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Abstract

An R-module M is called a polyform module if every essential submodule of M
is rational. The main objective of this paper is to introduce a new concept of
modules named fully polyform modules. This kind of module is contained in the
class of polyform modules. We study in detail fully polyform modules, so several
properties of this concept are investigated. Other characterizations and partial
characterisations (i.e., satisfied by certain conditions) of the definition of fully
polyform module analogous to those known in the concept of a polyform module are
given and discussed. For instance, we proved that a module M is a fully polyform

module if and only if HomR(ﬁ, M)=0 for each P-essential submodule N of M and for

each V<M with NcVcM. Relationships between this class of modules and some
other related concepts are discussed such as monoform, QIl-monoform, essentially
quasi-Dedekind, essentially prime and St-polyform modules. Moreover, useful
concepts and their influence or relationships with fully polyform modules such as P-
uniform and Pe-prime modules are introduced.

Keywords: Polyform modules, Fully polyform modules, Rational submodules,
Essential submodules, P-essential submodules.
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1. Introduction:

Many authors such as J. Zelmanowitiz, H.H. Storrer, and M.A. Ahmed have studied and
discussed polyform modules. An R-module M is called injective if for every monomorphism
f: M—B and every homomorphism g: M—C there is a homomorphism h: B—C with g=hof,
[1, P.116]. A non-zero submodule N of M is said to be essential (briefly, N<,M) if NNL#0
for every non-zero submodule L of M, [2, P.15]. An essential monomorphism is defined as a
monomorphism f: S—T such that f(S) <.T, [1, Definition 5.6.5 (1)]. For any R-module M,
an injective hull of M is denoted by E(M), and it is defined as a monomorphism f: M—E(M)
with E(M) is an injective module and f is an essential monomorphism, [1, P.124]. A
submodule N of an R-module M is called rational (simply, N<,M ) if HomR(%, E(M))=0,
where E(M) is the injective hull of M, [3, P.274]. An R-module M is called a polyform if
every essential submodule of M is rational, [4]. A submodule N of M is called pure if
NNIM=IN for every ideal | of R, [5].

This paper consists of three sections. Section two discusses the main properties of fully
polyform modules. Among these results are the following:

e Let M be a PIP module. If M is fully polyform then every non-zero pure and P-essential
submodule of M is fully polyform, see Proposition 2.7.

e Let M be a multiplication module with a pure annihilator, and N is a pure and P-essential
submodule of M. If M is a fully polyform module then N is fully polyform, see Proposition
2.9.

Also, some characterizations of the definition of fully polyform modules are given, for
instance:

e Let M be an R-module. The following statements are equivalent:

I. Mis a fully polyform module.

ii. HomR(E, M)=0 for each P-essential submodule N of M, and for each V<M, with NcVcM.

See Theorem 2.14.
e The following statements are equivalent:

1. Homg <% E(M)):O for each P-essential submodule N of M.

2. For each non-zero homomorphism f:M—E(M), the kernel of f is not P-essential
submodule of M.
See Theorem 2.15.
e Let M be an R-module satisfying the Condition (®). Consider the following:
i.  All partial endomorphisms of M have pure closed kernels in their domains.

ii. Hompg (% E(M))zo, for each P-essential submodule N of M.

Then (i) = (ii).

See Theorem 2.17.

e Let M be an F-regular module. Consider the following:

1. All partial endomorphisms of M have pure closed kernels in their domains.

2. Hompg (% E(M))zo, for each P-essential submodule N of M.

Then (1) = (2).
See Theorem 2.19.

Section three deals with the relationships between the fully polyform modules and other
related concepts such as the following:
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e Let M be a multiplication and prime module. Consider the following:
1. Mis a fully polyform module.
2. Mis a polyform module.
3. M is a quasi-invertibility monoform module.
Then (1) = (2)  (3).
See Theorem 3.22.
e Let M be a quasi-injective module with J(Endg (M))=(0), consider the following:
1. Mis a fully polyform module.
2. Mis a polyform module.
3. M is a quasi-invertibility monoform module.
Then (1) = (2) & (3).
See Theorem 3.23.
e Let R be a quasi-Dedekind ring. Consider the following statements:
1. Ris a fully polyform ring.
2. Risapolyform ring.
3. R s a quasi-invertibility monoform ring.
4. R is a monoform ring.
Then (1) = (2) = (3) = (4).
See Theorem 3.24.
We must keep in mind that all rings R in this work are commutative with identity and
all modules are unitary left R-modules.

2. Fully Polyform Modules

In this section, a new class of modules is introduced, and it is named fully polyform
modules. The basis of this concept is the P-essential submodules which appeared in [6], and it
is mentioned in the following:

Definition 2.1: [6]
A submodule N of M is called P-essential (briefly N<,.M), if for every pure
submodule L of M with NNL=(0), implying that L=(0).

Remark 2.2: It is clear that every essential submodule is P-essential. The converse is true
when M is uniform, where a non-zero module M is called uniform if every non-zero
submodule of M is essential, [2].

Definition 2.3: An R-module M is said to be fully polyform if every P-essential submodule of
M is rational in M. That is Homg (%,E(M)):O for every P-essential submodule N of M. A
ring R is called fully polyform if R is a fully polyform R-module.

Remark 2.4: It is obvious that every fully polyform module is polyform. We think the
converse is not true in general, but we cannot find an example to confirm that.

Remarks and Examples 2.5:
1. The Z-module Z is fully polyform, since all submodules nZ of Z are essential, hence they

are P-essential in Z, and Hompg (%, E(Z))=HomR (1 Q); Homg(Z,,, Q)=0.

nZ’
2. Zp=is not fully polyform Z-module, in fact, in spite of every submodule of Zpwis P-
essential, and each proper submodule A of Zp satisfying

3315



Muhammad and Ahmed Iragi Journal of Science, 2024, Vol. 65, No. 6, pp: 3313-3330

po

Homz(ZPTOO’E(ZP”))zHomZ(ZPTw»ZPw)- Note that ZT = Zpo. But in contrast,
Homyg, (ZPTOO, ZPW)EHomz(ZPOO,ZPoo);éO_

3. Z, is not fully polyform Z-module. There is a P-essential subomodule < 2 >< Z, and a
. Z Z
non-zero homomorphism f EHomy, (é E(Z4)>: Homy (g‘; Zzw), [7, P.21].

4. Homomorphic image of fully polyform is not fully polyform, such as the Z-module Z is
fully polyform, but the quotient 4—22524 is not fully polyform Z-module as verified by (3).

5. Every simple module is fully polyform since the P-essential submodule of a simple module
say M is only itself, hence HomR(%, E(M))= Homg (0, E(M))= 0.

6. For any R-module M with N<M, if % is fully polyform then M may not be fully polyform

for example the Z-module Z, is simple and by (5), it is fully polyform. On contrast, ZZE%,
and we verified in (3), that Z, is not fully polyform.

An R-module M is called F-regular if every submodule of M is pure, [8].

7. 1f M is an F-regular module, then the two concepts of polyform and fully polyform
coincide.

Proof: If M is F-regular, then it is easy to show that the essential and P-essential concepts are
identical. This yields that polyform and fully polyform coincide.

8. For any regular ring R, any R-module M is fully polyform if and only if M is polyform.
Proof: Since every module over a regular ring is regular, [5, P.29]. Then the result is followed

by (7).

Remember that a submodule N of an R-module M is called a quasi-invertible submodule
of M (we choose the symbols N<,,,M) if HomR(%, M)=0, [9].

9. If M is a fully polyform module, then anng(M)=anng(N) for all N<,,.M.
Proof: By assumption, Homg (%,E(M)):O for all N<, .M. This implies that N is a rational

submodule of M for all N<,,M. On the other hand, the rationally of any submodule implies
quasi-invertibility, and if N<,,M then anng(M)=anng(N), [9, Proposition (1.4), P.7].
Therefore, anng(M)=anng(N) for all N<,,.M.

10. The direct sum of fully polyform is not necessarily fully polyform, for example, both of
Q and Z, are fully polyform Z-module, but Q@Z, is not fully polyform, in fact,
(ZDZy)<, QDZ,, [9, Example (3.4), P.15], hence ZOZ, <,, QO®Z,, but ZOZ, %, QOZ,,
[9, Example (3.4), P.15].

11.In the class of uniform modules, obviously, the two concepts fully polyform and
polyform modules are identical.
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Proposition 2.6: Let M be an R-module, assume that ﬁz? where J is an ideal of R with

JE anng(M). Then M is a fully polyform R-module if and only if M is a fully polyform R-
module.

Proof: Suppose that M is a fully polyform R-module, so that HomR(%, E(M))=0 for all non-
zero P-essential submodule N of M. Since HomR(%, E(M)) = Homﬁ(%, E(M)) for all N<M,

[1, P.51], in particular for each P-essential submodule N of M. Then Homﬁ(%, M)=0, hence
M is a fully polyform R-module. Similarity for the converse.

Next, we study the hereditary of the fully polyform property, before that, an R-module M
has the pure intersection property (simply, PIP) if the intersection of any two pure
submodules of M is pure, [10, P.33].

Proposition 2.7: Let M be a PIP module. If M is fully polyform then every non-zero pure and
P-essential submodule of M is fully polyform.

Proof: Assume that N is a non-zero pure and P-essential suomodule of M. Let K<,.N, since
M has PIP and N is pure in M, then K<,.M, [6, Theorem 4.4]. But M is fully polyform,
therefore K<,.M, hence K<,.N, [2, Proposition 2.25, P.55], that is N is fully polyform.

An R-module M is called multiplication if every submodule of M is of the form IM, for
some ideal |1 of R, [11]. To present another case for the hereditary of a fully polyform
property, we need to give the following lemma.

Lemma 2.8: Let M be a multiplication module with a pure annihilator, and let K, N be
submodules of M such that K<N<M, where N is a pure submodule of M. If K<,.N and
N<,.M then K<, M.

Proof: Let L be a pure submodule of M with KNL=0, we have to prove L=0. By assumption,
L is pure in M. In addition, N is pure in M, and since M is a multiplication module with a pure
annihilator, then LNN is pure in M, [12, Corollary 1.3], hence LNN is pure in N, [5]. Now,
KNL=0 implies to (LNN)NK=0. Since LNN pure in N and K<,,.N, so by the definition of P-

essential we have LNN=0. Furthermore, L is pure in M, thus L=0. That is K<, M.

Proposition 2.9: Let M be a multiplication module with a pure annihilator, and N is a pure
and P-essential submodule of M. If M is a fully polyform module, then N is fully polyform.

Proof: Assume that N is a pure and P-essential submodule of M. Since M is multiplication
with pure annihilator then by Lemma 2.8, L<,.M. But M is fully polyform, then L<,M,
hence L<, N, [2, Proposition 2.25,P.55]. Thus, N is fully polyform.

Proposition 2.10: If M is a uniform module, then polyform and fully polyform are identical.

Proof: It is followed directly from Remark 2.2.

Recall that an R-module M is called a scalar if for each feEndgr(M), there exists reR
such that f(x)=rx for all xeM, where Endg (M) is the endomorphism ring of the module M.
[13].
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Proposition 2.11: Let M be a faithful scalar R-module. Then Endr(M) is a fully polyform
ring if and only if R is a fully polyform R-module.

Proof: Since M is a faithful scalar module, then Endr(M)=R, [14], so if Endr(M) is a fully
polyform ring then R is a fully polyform ring and vice versa.

Corollary 2.12: Let M be a finitely generated faithful and multiplication module. Then
Endgr(M) is a fully polyform ring if and only if R is a fully polyform ring.

Proof: The result is followed by Proposition 2.11 and the fact that every finitely generated
multiplication module is a scalar module, [14].

Remember that an R-module M is called quasi-Dedekind if every non-zero submodule
of M is quasi-invertible, [9, P.24].

Proposition 2.13: If M be a multiplication and quasi-Dedekind R-module, then Endg(M) is a
fully polyform ring.

Proof: Since M is multiplication and quasi-Dedekind R-module, then Endg(M) is an integral
domain, [15, Proposition 2.1.27, P.55]. By Remark 2.5 (1), M is fully polyform.

The following theorem gives another characterization of the definition of a fully
polyform module.

Theorem 2.14: Let M be an R-module. The following statements are equivalent:
a. M is a fully polyform module.

b. HomR(ﬁ, M)=0 for each P-essential submodule N of M, and for each V<M, with
NcVceM.

Proof:
(@) = (b): Let 0£fe HomR(ﬁ, M). Consider the following diagram:
v Iy
O —_—, .
N N
f\ g
M
0\
E(M)

where i; and i, are the inclusion homomorphism. Since E(M) is injective, then i,of=gei;, and
because of f#0, then clearly geoi;#0, hence g#0. But M is fully polyform, so we obtain a

contradiction. Thus f=0, that is HomR(ﬁ,M)=O.

(b) = (a): Consider a P-essential submodule say N of M, and a non-zero homomorphism

geHomR(%, E(M)), put g‘l(M)E% for some submodule V of M with NcVcM. Restrict g on

=, that is we can define h: < —N by h(x+N)=g(x+N) for all x+Ne~. Obviously, h is well-

defined and homomorphism. In addition, since g#0, then h#0 which is a contradiction,
therefore M is fully polyform.
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As well as the following characterization for the fully polyform module.

Theorem 2.15: The following statements are equivalent:
1. Homg (% E(M)):O for each P-essential submodule N of M.

2. For each non-zero homomorphism f: M—E(M), the kernel of f is not P-essential
submodule of M.

Proof:
(1) = (2): Assume that Hompg (% E(M)):O for each P-essential submodule N of M and let f:

M—E(M) be a homomorphism with kerf is a P-essential submodule of M. We have to show
that f=0. Define g: %rf—> E(M) by g(m+kerf)=f(m) for all meE(M). To show that g is well-
defined, assume that m; +kerf=m,+kerf, m;, m,€M. This implies that (m;-m,)€kerf that is
f(m;-m,)=0. Since f is a homomorphism, then f(m,)-f(m,)=0, hence f(m,;)=f(m,).
Moreover, since f#0, then g#0. That is HomR(% ,E(M))#£0 which is a contradiction,
therefore f=0.

(2) = (1): Let N<,.M. Suppose there exists a non-zero homomorphism f: % —E(M), so we
have the following:

T M f
M_)F — E(M)

where 7 is the natural epimorphism. Consider for: M—E(M), put W=(fon), it is clear that
Y£0.

Now, Ncker?, and N<,,,
contradiction with (2). Thus f=0, and the proof is complete.

M, so according to, [6, Theorem 4.4 (i)], ker¥<,.M, which is a

Next, Theorem 2.15 can be applied to prove the following. Before that, an R-module M
is called prime if anng (M) = anng(N) for every non-zero submodule N of M, [16].

Proposition 2.16: Let M be a uniform R-module. If E(M) is a prime R-module, then M is
fully polyform where E(M) is the injective hull of M.

Proof: Assume that E(M) is a prime R-module and let f: M —E(M) be a monomorphism. We
depend on Theorem 2.15, so to show that kerf<,.M. Suppose the contrary, that is kerf<,,,M.
Because f is a monomorphism, then f#0, so there exists 0#xeM such that f(x)#0. Since
kerf<,.,M and M is uniform then kerf<.M, so there exists reR with Ozrxekerf, [2,
Proposition 2.25, P.55]. Therefore f(rx)=0, this implies that rf(x)=0, hence reanng(f(x)).
Besides that E(M) is prime, then anng(f(x))= anng(E(M)). So that reanng(E(M))= anng(M),
thus rx=0 which is a contradiction, thus kerf<,.M. By Theorem 2.15, M is a fully polyform

module.

Following [2], a submodule N of an R-module M is called closed if N has no proper
essential extension in M, and a submodule N of an R-module M is called pure closed if N has
no proper P-essential extension in M, that is if there is a P-essential submodule K of M such
that NcK, then N=K. briefly, we use the symbol N<, .M, [6].
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We need to consider the following condition.
Condition (®): For any submodules A and B of an R-module C with AcBcC. If B is a P-
essential submodule of C, then A is a P-essential submodule of B.

Theorem 2.17: Let M be an R-module satisfying the Condition (®). Consider the following:
All partial endomorphisms of M have pure closed kernels in their domains.

Hompg (% E(M)):O, for each P-essential submodule N of M.
Then (i) = (ii).

Proof: Suppose (i) is satisfied and let N be a P-essential submodule of M, f: % — E(M) be a
homomorphism. If f£0, then there exists m+NE% such that f(m+N)=m#0, m €E(M). Since

M<.E(M), so there exists reR such that 0ZmeM. Put rm’=x. Define ¢: N+Rm — Rx by
@(n+rm)=rx VneN, reR. To prove that ¢ is well-defined, assume that n,+r;m=n,+r,m
where ny,n,€N, ry,1,ER, that is n;-n,=(r;-r,)meN. But:

N f[(ry-r)(M+N)] = f[(ry-r,)M+N] =0 ............... (1)
SO,
f(ry-12)(M+N) = (ry-1)f(M+N) = (r-r)m ... 2

from (1) and (2) we get (r;-1,)m=0, that is r;th=r,m, then r;rh=r,rm, hence r;x=r,x. This
implies that ¢ (n,+r;m)=r;x = @(n,+r,m)=r,X, therefore ¢ is well-defined. Also, ¢ is a
non-zero homomorphism. It remains to prove that NCkerg, let neN that is n=n+0m, so that
¢ (n)=0x=0, that is NSker¢. Now, since Nckergp <M and N is a P-essential submodule of M,
then by [6, Theorem 4.4(1)], ker¢ is P-essential of M. Now, ker¢ — N+Rm < M, again by [6,
Theorem 4.4 (1)], N+Rm<,,M. On the other hand, by Condition (®), kerg <,.N+Rm. From
(1), kergpis pure closed in N+Rm, thus kergo=N+Rm. This implies that ¢=0, which is a
contradiction, thus f=0. Hence the proof of (ii) is complete.

We need the following lemma.

Lemma 2.18: If M is an F-regular module then:
1. N=< Mifandonlyif N<,.M.
2. N< Mifandonlyif N<, M.

Proof:

1. The necessity is clear. For the converse, assume that N<,.M. Let L be a submodule of M
with NNL=0. Since M is F-regular, then L is pure, and by assumption L=0, then N<_,M.

2. Assume that N<,.M, and let L< M with N<.L< M so that N<,,,.L< M. By assumption
N=L, that is N<.M. The sufficiency is clear.

Theorem 2.19: Let M be an F-regular module. Consider the following:
1. All partial endomorphisms of M have pure closed kernels in their domains.
2. Hompg (% E(M))zo, for each P-essential submodule N of M.

Then (1) = (2).
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Proof: Let N<,.M, by the same argument of Theorem 2.17, we get ¢ is well defined,
homomorphism and N < kerg. Now, for the chain N c kero c M, since N<,.M then by
Lemma 2.18(1), N<.M this implies that ker ¢<.M, [2, Proposition 1.1, P.16]. Again for the
chain ker¢ < N+Rm < M, we have N+Rm<_,M, [2, Proposition 1.1, P.16]. This implies that
kero<.N+Rm. In contrast, from (1), kero is pure closed in N+Rm, hence ker¢ is closed in
N+Rm, thus kero=N+Rm. This implies that ¢=0, which is a contradiction, thus f=0.

Proposition 2.20: If M satisfies Condition (®), then every submodule of fully polyform
module is fully polyform.

Proof: Let N<M, and let L be a P-essential submodule of N. Assume that f: L—>N be a
homomorphism. Consider the following sequence of homomorphisms.

LSNSM
Since M is fully polyform and satisfies Condition (®), then by Theorem 2.17, Kker(iof) is a

pure closed submodule of L. But ker(iof)=Kkerf, thus kerf is pure closed in L, hence N is a fully
polyform submodule.

Corollary 2.21: For any module M satisfying Condition (®), if E(M) is fully polyform then
M is fully polyform.

Lemma 2.22: The following statements are equivalent:

1. For every submodule N of M and all homomorphism f: N—M, implies that kerf<, N.

2. For any non-zero submodule N of M and each non-zero homomorphism f: N— M, implies
that kerf is not a P-essential submodule of N.

Proof:
(1) = (2): Suppose there exists a submodule N of M and a non-zero homomorphism f:
N— M such that kerf <,,, N. By assumption kerf <,,. N, this implies that kerf=N, hence f=0,
which is a contradiction. Thus, kerf is not a P-essential submodule of N.
(2) = (1): Let 0#N<M, and f: N—M be a homomorphism, we have to show that kerf <,:N.
Suppose that kerf<,. N. This implies the existence of a submodule K of N containing kerf
such that kerf <,,, K. Consider the following:

KSNSM
where i is the inclusion homomorphism. It is clear that foi#0, and since kerfcK, then
kerf=ker(foi) <,.K. Now, if K=0, then kerf=0, hence kerf<,,N which is a contradiction.
Thus K#0. By (2), we obtain a contradiction, therefore kerf<, N.

From Theorem 2.17 and Lemma 2.22, we have the following:

Theorem 2.23: Let M be an R-module satisfying the Condition (®). Consider the following:
i.  All non-zero partial endomorphisms f: N—>M with N#0, haven't P-essential kernels in
their domains.
ii.  All partial endomorphisms of M have pure closed kernels in their domains.

iii. Homg (% E(M)):O, for each P-essential submodule N of M.
Then (i) = (ii) = (iii).
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Proof:
(i) = (ii): It is just Lemma 2.22.
(it) = (iii): It is just Theorem 2.19.

Theorem 2.24: Consider the following statements for an R-module M which satisfies
Condition (®).

1. Homg (% E(M)):O, for each P-essential submodule N of M.

2. For each non-zero homomorphism f: M—E(M), implies kerf is not P-essential submodule
of M.

3. All non-zero partial endomorphisms f: N—>M with N0, haven't P-essential kernels in their
domains.

Then (1) = (2) = (3).

Proof:

(1) = (2): Itis just Theorem 2.15.

(2) = (3): Let N be a non-zero P-essential submodule of M, and f: N—>M be a non-zero
homomorphism. Consider the following sequence of homomorphisms:

f
N— M- E(M)

It is clear that iof is a non-zero homomorphism. By assumption ker(iof) = kerf is not P-

essential submodule of N, and we are done.

Theorem 2.25: The following statements are equivalent for any R-module M satisfying the
Condition (®).

1. Homg <% E(M)):O for each P-essential submodule N of M.

2. For each non-zero homomorphism f:M—E(M), implies kerf is not P-essential submodule
of M.

3. All non-zero partial endomorphisms f: N—>M with N0, haven't P-essential kernels in their
domains.

4. All partial endomorphisms of M have pure closed kernels in their domains.

Proof:
(1) = (2) = (3): Itis just Theorem 2.24.
(3)= (4): Itis just Lemma 2.22.
(4) = (2): ltis just Theorem 2.17.

Theorem 2.26: For any R-module M satisfies the Condition (®), the following are
equivalent:

1. All non-zero partial endomorphisms f: N—>M with N#0 haven’t P-essential kernels in their
domains.

2. All partial endomorphisms of M have pure closed kernels in their domains.

3. Homg (% E(M)):O for each P-essential submodule N of M.

Proof:

(1) = (2): Itis just Lemma 2.22.

(2) = (3): Itis just Theorem 2.17.

(3) = (1): It follows by Theorem 2.24.
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3. Fully Polyform Modules and Related Concepts
This section is dedicated to studying the relationships between fully polyform modules
and other modules such as semisimple, monoform, essentially quasi-Dedekind and St-
polyform modules.
Recall that an R-module M is called semisimple if every submodule of M is a direct
summand of M, [1, P.107].

Proposition 3.1: Every semisimple module is fully polyform.

Proof: Let M be a semisimple module, and N be a P-essential submodule of M. Assume that
f: % —M be a homomorphism, where NcVcM. By assumption, N is a direct summand of M,

so there is a submodule K of M such that M=N@K. That is NNK=0. Since K is pure in M and
N<,.M, then K=0. This implies that N=M, therefore N=V, hence f=0.

The converse of Proposition 3.1 is not true in general, for example, the Z-module Z is a
fully polyform module, but not semisimple.

Proposition 3.2: Any monoform module is fully polyform.

Proof: Let M be a monoform module. By assumption, every non-zero submodule of M is
rational in M, particularly, every P-essential submodule of M is rational in M. Thus, M is
fully polyform.

The converse of Proposition 3.2 is not always true, for example, the Z-module Z is
semisimple, hence it is fully polyform by Proposition 3.1, but not monoform since <2> is not
rational in Zg.

We need to introduce the following definition.

Definition 3.3: A non-zero module M is called P-uniform if every non-zero submodule of M
is P-essential.

It is clear that every uniform module is P-uniform. We think that the converse is not
true, but unfortunately, we haven't examples to confirm that. In the following proposition, we
use a condition under which the converse of Proposition 3.2 will be true.

Proposition 3.4: Let M be a P-uniform module. Then M is fully polyform if and only if M is
a monoform module.

Proof: Assume that M is fully polyform, and let N be a non-zero submodule of M. Since M is
P-uniform, then N<,.M. But M is fully polyform, so N<,M. Thus, M is monoform. The
converse is clear.

Corollary 3.5: Let M be a uniform module. Then M is fully polyform if and only if M is a
monoform module.

Proof: Since every uniform is P-uniform, then the result follows directly from Proposition
3.4.
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Proposition 3.6: Uniform modules cannot be fully polyform.

Proof: Let M be a uniform module. Suppose the converse, that is M is a fully polyform
module, so for all 0ZN<M and 0#f: N—M, kerf <, N. This implies that kerf«,N. But M is
uniform, so we have a contradiction. Thus, M is not fully polyform.

Recall that a module M is called an essentially quasi-Dedekind module if
Homg (7, M)=0 for all N<,M, [18].

Proposition 3.7: Every fully polyform is an essentially quasi-Dedekind module.

Proof: Let M be a fully polyform module, and N be an essential submodule of M. Suppose
that f: % — M is a homomorphism. Consider the following sequence of homomorphisms:
] .
%—) M 5 E(M)
where i is the inclusion homomorphism and E(M) is the injective hull of M. Since every
essential submodule of M is P-essential, and M is fully polyform, therefore HomR(%,

E(M))=0. So that iof=0, hence f=0. Thus HomR(%, M)=0 for each N<,M, that is M
essentially quasi-Dedekind.

An R-module M is called K-nonsingular if for each feEndg(M), kerf<,M implies that
=0, [19]. Hadi and Ghawi, [18] proved that the two classes essentially quasi-Dedekind and
K-nonsingular modules are identical. For that reason, if M is fully polyform then M is a K-
nonsingular module.

The converse of Proposition 3.7 is not true in general, for example, the Z-module Q®Z,
is essentially quasi-Dedekind, [18, Remark 2.13], but it is not fully polyform. To verify that,
if we take the submodule Z of the Z-module Q, and define n: Z — Q®Z, by n(x)=(0,x) for
each X€Z. It is clear that n is a non-zero homomorphism. Now, kern={weZ | n(w)=( 0,0)}={
weZ | (0,w)=(0,0)}= 2Z, therefore kern=2Z, so that kern <, Z, hence kern <pe L. Beside
that, n#0, so by the contrapositive of the part (i) =(iii) in Theorem 2.23, M is not fully
polyform module.

In Remark 2.5 (9), we proved the following, which can be deduced from Proposition 3.7
as follows.

Corollary 3.8: If M is fully polyform, then anngM=anngN, for all N<,,. M.

Proof: Since each fully polyforms module is essentially quasi-Dedekind, hence
anngM=anngN, [18, Remark 1.2 (4)].

Corollary 3.8 leads us to introduce the following.

Definition 3.9: An R-module M is called a Pe-prime if anng(M)=anng(N) for every P-
essential submodule N of M.

Remark 3.10: Every fully polyform module is Pe-prime module.
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Following [15, P.47], a module M is called essentially prime if anng(M)=anng(N) for
all N<_,M. Since every essentially quasi-Dedekind module is essentially prime, So we have
the following implications:

Fully Polyform Module = Polyform Modules = Essentially Quasi-Dedekind Modules = Essentially Prime Modules

Recall that An R-module M is called fully P-essential if every P-essential submodule of
M is essential, [20].

Proposition 3.11: Let M be a fully P-essential module, then M is Pe-prime if and only if M is
an essentially prime module.

Remark 3.12: In the class of fully P-essential modules, both of polyform and fully polyform
are identical.

A submodule N of an R-module M is SQI if for each feHompg (%M) implies that f

(%) is small in M, [21]. An R-module M is called an ESQD module if every essential
submodule of M is SQI, [22].

Proposition 3.13: Every fully polyform module is ESQD.

Proof: Let M be fully polyform and N<.M, so that N<,.M. Since M is fully polyform, then

N<,M. Hence N is quasi-invertible, but obviously, every quasi-invertible is SQI. Thus, M is
ESQD.

Following [23], a submodule N of an R-module M is St-closed (simply, N<,;.M) if N
has no proper semi-essential extensions in M, where a submodule N is said to be semi-
essential if NNP+#0 for every non-zero prime submodule P of M. An R-module M is called St-
polyform if for every submodule N of M and all homomorphism f: N—M, the kerf is an St-
closed submodule of M. Equivalently, a module M is St-polyform if for each non-zero
submodule N of M and each non-zero homomorphism f: N—M, the kerf is not semi-essential
submodule of N, [24].

Remark 3.14: Since St-polyform and fully polyform modules depend in their construction on
prime and pure concepts, and there is no direct implication between prime and pure
submodules, then this implies that there is no direct relationship between them. However,
under certain conditions, the two classes fully polyform and St-polyform modules coincide as
the following proposition shows, before that we need to give the following Lemma.

Lemma 3.15: Let M be an R-module satisfies one of the following:
1. Miis atorsion-free module with (L:xM)=0 for all L< M.
2. M is a prime module with (L:gM) = anng(M) for all L< M.
Then any submodule N of M is P-essential if and only if N is semi-essential of M.

Proof:

1. Assume that N is P-essential and let L be a prime submodule of M such that NnL=0. To
prove L=0, since M is torsion-free and (L:gM)=0, [25], then L is pure. But N is P-essential
thus L=0. Conversely, suppose that N is a semi-essential submodule of M, and L is a pure
submodule of M. By assumption N is prime, [25]. But N is semi-essential, then L=0.

2. It is similar to (1), with used [26] instead of [25].
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Proposition 3.16: Let M be a torsion-free module with (L:gM) = 0, for every submodule L of
M. Then M is a fully polyform if and only if M is an St-polyform module, provided that M
satisfies the Condition (®).

Proof: Assume that M is a fully polyform module, and let N be a non-zero submodule of M,
0+f: N—>M be a homomorphism. Since M is fully polyform, then by Theorem 2.23, kerf is not
P-essential in N. But M is torsion-free and (kerf:xyM) = 0, so by the contrapositive of Lemma
3.15(1), the kernel of f is not a semi-essential submodule of N. Thus, M is St-polyform.

Recall that an R-module M is called fully prime if every proper submodule of M is
prime, [27].

Proposition 3.17: Let M be a fully prime R-module that satisfies Condition (®). If M is fully
polyform then M is an St-polyform module. The converse is true if M is a prime module with
(L:gM) = anng(M) for all L< M.

Proof: Suppose that M is a fully polyform module, and 0#N<M, 0+£f: N—M. Since M is fully
polyform, then by Theorem 2.23, kerf£,.N, hence kerf£.N. Since M is fully prime, then
kerf£.»,N, [28]. Thus, M is St-polyform. For the converse, assume that M is St-polyform.
Let 0#N<M and f: N—M be a non-zero homomorphism. So that kerf<,.,,N. On the other
hand, M is a prime module with (L:xM) =anng(M) for all L< M, so by Lemma 3.15,
kerf<,.N. By Theorem 2.23, M is fully polyform.

Next, the following results deal with the relationship between fully polyform and quasi-
invertibility monoform modules. Before that, an R-module M is called a quasi-invertibility
monoform (simply, Ql-monoform), if every non-zero quasi-invertible submodule of an R-
module M is rational in M, [29].

In the category of rings, every quasi-invertible ideal is essential, [9, Corollary 2.3, P,12].
This leads us to give the following.

Proposition 3.18: Every fully polyform ring is a QI-monoform ring.

Proof: Let A be a non-zero quasi-invertible ideal of R. By [9, Corollary 2.3, P.12], A<.R,
this implies that A<,.R. But R is fully polyform, then A is rational in R. Therefore, R is QI-
monoform.

The converse of Proposition 3.18 is not true, for example: Z, is a QI-monoform ring.
Indeed, there is no non-zero quasi-invertible ideal of the ring Z, which is not rational in Z,.
On the other hand, Z, is not fully polyform ring see, Example 2.5(3).

Proposition 3.19: Let M be a multiplication module with a prime annihilator. If M is fully
polyform then M is QIl-monoform.

Proof: Assume that M is a fully polyform module and N<,,, M. Since M is multiplication
with prime annihilator, then N<.M, [9, Theorem 3.11, P.19)]. Hence N<,.M, and according
to assumption, N<,.M, that is M is QI-monoform.
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By the same argument of Proposition 3.19, and with replacing [9, Theorem 3.11, P.18],
instead of [9, Corollary 3.12, P.19], we can prove the following.

Proposition 3.20: Let M be a multiplication and prime module. If M is a fully polyform
module, then M is QIl-monoform.

Moreover, we can use [9, Theorem 3.8, P.17] instead of [9, Theorem 3.11, P.18], to
prove the following.

Proposition 3.21: Let M be a quasi-injective R-module with J(Endg(M)) = (0), if M is fully
polyform, then M is QIl-monoform.

Theorem 3.22: Let M be a multiplication and prime module. Consider the following
statements:

1. Mis a fully polyform module.

2. Mis a polyform module.

3. Misa QI-monoform module.
Then (1) = (2)  (3).

Proof:

(1) = (2): Itis obvious.

(2) & (3): Since M is a multiplication and prime module, then the result followed by [29,
Proposition 4.4]

Theorem 3.23: Let M be a quasi-injective module with J(Endg(M))=(0). Consider the
following statements:

1. Misa fully polyform module.

2. M s a polyform module.

3. Misa QI-monoform module.
Then (1) = (2) © (3).

Proof:
(1) = (2): Itisclear.
(2) & (3): Itis just [29, Proposition 4.5].

Theorem 3.24: Let R be a quasi-Dedekind ring. Consider the following statements:
1. Risa fully polyform ring.
2. Risapolyform ring.
3. RisaQl-monoform ring.
4. R isamonoform ring.
Then (1) = (2) = (3) = (4).

Proof:

(1) = (2): It is straightforward.

(2) = (3) = (4): Since R is a quasi-Dedekind ring, then the result is obtained by [29, Theorem
4.13].

Theorem 3.25: Let R be an essentially quasi-Dedekind ring. Consider the following

statements:
1. Miis a fully polyform ring.
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2. M s a QI-monoform ring.
3. Mis a polyform ring.
Then (1) = (2) = (3).

Proof:

(1) = (2): It is just Proposition 3.18.

(2) = (3): Since R is an essentially quasi-Dedekind, then from [29, Theorem 4.9] the result is
obtained.

As a consequence of Theorem 3.25, we have the following result.

Corollary 3.26: Let R be an integral domain. Consider the following statements:
1. Risafully polyform ring.
2. R s a polyform ring.
3. Risa Ql-monoform ring.
4. R is a monoform ring.
Then (1) = (2) = (3) = (4).

Proof: Since every integral domain is quasi-Dedekind, [9, Example 1.4, P.24], then the result
follows directly from Theorem 3.24.

Theorem 3.27: Let M be a uniform and essentially quasi-Dedekind module. The following
statements are equivalent:

1. Miis a fully polyform module.

2. M is monoform module.

3. Mis a QI-monoform module.

4. M is a polyform module.

Proof:

(1) & (2): Suppose that M is fully polyform, since M is a uniform module, then by Corollary
3.5, M is monoform. The converse is clear.

(2) = (3) = (4): Since R is a uniform and essentially quasi-Dedekind module, then the result
follows by [29, Theorem 4.11].

(4) = (1): Assume that M is a polyform module. Since M is uniform, so by Proposition 2.10,
M is a fully polyform module.

Since every nonsingular module is essentially quasi-Dedekind, [29, Remark 4.8(3) ],
then from Theorem 3.27, we deduce the following.

Corollary 3.28: Let M be a uniform and nonsingular module. The following statements are
equivalent:

. M is a fully polyform module.

2. M is monoform module.

3. M is a QI-monoform module.

4. M is a polyform module.

[EN

4. Conclusions:
In this work, the class of polyform modules has been restricted to a new class. It is
called fully polyform modules. The main results of this paper can be summarized as follows:
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1. Many results are given, that describe the main properties of fully polyform modules.

2. Other characterizations and partial characterizations of fully polyform modules are
considered.

3. Sufficient conditions are given under which fully polyform and polyform modules are
identical.

4. Some modules containing fully polyform modules are examined, such as quasi-Dedekind,
Pe-prime and ESQD modules.

5. The connections between fully polyform and related concepts are studied such as
monoform and St-polyform modules.

However, all these relationships can be represented in the following diagram:

Conditions Relationships with Cther Modules
P-Uniform Modules
}| Monoform Modules
Uniform Modules
vields Quaszi-Dedekind Modules
vields Prime Modules
vields Essentially Quasi-Dedekind Modules
yields K-Nonsingular Modules
— yields Pe-Prime Modules
Fully Polyform Modules
| Fully P-Esszential Modules Polyform Modules
vields ESQD Modules

Torzion Free Modules with (T -M)=0. and Satizfies Conditicn

. : . | St-Polyform Modules |
Fully Prime Modules and Satisfies Condition (@)

Multiplication Modules with Prime Annihilator
Multiplication and Prime Modules ‘ QI-monoform Modules |
Quazi-Injective Modnles with J(End(M1=(0)
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