is no study which
considers the buckling analysis of isolated laminated plate under axial compression load
by taking into account the variable fiber spacing with sine distribution beside other
propositions with type of boundary conditions and aspect ratio effect for single layers.
There is also a little amount of literature that takes into eight node element.

2. Formulation of composite laminated plates

Consider a composite laminated plate with length a, width b, and thickness /4 as shown in
Figure (1). The displacement field with nine degree of freedom per node may be
expressed as: [Kaw,2006]

1

:>‘,.

Figure (1): Rectangular composite plate with variable fiber spacing. [Leissa and Martin,1990]

u(x,y,z)= ua (x’ y)_ zwa,x
v(x,3,2)=v,(x,p)-2w,, )

w(x, y,2)=w,(x,»)
where u, and v, are the mid-plane in-plane displacement components of the plate. The
kinematic relation can be determined as
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6‘x ua,x - wa,xx
Ey (=] Ver  [FE Wen (=16 F 2l @)
}/xy ua,y + va,x - ZWO,X.V

where {&,} and {x} are the mid-plane strain and plate curvature, respectively.

The plate is assumed to consist of IV layers of orthotropic sheets bonded together.
Each layer has arbitrary fiber orientation. The fibers in each layer are aligned parallel to
the longitudinal direction but distributed unevenly in the transverse direction. Hence, the
fiber volume fraction, V7, is a function of non dimensional coordinate x having its origin
at the plate edge of plate as shown in Figure(l). Suppose, for example, the fibers are
aligned parallel to the x direction and the fiber volume fraction varies parabolically as

V f(x)= (%x—%xzj. The material is all fiber at the plate center (x= a/2), whereas at

the edges (x= 0, a), it is all matrix. With this variable fiber spacing, the elastic modulus
E,, E,, vi2, Gy, for the composite material are also the functions of x. In this study, the
formulas used for the calculation of these effective engineering constants are based on the
rule of mixture. [Leissa and Martin,1990].

E (x)=EV,(x)+E,(1-V,(x))
E,E,
B e oy (e B, ()
vlz(x) = vaf (x)+ v, (1 - Vf (x))
G,G,
G, 1-V,(x)+G,V,(x)

The stress—strain relation for the orthotropic sheet with variable fiber spacing can

be expressed as:
L

O-1 Qll(x) QlZ(x) 0 8]

“)

G, x):

o, | =[0ux) @.(x) o [le )
Tia 0 0 Qﬁﬁ(x) V12
Where:

E,(x)
0,(x)=f——
“( ) (l_vlz(x)v21 (x))
_ vlz(x)El (x)
L W O E) ©
_ Ez(x)
Qs (x) (1 - vlz(x)v21 (x))
Q66(x)= Glz(x)
For a composite laminated plate with N layers, the stress—strain relation of kth layer of
the plate can be expressed as:
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o} =0l te} (7)
where Qy are the transformed reduced stiffness. Now the stress—strain relation becomes
location dependent. The force and moment resultants of the composite laminated plate are
defined as: [Kuo and Shiau,2009]

h/
VM=[v, N, N = IZ[O' o, 7,z @)
—h/2
h/
[M]:[Mx M, Mxy]L = IZ[O'X o, rxy]zdz )
—h/2
Which leads to,
{v}=[4Ke, }
(10)
{M}=[Dlfx}
Where the extensional rigidity [A] and bending rigidity [D] of the panel are defined as:
N
Ay =205 —hy_;) i,j=1,2,6 (11a)
k=1
1 - 3 3 .« .
D, :EZ;Qii(hk ~h) ij=1,2,6 (11 b)
The total potential energy ITof a deformed plate is defined as
n=v-w 12)

where U is the potential energy of deformation (strain energy) and W is the potential
energy of the external loading.

The state of equilibrium of a deformed plate can be characterized as that for
which the first variation of the total potential energy of the system is equal to zero.

dll=dU—dW =0 13)
or
dU =dw (14)

The components of the Piola-Kirchhoff stress vector, thus
h

2
dU = I_[dETo- dV = £ Ih(dgxcrx + dgycry + d}/xyrxy +dy. .t .+ d}/yzryz)dz d4  (15)

2
And can be rewritten the above equation as

dU = j dzTo dA (16)
A

The work done by the in-plane forces, Ny and N,, in the x and y directions can be
expressed as:

aw =_'-qu0 dy+J‘Nyva dy+%_'-(Nx(wa,x)z +Ny(wa,y)2)dA an

Substituting Equations (15) and (17) into Equation (13) can give the equilibrium
equations written as:
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Y(@)=[[BYoav —aw =0 (18)

Where, ¥ represents the sum of external and internal generalized forces and by taking
appropriate variation of Equation (18) with respect to du:

a¥ = [a[B)eav +[[B] aGav 19)
Where [B] is the strain-displacement matrix, thus
[[B] azav = [[B] [D][B L4 =[x ,] 20)

where [K,] is the standard or linear stiffness matrix. From the first term of Equation (19)
can be written as:
[alB.Teav =[xk,] 21)

where [K c,] is a symmetric matrix dependent on the stress level. This matrix is

known as initial stress matrix or geometric matrix. So, In the present study the selective
integration rule has been adopted to compute the integration of the matrices where (3%3)
is used for bending and membrane energies and (2%X2) for transverse shear energies. The
final form of tangent stiffness such as:
(. 1=[k,1+alx,] (22)

The term A in the above equation is the load factor that amplifies this initial stress
field. As a consequence of equation (4.45), the buckling criterion becomes:
Det (K, ]+ A[K,])=0 (23)
which is an eigenvalue problem, and by solving the problem, the critical buckling load
P, may be found from the lowest eigenvalue of the system. In the present study was
used eight-node Serendipity element shown in Figure (3). This element contains four
nodes at the corners, four nodes at the mid-sides of the element boundaries. The topology
order is counter-clockwise in the sequence from 1 to 8 .[Bathe,1996].

Figure (3): Eight-node quadrilateral iso parametric element. [Bathe,1996]

3. Numerical results

In order to study the effect of variable fiber spacing, boundary conditions, and aspect
ratios, on the buckling strength of a rectangular composite plate, several plates are
analyzed. The correctness of the buckling analysis is first checked with the case studied
by [Leissa and Martin,1990] and with [Kuo and Shiau,2009].

Table(1) shows the non dimensional critical buckling stresses 5~ _ L’ o for glass

o T thz cr
epoxy composite plates with six different fiber distributions (¥7). The material

530



[g : (M) abhal /7 () 22cl /7 dunind aglel /7 Ly dedy dha

properties of the analyzed plate are (E~73.1 GPa, E,~= 3.44 GPa,G~ 29.67 GPa,
G,= 1.277 GPa, v~0.22, v,=0.35, a=b=1.0 m, h=0.01 m). The critical buckling
stresses are compared to Leissa and Martin’s study and to Kuo and Shiau’s study. The
critical buckling stresses for the fiber distributions 3 and 6 not compared to Leissa
and Martin’s study due to the miscalculation for the fiber volume fraction Vfav in
the former study.

For the present study, it is seen that the maximum difference is 6.0% for the
fiber distribution 1 according to [Leissa and Martin,1990] study and maximum
difference is 3.5% for the fiber distribution 1 according to Leissa and Martin study.

[Kuo and Shiau,2009] proposed new formula for distribution of fiber such as

4 4 ,Y . .
v, (x)= V fout +(Vﬁn —Vﬁm,{zx—FxZ) where Vi, is the fiber volume fraction at the

plate center (x = L/2) and Ve is the fiber volume fraction at the edges (x = 0,L). The
volume fraction index m controls the variation of the volume fraction. The new fiber
distribution includes the previous six fiber distributions.

Figure(4) shows the comparison of the present study with Kou and Shiau
study for the critical buckling stresses with Vg, for glass epoxy composites with
fiber distribution ' (x)=v,, + (", =V {2x ~ ;zxz]".

It can be noticed that the critical buckling load may be increased by increasing
the fiber volume fraction. The more fibers distributed in the central portion of the
plate may efficiently increase the critical buckling load by use of the same fiber
volume fraction Vy,. Besides, the fibers distributed in the outer portion of the plate
may also increase the critical buckling load.

Table (1): Comparison of critical buckling stresses for non-homogeneous glass epoxy
composites

LZ
o, = E e
No. V, (x) !
Leissa and .
Martin Kuo and Shiau Present study
4 4
1 (x—zxz] 1.0859 1.1111 1.1500
L L
4 4 :
2 [Tx - hox j 0.8451 0.8798 0.900
3 [ix LA j - 0.7675 0.7560
L L
4 LI (i SN T 0.9334 0.9380
P 0.9346 ' :
5 1, [Lx BRI ) 0.8897 0.8882 0.8930
2 L L
1 1 1 L)
6 L, [—x . j ; 0.8607 0.8650
2 L L
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Figure (4): Critical buckling stresses for square glass epoxy composites with different outer
fiber volume fraction

New form of distribution fiber spacing was proposed by the present study to
improve the buckling strength of composite plate which using sine wave distribution

. nmrx
sm| ———

show the effect of waviness number on the non dimensional critical buckling load of
composite plated used in the previous case. From this study it can be noticed that the n=4
gives high strength of buckling and thus will used in the post study.

equation as V,(x)= where n is the waviness number. Table (2) and Figure 5

Table(2):Comparison of waviness number for critical buckling stresses of composite plate

_ L?
O-cr = 2 O-cr
Vf (x) E  h
n=l1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

1255 | 1117 ([1.106 |[1.752 |1.139 |0975 [1.183 0.567

Critical buckling stress o,
N
I

0.0 2.0 4.0 6.0 8.0 10.0
Waviness number( 1)
Figure (5): waviness number for critical buckling stresses of composite plate
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Table (3) shows the comparison between the composite plate with constant
spacing fiber and with composite plate with variable fiber spacing for the same value of
volume fraction using seven equations of distribution. From this table can be noticed that
the composite plate with variable fiber spacing gives buckling strength greater than the
composite plate with constant fiber spacing and so the proposed equation of distribution
gives high buckling strength compared with other equations of distribution fiber. The
proposed equation gives increasing about 52.3% in the critical buckling strength
compared with the highest other distribution equation.

Table (3):Comparison of critical buckling stresses for Composite plate with variable
spacing fiber and constant fiber spacing

2
Volume fraction of T = L o
fiber (%) e thz e
Vf (x)
V. v, Variable spacing Constant spacing
finax fav fiber fiber
[%x - 5 x2] 100 66.67 1.150 0.896
(- ) 100 53.34 0.900 0.713
4 4 Y
Zx-—x 100 45.70 0.756 0.617
L L?
1 1 1,
— [—x - —x j 75 66.67 0.938 0.896
2 L L
1 (1 1 ,Y
| —x——x 75 63.34 0.893 0.849
2 L L
1 (1 1 ,Y
| —x——x 75 61.42 0.865 0.821
2 L
4
sin (%) 100 63.67 1.752 0.850

The effect of boundary condition on the buckling strength of composite plate with
variable and constant fiber spacing was studied in Table (4). Table(4) shows the non
dimensional critical buckling stresses for glass epoxy composite plates with seven
different fiber distributions (V) and constant fiber distribution. The material properties
of the analyzed plate are (E~73.1 GPa, E,= 3.44 GPa,G~ 29.67 GPa, G,~= 1.277 GPa,
v~0.22, v,,=0.35, a=b=1.0 m, h=0.01 m). from this table, it can be noticed that the type
of boundary condition effects on the buckling strength of composite plate and besides to
this the buckling strength of composite plate with variable fiber spacing much more the
composite plate with constant fiber spacing fro all types of boundary conditions.
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Table(4):Critical buckling stresses of Composite plate with variable spacing fiber
with types of boundary conditions

~
=
~

LZ
c,=—-50,
“ Eh*°

Two ends simply and

f All e(dsgsesssi;nply All e(dcgé Elér)nped o th‘(:églélsn)pe d

VSF. |CSF. |VSF. |CSF. V.SF. | CSF.
( % x - Li x? J 1150 | 0.896 4.284 2.997 2.790 1.402
[% x - Li x? j 0900 | 0.713 3.169 2.408 1.860 1.090
[% x - Li x? j3 0.756 | 0.617 2.790 2.085 1.410 0.944
%+ [% - LL x? j 0938 | 0.896 3.042 2.997 1.511 1.402
%+ [% - LL x? j 0.893 | 0.849 2919 2.851 1432 1316
%+ [% - LL x? j3 0.865 | 0.821 2.860 2.757 1.383 1267
sin [ 4: j‘ 1752 | 0.850 4.445 2.859 3.628 1318

The effect of aspect ratio on the buckling strength of composite plate with
variable and constant fiber spacing was studied in table (5). The range of aspect ratio

(1,1.5,2,3, and 4) was respect in the present study.

Table (5) and Figures 6 and 7 shows the non-dimensional critical buckling stress
of composite plate with variable and constant fiber spacing. From this can be noticed that
the buckling strength of composite plate with variable fiber spacing less than the buckling
strength of composite plate with constant fiber spacing when the aspect ratio about equal
and greater than 3 for all equations of distribution except the proposed equation gives

buckling strength greater than the constant fiber for all range of aspect ratio.
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Table(5):Critical buckling stresses of Composite plate with variable spacing fiber with range of aspect ratios

L?
o = —7F0
cr 2 cr
E  h

a/b=1 a/b=1.5 a/b=2.0 a/b=3.0 a/b=4.0

VS.F. | CSF.| VSF.| CSF. | VSF.| CSF.| VSF. | CSF. | VSF. | CS.F.

4 4
[fx_LTx) 1.150 | 0.896 | 1295 | 0.713 | 1.555 | 0.796 | 0.784 | 0.931 | 0.637 | 0.745

4 4 Y
[fx_Fx ) 0.900 | 0.713 | 0.861 | 0.543 | 0.991 | 0.595 | 0.469 | 0.729 | 0392 | 0.573

4 4 Y
[fx_Fx ) 0.756 | 0.617 | 0.657 | 0431 | 0.754 | 0474 | 0367 | 0.574 | 0317 | 0.454

1 1,
E{Z"‘F") 0.938 0.896 0.755 0.713 0.891 0.796 0.921 0.931 0.743 0.745

2
% +(lx—lx2] 0.893 | 0.849 | 0.719 | 0.657 | 0.849 | 0.722 | 0.856 | 0.867 | 0.688 | 0.690

1 (1 1 LY
5+(ZX_FX ] 0.865 0.821 0.690 0.617 0.819 0.680 0.823 0.823 0.661 0.653

sin [ dmx J‘ 1.752 | 0.850 | 1.954 0.67 1.869 | 0.741 | 1.607 | 0.882 | 1.597 | 0.730

L
1.4
i —+—E%x,:_{j:
—a— - Iiv)
w 1.2 — —— 4 4,
A - +x 5 )3
g e
2 - —a— L+[LX,L;)2
o0 —_— 2 L L
= 1.0 — —— PRV
£ i (322
% 5
= S n
=
E 0.8 —
2]
2
R _
S
o
0.6 —
0.4 T T T T T T T |
0.0 1.0 2.0 3.0 4.0

(a/d) aspect ratios

Figure(6):Critical buckling stresses of Composite plate with Constant spacing fiber with range of aspect
ratios
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Figure(7):Critical buckling stresses of Composite plate with variable spacing fiber with range of aspect ratios

3.Conclusions

Buckling strength of composite laminated plates with variable and constant fiber
spacing was studied using finite element method. Eight node isoparametric elements with
five degree of freedom per node were used in the present study. From the present results,

the following conclusions can be drawn:

1- The buckling strength of composite plate with variable and constant fiber spacing

may be increased by increasing the fiber volume fraction.

2- The more fibers distributed in the central portion of the composite plate may

efficiently increase the buckling load

3- The fibers distributed in the outer portion of the plate may increase the buckling

strength of composite plate.

4- The buckling strength of composite plate with variable spacing fiber affect by aspect
ratio where becomes less than the buckling strength of composite with constant
fiber spacing when the aspect ratio equal to and greater than 3 for all equations of

distribution fibers except the proposed sine wave equation.

5- A sine wave distribution fiber gives more efficient equation from other equation to

improve the buckling strength of composite plate.
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