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Abstract 

        An R-module M is called a polyform module if every essential submodule of M 

is rational. The main objective of this paper is to introduce a new concept of 

modules named fully polyform modules. This kind of module is contained in the 

class of polyform modules. We study in detail fully polyform modules, so several 

properties of this concept are investigated. Other characterizations and partial 

characterisations (i.e., satisfied by certain conditions) of the definition of fully 

polyform module analogous to those known in the concept of a polyform module are 

given and discussed. For instance, we proved that a module M is a fully polyform 

module if and only if      
 

 
  M)=0 for each P-essential submodule N of M and for 

each V≤M with NVM. Relationships between this class of modules and some 

other related concepts are discussed such as monoform, QI-monoform, essentially 

quasi-Dedekind, essentially prime and St-polyform modules. Moreover, useful 

concepts and their influence or relationships with fully polyform modules such as P-

uniform and Pe-prime modules are introduced.  

 

Keywords: Polyform modules, Fully polyform modules, Rational submodules, 

Essential submodules, P-essential submodules. 

 

ة والمقاسات ذات العلاقةالمقاسات متعددة الصيغ التام  
 

احمد عباس منى ، *محمد مارية  
 قسم علوم الرياضيات، كلية العلوم للبنات، جامعة بغداد

 
:الخلاصة  

لهذا البحث  يالرئيس ان الهدف كان كل مقاس جوهري فيه نسبياً. إذاعدد الصيغ تبأنه م Mيُقال للمقاس       
محتوى ان هذا النوع من المقاسات التامة. المقاسات تدعى بالمقاسات متعددة الصيغ  جديد منهو إعطاء نوع 

العديد من لقد درسنا بشيء من التفصيل هذا الصنف من المقاسات، لذا فأن لمقاسات متعددة الصيغ. ا في
 كما تم إعطاء عدد من التشخيصات. التامة الخصائص المهمة قُدمت حول المقاسات متعددة الصيغ

تشخيصات تلك الللمقاسات متعددة الصيغ التامة مناظرة ل والتشخيصات الجزئية )اي تتحقق بشروط معينة(
يكون متعدد الصيغ تام اذا  Mعلى سبيل المثال برهنا ان المقاس ، المعروفة الخاصة بالمقاسات متعددة الصيغ

)    وفقط اذا تحقق 
 

 
  ) حيث ان  V≤Mولكل  P-من النمط  Nلكل مقاس جزئي جوهري    

.NVM 
المقاسات احادية الصيغة،  مثلنوقشت علاقة هذا الصنف من المقاسات مع عدد من المقاسات  أيضاً        

، المقاسات شبه الديديكاندية الجوهرية، المقاسات الأولية الجوهرية، QI-مقاسات احادية الصيغة من النمط

mailto:munaaa_math@csw.uobaghdad.edu.iq
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فضلا عن ذلك، فقد تم اعطاء مفاهيم مفيدة ودرس تأثيرها او علاقتها مع  .المقاسات شبه الديديكاندية الأولية
 .Pe-والمقاسات الاولية من النمط  P-ل المقاسات المنتظمة من النمط ، مثالمقاسات متعددة الصيغة التامة

 
1. Introduction: 

         Many authors such as J. Zelmanowitiz, H.H. Storrer, and M.A. Ahmed have studied and 

discussed polyform modules. An R-module M is called injective if for every monomorphism 

f: M B and every homomorphism g: M C there is a homomorphism h: B C with g=h f, 

[1, P.116]. A non-zero submodule N of M is said to be essential (briefly, N  M) if N L≠0 

for every non-zero submodule L of M, [2, P.15]. An essential monomorphism is defined as a 

monomorphism f: S T such that f(S)   T, [1, Definition 5.6.5 (1)]. For any R-module M, 

an injective hull of M is denoted by E(M), and it is defined as a monomorphism f: M E(M) 

with E(M) is an injective module and f is an essential monomorphism, [1, P.124]. A 

submodule N of an R-module M is called rational (simply, N  M ) if     (
 

 
, E(M))=0, 

where E(M) is the injective hull of M, [3, P.274]. An R-module M is called a polyform if 

every essential submodule of M is rational, [4]. A submodule N of M is called pure if 

N IM=IN for every ideal I of R, [5].  

         This paper consists of three sections. Section two discusses the main properties of fully 

polyform modules. Among these results are the following: 

 Let M be a PIP module. If M is fully polyform then every non-zero pure and P-essential 

submodule of M is fully polyform, see Proposition 2.7. 

 Let M be a multiplication module with a pure annihilator, and N is a pure and P-essential 

submodule of M. If M is a fully polyform module then N is fully polyform, see Proposition 

2.9. 

Also, some characterizations of the definition of fully polyform modules are given, for 

instance: 

 Let M be an R-module. The following statements are equivalent: 

i. M is a fully polyform module. 

ii.      
 

 
  M)=0 for each P-essential submodule N of M, and for each V≤M, with NVM. 

See Theorem 2.14. 

 The following statements are equivalent: 

1.     (
 

 
    ))=  for each P-essential submodule N of M.  

2.  For each non-zero homomorphism f:M E(M), the kernel of f is not P-essential 

submodule of M. 

See Theorem 2.15. 

 Let M be an R-module satisfying the Condition ( ). Consider the following: 

i.  All partial endomorphisms of M have pure closed kernels in their domains. 

ii.      (
 

 
    ))= , for each P-essential submodule N of M. 

Then (i)   (ii). 

See Theorem 2.17. 

 Let M be an F-regular module. Consider the following: 

1.  All partial endomorphisms of M have pure closed kernels in their domains. 

2.      (
 

 
    ))= , for each P-essential submodule N of M. 

Then (1)   (2). 

See Theorem 2.19. 

          Section three deals with the relationships between the fully polyform modules and other 

related concepts such as the following: 
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 Let M be a multiplication and prime module. Consider the following:  

1. M is a fully polyform module. 

2. M is a polyform module. 

3. M is a quasi-invertibility monoform module. 

Then (1)   (2)   (3).  

See Theorem 3.22.  

 Let M be a quasi-injective module with J(    (M))=(0), consider the following:   

1. M is a fully polyform module. 

2. M is a polyform module. 

3. M is a quasi-invertibility monoform module. 

Then (1)   (2)   (3).  

See Theorem 3.23.  

 Let R be a quasi-Dedekind ring. Consider the following statements:  

1. R is a fully polyform ring. 

2. R is a polyform ring. 

3. R is a quasi-invertibility monoform ring. 

4. R is a monoform ring. 

Then (1)   (2)   (3)   (4). 

See Theorem 3.24. 

          We must keep in mind that all rings R in this work are commutative with identity and 

all modules are unitary left R-modules.  

 

2. Fully Polyform Modules 

          In this section, a new class of modules is introduced, and it is named fully polyform 

modules. The basis of this concept is the P-essential submodules which appeared in [6], and it 

is mentioned in the following: 

 

Definition 2.1: [6] 

          A submodule N of M is called P-essential (briefly N   M), if for every pure 

submodule L of M with N L=(0), implying that L=(0). 

 

Remark 2.2: It is clear that every essential submodule is P-essential. The converse is true 

when M is uniform, where a non-zero module M is called uniform if every non-zero 

submodule of M is essential, [2].  

 

Definition 2.3: An R-module M is said to be fully polyform if every P-essential submodule of 

M is rational in M. That is     (
 

 
    ))=0 for every P-essential submodule N of M. A 

ring R is called fully polyform if R is a fully polyform R-module.  

 

Remark 2.4: It is obvious that every fully polyform module is polyform. We think the 

converse is not true in general, but we cannot find an example to confirm that. 

 

Remarks and Examples 2.5: 

1. The  -module   is fully polyform, since all submodules n  of   are essential, hence they 

are P-essential in  , and      (
 

  
    ))=    (

 

  
  )     (  ,  )=0.  

2.     is not fully polyform  -module, in fact, in spite of every submodule of     is P-

essential, and each proper submodule A of     satisfying 
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    (
    

  
      ))=     (

    

  
    ). Note that 

    

  
 ≅    . But in contrast, 

    (
    

  
    )≅        ,   )≠0. 

 

3.    is not fully polyform   -module. There is a P-essential submodule   ̅      and a 

non-zero homomorphism f ∈    (
  

  ̅ 
     ))=      (

  

  ̅ 
    ), [7, P.21].  

 

4. Homomorphic image of fully polyform is not fully polyform, such as the  -module   is 

fully polyform, but the quotient 
 

  
≅   is not fully polyform  -module as verified by (3).  

 

    

5. Every simple module is fully polyform since the P-essential submodule of a simple module 

say M is only itself, hence     (
 

 
, E(M))     (0, E(M)) 0. 

 

6. For any R-module M with N≤M, if  
 

 
 is fully polyform then M may not be fully polyform 

for example the  -module    is simple and by (5), it is fully polyform. On contrast,   ≅
  

  ̅ 
, 

and we verified in (3), that    is not fully polyform.   

 

         An R-module M is called F-regular if every submodule of M is pure, [8].    

  

7. If  M is an F-regular module, then the two concepts of polyform and fully polyform 

coincide. 

Proof: If M is F-regular, then it is easy to show that the essential and P-essential concepts are 

identical. This yields that polyform and fully polyform coincide.  

 

8. For any regular ring R, any R-module M is fully polyform if and only if M is polyform.                                                                                                                      

Proof: Since every module over a regular ring is regular, [5, P.29]. Then the result is followed 

by (7). 

 

         Remember that a submodule N of an R-module M is called a quasi-invertible submodule 

of M (we choose the symbols N   M)  if      
 

 
, M)=0, [9]. 

 

9. If M is a fully polyform module, then     (M)=    (N) for all N   M. 

Proof: By assumption,     (
 

 
    ))=0 for all N   M. This implies that N is a rational 

submodule of M for all N   M. On the other hand, the rationally of any submodule implies 

quasi-invertibility, and if  N   M then     (M)=    (N), [9, Proposition (1.4), P.7]. 

Therefore,     (M)=    (N) for all N   M.  

 

10.  The direct sum of fully polyform is not necessarily fully polyform, for example, both of 

  and    are fully polyform  -module, but      is not fully polyform, in fact, 

(    )       , [9, Example (3.4), P.15], hence            , but           , 

[9, Example (3.4), P.15]. 

 

11. In the class of uniform modules, obviously, the two concepts fully polyform and 

polyform modules are identical. 
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Proposition 2.6: Let M be an R-module, assume that  ̅≡
 

 
 where J is an ideal of R with 

J     (M). Then M is a fully polyform R-module if and only if M is a fully polyform   ̅-

module. 

Proof: Suppose that M is a fully polyform R-module, so that     (
 

 
, E(M))=0 for all non-

zero P-essential submodule N of M. Since     (
 

 
, E(M)) =     ̅(

 

 
, E(M)) for all N M, 

[1, P.51], in particular for each P-essential submodule N of M. Then     ̅(
 

 
, M)=0, hence 

M is a fully polyform   ̅-module. Similarity for the converse. 

 

        Next, we study the hereditary of the fully polyform property, before that, an R-module M 

has the pure intersection property (simply, PIP) if the intersection of any two pure 

submodules of M is pure, [10, P.33]. 

 

Proposition 2.7: Let M be a PIP module. If M is fully polyform then every non-zero pure and 

P-essential submodule of M is fully polyform. 

 

Proof: Assume that N is a non-zero pure and P-essential submodule of M. Let K   N, since 

M has PIP and N is pure in M, then K   M, [6, Theorem 4.4]. But M is fully polyform, 

therefore K  M, hence K  N, [2, Proposition 2.25, P.55], that is N is fully polyform.  

 

         An R-module M is called multiplication if every submodule of M is of the form IM, for 

some ideal I of R, [11]. To present another case for the hereditary of a fully polyform 

property, we need to give the following lemma. 

  

Lemma 2.8: Let M be a multiplication module with a pure annihilator, and let K, N be 

submodules of M such that K≤N≤M, where N is a pure submodule of M. If K   N and 

N   M then K   M. 

 

 Proof: Let L be a pure submodule of M with K∩L=0, we have to prove L=0. By assumption, 

L is pure in M. In addition, N is pure in M, and since M is a multiplication module with a pure 

annihilator, then L∩N is pure in M, [12, Corollary 1.3], hence L∩N is pure in N, [5]. Now, 

K∩L=0 implies to (L∩N)∩K=0. Since L∩N pure in N and K   N, so by the definition of P-

essential we have L∩N=0. Furthermore, L is pure in M, thus L=0. That is K   M. 

 

Proposition 2.9: Let M be a multiplication module with a pure annihilator, and N is a pure 

and P-essential submodule of M. If M is a fully polyform module, then N is fully polyform. 

 

Proof: Assume that N is a pure and P-essential submodule of M. Since M is multiplication 

with pure annihilator then by Lemma 2.8, L   M. But M is fully polyform, then L  M, 

hence L  N, [2, Proposition 2.25,P.55]. Thus, N is fully polyform.   

 

Proposition 2.10: If M is a uniform module, then polyform and fully polyform are identical. 

 

Proof: It is followed directly from Remark 2.2. 

         Recall that an R-module M is called a scalar if for each fEndR(M), there exists rR 

such that f(x)=rx for all xM, where     (M) is the endomorphism ring of the module M.  

[13]. 
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 Proposition 2.11: Let M be a faithful scalar R-module. Then EndR(M) is a fully polyform 

ring if and only if R is a fully polyform R-module.  

 

Proof: Since M is a faithful scalar module, then EndR(M)R, [14], so if EndR(M) is a fully 

polyform ring then R is a fully polyform ring and vice versa. 

 

Corollary 2.12: Let M be a finitely generated faithful and multiplication module. Then 

EndR(M) is a fully polyform ring if and only if R is a fully polyform ring. 

 

Proof: The result is followed by Proposition 2.11 and the fact that every finitely generated 

multiplication module is a scalar module, [14]. 

 

          Remember that an R-module M is called quasi-Dedekind if every non-zero submodule 

of M is quasi-invertible, [9, P.24].  

 

Proposition 2.13: If M be a multiplication and quasi-Dedekind R-module, then     (M) is a 

fully polyform ring. 

 

Proof: Since M is multiplication and quasi-Dedekind R-module, then     (M) is an integral 

domain, [15, Proposition 2.1.27, P.55]. By Remark 2.5 (1), M is fully polyform. 

 

          The following theorem gives another characterization of the definition of a fully 

polyform module.  

 

Theorem 2.14: Let M be an R-module. The following statements are equivalent: 

a. M is a fully polyform module. 

         
 

 
  M)=0 for each P-essential submodule N of M, and for each V≤M, with 

NVM. 

 

Proof:  

(a)   (b): Let 0≠f     
 

 
  M). Consider the following diagram: 

 
where    and    are the inclusion homomorphism. Since E(M) is injective, then    f=g   , and 

because of f≠0, then clearly g   ≠0, hence g≠0. But M is fully polyform, so we obtain a 

contradiction. Thus f=0, that is      
 

 
 M)=0. 

(b)   (a): Consider a P-essential submodule say N of M, and a non-zero homomorphism 

g     
 

 
  E(M)), put    (M)≡

 

 
  for some submodule V of M with NVM. Restrict g on 

 

 
, that is we can define h: 

 

 
 N by h(x+N)=g(x+N) for all x+N

 

 
. Obviously, h is well-

defined and homomorphism. In addition, since g≠0, then h≠0 which is a contradiction, 

therefore M is fully polyform.  

 

 

0 
V

N
  

M

N
  

             f    g 

                    M 

                        

                               E(M) 

 

 

i2 

i1 
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         As well as the following characterization for the fully polyform module. 

 

Theorem 2.15: The following statements are equivalent: 

1.     (
 

 
    ))=  for each P-essential submodule N of M.  

2. For each non-zero homomorphism f: M E(M), the kernel of f is not P-essential 

submodule of M. 

 

Proof: 

(1)   (2): Assume that     (
 

 
    ))=  for each P-essential submodule N of M and let f: 

M E(M) be a homomorphism with kerf is a P-essential submodule of M. We have to show 

that f=0. Define g: 
 

    
   E(M) by g(m+kerf)=f(m) for all m∈E(M). To show that g is well-

defined, assume that   +kerf=  +kerf,       ∈M. This implies that (  -  )∈kerf that is 

f(  -  )=0. Since f is a homomorphism, then f   )-f   )=0, hence f   )=f   ). 

Moreover, since f≠0, then g≠0. That is     (
 

    
 ,E(M))≠0 which is a contradiction, 

therefore f=0.  

(2)   (1): Let N   M. Suppose there exists a non-zero homomorphism f: 
 

 
 E(M), so we 

have the following: 

 

where π is the natural epimorphism. Consider f π: M E(M), put Ψ≡(f π), it is clear that 

Ψ≠0. 

Now, N kerΨ, and N   M, so according to, [6, Theorem 4.4 (i)], kerΨ   M, which is a 

contradiction with (2). Thus f=0, and the proof is complete.  

 

         Next, Theorem 2.15 can be applied to prove the following. Before that, an R-module M 

is called prime if       ) =     (N) for every non-zero submodule N of M, [16]. 

 

Proposition 2.16: Let M be a uniform R-module. If E(M) is a prime R-module, then M is 

fully polyform where E(M) is the injective hull of M. 

 

Proof: Assume that E(M) is a prime R-module and let f: M E(M) be a monomorphism. We 

depend on Theorem 2.15, so to show that kerf   M. Suppose the contrary, that is kerf   M. 

Because f is a monomorphism, then f≠0, so there exists 0≠xM such that f(x)≠0. Since 

kerf   M and M is uniform then kerf  M, so there exists rR with 0≠rxkerf, [2, 

Proposition 2.25, P.55]. Therefore f(rx)=0, this implies that rf(x)=0, hence r    (f(x)). 

Besides that E(M) is prime, then     (f(x))=     (E(M)). So that r    (E(M))=     (M), 

thus rx=0 which is a contradiction, thus kerf   M. By Theorem 2.15, M is a fully polyform 

module. 

 

         Following [2], a submodule N of an R-module M is called closed if N has no proper 

essential extension in M, and a submodule N of an R-module M is called pure closed if N has 

no proper P-essential extension in M, that is if there is a P-essential submodule K of M such 

that N K, then N=K. briefly, we use the symbol N   M, [6]. 

 

         

M 
𝜋
 

M

N
  

f
   E(M) 
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We need to consider the following condition. 

Condition ( ): For any submodules A and B of an R-module C with ABC. If B is a P-

essential submodule of C, then A is a P-essential submodule of B. 

 

Theorem 2.17: Let M be an R-module satisfying the Condition ( ). Consider the following: 

i.  All partial endomorphisms of M have pure closed kernels in their domains. 

ii.      (
 

 
    ))= , for each P-essential submodule N of M. 

Then (i)   (ii). 

 

Proof: Suppose (i) is satisfied and let N be a P-essential submodule of M, f: 
 

 
  (M) be a 

homomorphism. If f≠ , then there exists m+N∈
 

 
 such that f(m+N)= ́≠ ,  ́ ∈E(M). Since 

M  E(M), so there exists r∈R such that 0≠r ́∈M. Put r  ́=x. Define    +      by 

 (n+rm)=rx nN, rR. To prove that   is well-defined, assume that   +  m=  +  m 

where      ∈N,   ,  ∈R, that is   -  =   -  )m∈N. But:  

 

f [(  -  )(m+N)] = f [(  -  )m+N] = 0 ……..……. (1) 

Also, 

f(  -  )(m+N) = (  -  )f(m+N) = (  -  ) ́ ……… (2) 

 

from  (1) and (2) we get (  -  ) ́=0, that is    ́=   ́, then     ́=    ́, hence   x=   . This 

implies that     +   )=  x =     +   )=   x, therefore    is well-defined. Also,   is a 

non-zero homomorphism. It remains to prove that N ker , let n∈N that is n=n+0m, so that 

  n)=0x=0, that is N ker . Now, since Nker  M and N is a P-essential submodule of M, 

then by [6, Theorem 4.4(1)], ker  is P-essential of M. Now, ker   N+Rm  M, again by [6, 

Theorem 4.4 (1)], N+Rm   M. On the other hand, by Condition ( ), ker    N+Rm. From 

(i), ker  is pure closed in N+Rm, thus ker =N+Rm. This implies that  =0, which is a 

contradiction, thus f=0. Hence the proof of (ii) is complete. 

 

         We need the following lemma. 

 

Lemma 2.18: If M is an F-regular module then: 

1. N  M if and only if N   M. 

2. N  M if and only if N   M.  

   

Proof: 

1. The necessity is clear. For the converse, assume that N   M. Let L be a submodule of M 

with N∩L=0. Since M is F-regular, then L is pure, and by assumption L=0, then N  M. 

2.  Assume that N   M, and let L≤ M with N  L≤ M so that N   L≤ M. By assumption 

N=L, that is N  M. The sufficiency is clear. 

 

 Theorem 2.19: Let M be an F-regular module. Consider the following: 

1. All partial endomorphisms of M have pure closed kernels in their domains. 

2.      (
 

 
    ))= , for each P-essential submodule N of M. 

Then (1)   (2). 
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Proof: Let N   M, by the same argument of Theorem 2.17, we get   is well defined, 

homomorphism and N  kerφ. Now, for the chain N  kerφ  M, since N   M then by 

Lemma 2.18(1), N  M this implies that ker φ  M, [2, Proposition 1.1, P.16]. Again for the 

chain kerφ ≤ N+Rm ≤ M, we have N+Rm  M, [2, Proposition 1.1, P.16]. This implies that 

kerφ  N+Rm. In contrast, from (1), kerφ is pure closed in N+Rm, hence kerφ is closed in 

N+Rm, thus kerφ=N+Rm. This implies that  =0, which is a contradiction, thus f=0.  

    

Proposition 2.20: If M satisfies Condition ( ), then every submodule of fully polyform 

module is fully polyform. 

 

Proof: Let N M, and let L be a P-essential submodule of N. Assume that f: LN be a 

homomorphism. Consider the following sequence of homomorphisms. 

L
 
  N 

 
  M 

Since M is fully polyform and satisfies Condition ( ), then by Theorem 2.17, ker(i f) is a 

pure closed submodule of L. But ker(i f)=kerf, thus kerf is pure closed in L, hence N is a fully 

polyform submodule. 

 

Corollary 2.21: For any module M satisfying Condition ( ), if E(M) is fully polyform then 

M is fully polyform. 

 

Lemma 2.22: The following statements are equivalent: 

1. For every submodule N of M and all homomorphism f: N M, implies that kerf   N. 

2. For any non-zero submodule N of M and each non-zero homomorphism f: N  , implies 

that kerf is not a P-essential submodule of N. 

 

Proof: 

(1)   (2): Suppose there exists a submodule N of M and a non-zero homomorphism f: 

N   such that kerf     . By assumption kerf       this implies that kerf=N, hence f=0, 

which is a contradiction. Thus, kerf is not a P-essential submodule of N. 

(2)   (1): Let 0≠N≤M, and f: N M be a homomorphism, we have to show that kerf    N. 

Suppose that kerf      This implies the existence of a submodule K of N containing kerf 

such that kerf     .  Consider the following:   

K
 
  

 
   

where i is the inclusion homomorphism. It is clear that f  ≠0, and since kerf K, then 

kerf=ker(f  )    K. Now, if K=0, then kerf=0, hence kerf   N which is a contradiction. 

Thus K≠0. By (2), we obtain a contradiction, therefore kerf   N.  

   

         From Theorem 2.17 and Lemma 2.22, we have the following: 

 

Theorem 2.23: Let M be an R-module satisfying the Condition ( ). Consider the following: 

i.  All non-zero partial endomorphisms f: NM with N≠0, haven't P-essential kernels in 

their domains. 

ii.  All partial endomorphisms of M have pure closed kernels in their domains. 

iii.      (
 

 
    ))= , for each P-essential submodule N of M. 

Then (i)   (ii)   (iii). 
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Proof: 

 (i)   (ii): It is just Lemma 2.22. 

           (ii)   (iii): It is just Theorem 2.19. 

 

Theorem 2.24: Consider the following statements for an R-module M which satisfies 

Condition ( ).   

1.     (
 

 
    ))= , for each P-essential submodule N of M. 

2. For each non-zero homomorphism f: M E(M), implies kerf is not P-essential submodule 

of M. 

3. All non-zero partial endomorphisms f: NM with N≠0, haven't P-essential kernels in their 

domains. 

Then (1)   (2)   (3). 

 

Proof:  

(1)   (2): It is just Theorem 2.15. 

 (2)   (3): Let N be a non-zero P-essential submodule of M, and f: NM be a non-zero 

homomorphism. Consider the following sequence of homomorphisms: 

N
 
  M

 
  E(M) 

It is clear that i f is a non-zero homomorphism. By assumption ker(i f) = kerf is not P-

essential submodule of N, and we are done. 

 

Theorem 2.25: The following statements are equivalent for any R-module M satisfying the 

Condition ( ). 

1.     (
 

 
    ))=  for each P-essential submodule N of M. 

2. For each non-zero homomorphism f:M E(M), implies kerf is not P-essential submodule 

of M. 

3. All non-zero partial endomorphisms f: NM with N≠0, haven't P-essential kernels in their 

domains. 

4. All partial endomorphisms of M have pure closed kernels in their domains. 

 

Proof:  

     (1)   (2)   (3): It is just Theorem 2.24. 

     (3)   (4): It is just Lemma 2.22. 

     (4)   (1): It is just Theorem 2.17. 

 

Theorem 2.26: For any R-module M satisfies the Condition ( ), the following are 

equivalent: 

1. All non-zero partial endomorphisms f: NM with N≠0 haven’t P-essential kernels in their 

domains. 

2. All partial endomorphisms of M have pure closed kernels in their domains. 

3.     (
 

 
    ))=0 for each P-essential submodule N of M. 

Proof: 

(1)   (2): It is just Lemma 2.22. 

(2)   (3): It is just Theorem 2.17. 

(3)   (1): It follows by Theorem 2.24. 
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3. Fully Polyform Modules and Related Concepts  

         This section is dedicated to studying the relationships between fully polyform modules 

and other modules such as semisimple, monoform, essentially quasi-Dedekind and St-

polyform modules. 

           Recall that an R-module M is called semisimple if every submodule of M is a direct 

summand of M, [1, P.107]. 

 

Proposition 3.1: Every semisimple module is fully polyform. 

 

Proof:  Let M be a semisimple module, and N be a P-essential submodule of M. Assume that 

f: 
 

 
 M be a homomorphism, where NVM. By assumption, N is a direct summand of M, 

so there is a submodule K of M such that M=N K. That is N K=0. Since K is pure in M and 

N   M, then K=0. This implies that N=M, therefore N=V, hence f=0. 

 

         The converse of Proposition 3.1 is not true in general, for example, the  -module   is a 

fully polyform module, but not semisimple. 

 

Proposition 3.2: Any monoform module is fully polyform. 

 

Proof: Let M be a monoform module. By assumption, every non-zero submodule of M is 

rational in M, particularly, every P-essential submodule of M is rational in M. Thus, M is 

fully polyform. 

 

         The converse of Proposition 3.2 is not always true, for example, the  -module    is 

semisimple, hence it is fully polyform by Proposition 3.1, but not monoform since < ̅> is not 

rational in   .  

 

        We need to introduce the following definition. 

 

Definition 3.3: A non-zero module M is called P-uniform if every non-zero submodule of M 

is P-essential. 

 

         It is clear that every uniform module is P-uniform. We think that the converse is not 

true, but unfortunately, we haven't examples to confirm that. In the following proposition, we 

use a condition under which the converse of Proposition 3.2 will be true. 

         

Proposition 3.4: Let M be a P-uniform module. Then M is fully polyform if and only if M is 

a monoform module. 

 

Proof: Assume that M is fully polyform, and let N be a non-zero submodule of M. Since M is 

P-uniform, then N   M. But M is fully polyform, so N  M. Thus, M is monoform. The 

converse is clear.    

 

Corollary 3.5: Let M be a uniform module. Then M is fully polyform if and only if M is a 

monoform module. 

 

Proof: Since every uniform is P-uniform, then the result follows directly from Proposition 

3.4.  
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Proposition 3.6: Uniform modules cannot be fully polyform. 

 

Proof: Let M be a uniform module. Suppose the converse, that is M is a fully polyform 

module, so for all 0≠N M and 0≠f: N M, kerf    N. This implies that kerf  N. But M is 

uniform, so we have a contradiction. Thus, M is not fully polyform.  

 

        Recall that a module M is called an essentially quasi-Dedekind module if 

    (
 

 
  )=0 for all N  M, [18].   

 

Proposition 3.7: Every fully polyform is an essentially quasi-Dedekind module. 

 

Proof: Let M be a fully polyform module, and N be an essential submodule of M. Suppose 

that f: 
 

 
   M is a homomorphism. Consider the following sequence of homomorphisms: 

 

 

 
  M 

 
  E(M) 

where i is the inclusion homomorphism and E(M) is the injective hull of M. Since every 

essential submodule of M is P-essential, and M is fully polyform, therefore     (
 

 
, 

E(M))=0. So that i f=0, hence f=0. Thus     (
 

 
, M)=0 for each N  M, that is M 

essentially quasi-Dedekind. 

 

        An R-module M is called K-nonsingular if for each f    (M), kerf  M implies that 

f=0, [19]. Hadi and Ghawi, [18] proved that the two classes essentially quasi-Dedekind and 

K-nonsingular modules are identical. For that reason, if M is fully polyform then M is a K-

nonsingular module. 

 

        The converse of Proposition 3.7 is not true in general, for example, the  -module      

is essentially quasi-Dedekind, [18, Remark 2.13], but it is not fully polyform. To verify that, 

if we take the submodule   of the  -module  , and define  :        by  (x)=(0, ̅) for 

each x∈ . It is clear that   is a non-zero homomorphism. Now, ker ={w∈  l  (w)=(  , ̅)}={ 

w∈  l ( , ̅)=( , ̅)}= 2 , therefore ker =2 , so that ker    , hence ker     . Beside 

that,  ≠0, so by the contrapositive of the part (i)  (iii) in Theorem 2.23, M is not fully 

polyform module.   

    

         In Remark 2.5 (9), we proved the following, which can be deduced from Proposition 3.7 

as follows. 

 

Corollary 3.8: If M is fully polyform, then     M=    N, for all N   M. 

 

Proof: Since each fully polyforms module is essentially quasi-Dedekind, hence 

    M=    N, [18, Remark 1.2 (4)]. 

 

        Corollary 3.8 leads us to introduce the following. 

 

Definition 3.9: An R-module M is called a Pe-prime if       )=      ) for every P-

essential submodule N of M. 

 

Remark 3.10: Every fully polyform module is Pe-prime module. 
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         Following [15, P.47], a module M is called essentially prime if       )=      ) for 

all N  M. Since every essentially quasi-Dedekind module is essentially prime, So we have 

the following  implications: 

        

         Recall that An R-module M is called fully P-essential if every P-essential submodule of 

M is essential, [20]. 

 

Proposition 3.11: Let M be a fully P-essential module, then M is Pe-prime if and only if M is 

an essentially prime module. 

 

Remark 3.12: In the class of fully P-essential modules, both of polyform and fully polyform 

are identical.  

         A submodule N of an R-module M is  SQI if for each f    (
 

 
  ), implies that f 

(
 

 
) is small in M, [21]. An R-module M is called an ESQD module if every essential 

submodule of M is SQI, [22]. 

 

Proposition 3.13: Every fully polyform module is ESQD. 

 

Proof: Let M be fully polyform and N  M, so that N   M. Since M is fully polyform, then 

N  M. Hence N is quasi-invertible, but obviously, every quasi-invertible is SQI. Thus, M is 

ESQD.   

     

         Following [23], a submodule N of an R-module M is St-closed (simply, N    M) if N 

has no proper semi-essential extensions in M, where a submodule N is said to be semi-

essential if N P≠0 for every non-zero prime submodule P of M. An R-module M is called St-

polyform if for every submodule N of M and all homomorphism f: NM, the kerf is an St-

closed submodule of M. Equivalently, a module M is St-polyform if for each non-zero 

submodule N of M and each non-zero homomorphism f: N M, the kerf is not semi-essential 

submodule of N, [24].  

 

Remark 3.14: Since St-polyform and fully polyform modules depend in their construction on 

prime and pure concepts, and there is no direct implication between prime and pure 

submodules, then this implies that there is no direct relationship between them. However, 

under certain conditions, the two classes fully polyform and St-polyform modules coincide as 

the following proposition shows, before that we need to give the following Lemma. 

 

Lemma 3.15: Let M be an R-module satisfies one of the following: 

1. M is a torsion-free module with (L  M)=0 for all L≤ M.  

2. M is a prime module with (L  M) =     (M) for all L≤ M. 

Then any submodule N of M is P-essential if and only if N is semi-essential of M. 

 

Proof: 

1. Assume that N is P-essential and let L be a prime submodule of M such that N L=0. To 

prove L=0, since M is torsion-free and (L  M)=0, [25], then L is pure. But N is P-essential 

thus L=0. Conversely, suppose that N is a semi-essential submodule of M, and L is a pure 

submodule of M. By assumption N is prime, [25]. But N is semi-essential, then L=0. 

2. It is similar to (1), with used [26] instead of [25]. 

Fully Polyform Module   Polyform Modules   Essentially Quasi-Dedekind Modules   Essentially Prime Modules 
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Proposition 3.16: Let M be a torsion-free module with (L  M) = 0, for every submodule L of 

M. Then M is a fully polyform if and only if M is an St-polyform module, provided that M 

satisfies the Condition ( ). 

 

Proof: Assume that M is a fully polyform module, and let N be a non-zero submodule of M, 

0f: NM be a homomorphism. Since M is fully polyform, then by Theorem 2.23, kerf is not 

P-essential in N. But M is torsion-free and (kerf  M) = 0, so by the contrapositive of Lemma 

3.15(1), the kernel of f is not a semi-essential submodule of N. Thus, M is St-polyform. 

 

        Recall that an R-module M is called fully prime if every proper submodule of M is 

prime, [27]. 

 

Proposition 3.17: Let M be a fully prime R-module that satisfies Condition ( ). If M is fully 

polyform then M is an St-polyform module. The converse is true if M is a prime module with 

(L  M) =     (M) for all L≤ M. 

 

Proof: Suppose that M is a fully polyform module, and 0≠N≤M, 0≠f: N→M. Since M is fully 

polyform, then by Theorem 2.23, kerf   N, hence kerf  N. Since M is fully prime, then 

kerf    N, [28]. Thus, M is St-polyform. For the converse, assume that M is St-polyform. 

Let 0≠N≤M and f: N→M be a non-zero homomorphism. So that kerf    N. On the other 

hand, M is a prime module with (L  M) =     (M) for all L≤ M, so by Lemma 3.15, 

kerf   N. By Theorem 2.23, M is fully polyform.  

 

        Next, the following results deal with the relationship between fully polyform and quasi-

invertibility monoform modules. Before that, an R-module M is called a quasi-invertibility 

monoform (simply, QI-monoform), if every non-zero quasi-invertible submodule of an R-

module M is rational in M, [29]. 

 

         In the category of rings, every quasi-invertible ideal is essential, [9, Corollary 2.3, P,12]. 

This leads us to give the following. 

 

Proposition 3.18: Every fully polyform ring is a QI-monoform ring. 

 

Proof: Let A be a non-zero quasi-invertible ideal of R. By [9, Corollary 2.3, P.12], A  R, 

this implies that A   R. But R is fully polyform, then A is rational in R. Therefore, R is QI-

monoform.   

 

        The converse of Proposition 3.18 is not true, for example:    is a QI-monoform ring. 

Indeed, there is no non-zero quasi-invertible ideal of the ring    which is not rational in   . 

On the other hand,    is not fully polyform ring see, Example 2.5(3). 

 

Proposition 3.19: Let M be a multiplication module with a prime annihilator. If M is fully 

polyform then M is QI-monoform. 

 

Proof: Assume that M is a fully polyform module and N   M. Since M is multiplication 

with prime annihilator, then N  M, [9, Theorem 3.11, P.19)]. Hence N   M, and according 

to assumption, N  M, that is M is QI-monoform. 
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        By the same argument of Proposition 3.19, and with replacing [9, Theorem 3.11, P.18], 

instead of [9, Corollary 3.12, P.19], we can prove the following. 

 

Proposition 3.20: Let M be a multiplication and prime module. If M is a fully polyform 

module, then M is QI-monoform. 

 

        Moreover, we can use [9, Theorem 3.8, P.17] instead of [9, Theorem 3.11, P.18], to 

prove the following. 

 

Proposition 3.21: Let M be a quasi-injective R-module with J(    (M)) = (0), if M is fully 

polyform, then M is QI-monoform. 

 

Theorem 3.22: Let M be a multiplication and prime module. Consider the following 

statements:  

1. M is a fully polyform module. 

2. M is a polyform module. 

3. M is a QI-monoform module. 

Then (1)   (2)   (3).  

 

Proof: 

(1)   (2): It is obvious. 

(2)   (3): Since M is a multiplication and prime module, then the result followed by [29, 

Proposition 4.4] 

 

Theorem 3.23: Let M be a quasi-injective module with J(    (M))=(0). Consider the 

following statements:   

1. M is a fully polyform module. 

2. M is a polyform module. 

3. M is a QI-monoform module. 

Then (1)   (2)   (3).  

 

Proof: 

(1)   (2): It is clear. 

(2)   (3): It is just [29, Proposition 4.5]. 

 

Theorem 3.24: Let R be a quasi-Dedekind ring. Consider the following statements:  

1. R is a fully polyform ring. 

2. R is a polyform ring. 

3. R is a QI-monoform ring. 

4. R is a monoform ring. 

Then (1)   (2)   (3)   (4). 

 

Proof: 

(1)   (2): It is straightforward. 

(2)   (3)   (4): Since R is a quasi-Dedekind ring, then the result is obtained by [29, Theorem 

4.13].  

 

Theorem 3.25: Let R be an essentially quasi-Dedekind ring. Consider the following 

statements: 

1. M is a fully polyform ring. 
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2. M is a QI-monoform ring. 

3. M is a polyform ring. 

Then (1)   (2)   (3). 

 

Proof: 

(1)   (2): It is just Proposition 3.18. 

(2)   (3): Since R is an essentially quasi-Dedekind, then from [29, Theorem 4.9] the result is 

obtained.  

 

         As a consequence of Theorem 3.25, we have the following result. 

 

Corollary 3.26: Let R be an integral domain. Consider the following statements: 

1. R is a fully polyform ring. 

2. R is a polyform ring. 

3. R is a QI-monoform ring. 

4. R is a monoform ring. 

Then (1)   (2)   (3)   (4). 

 

Proof: Since every integral domain is quasi-Dedekind, [9, Example 1.4, P.24], then the result 

follows directly from Theorem 3.24. 

 

Theorem 3.27: Let M be a uniform and essentially quasi-Dedekind module. The following 

statements are equivalent: 

1. M is a fully polyform module. 

2. M is monoform module. 

3. M is a QI-monoform module. 

4. M is a polyform module. 

 

Proof: 

(1)   (2): Suppose that M is fully polyform, since M is a uniform module, then by Corollary 

3.5, M is monoform. The converse is clear. 

(2)   (3)   (4): Since R is a uniform and essentially quasi-Dedekind module, then the result 

follows by [29, Theorem 4.11]. 

(4)   (1): Assume that M is a polyform module. Since M is uniform, so by Proposition 2.10, 

M is a fully polyform module. 

 

         Since every nonsingular module is essentially quasi-Dedekind, [29, Remark 4.8(3) ], 

then from Theorem 3.27, we deduce the following. 

 

Corollary 3.28: Let M be a uniform and nonsingular module. The following statements are 

equivalent: 

1. M is a fully polyform module. 

2. M is monoform module. 

3. M is a QI-monoform module. 

4. M is a polyform module. 

 

4.  Conclusions:  
         In this work, the class of polyform modules has been restricted to a new class. It is 

called fully polyform modules. The main results of this paper can be summarized as follows: 
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1. Many results are given, that describe the main properties of fully polyform modules. 

2. Other characterizations and partial characterizations of fully polyform modules are 

considered.  

3. Sufficient conditions are given under which fully polyform and polyform modules are 

identical.  

4. Some modules containing fully polyform modules are examined, such as quasi-Dedekind, 

Pe-prime and ESQD modules.  

5. The connections between fully polyform and related concepts are studied such as 

monoform and St-polyform modules.  

 

      However, all these relationships can be represented in the following diagram: 
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