
 6002العذد الخبص ببحوث البيئة وبحوث المؤتمر العلمي لسنة 

 

18 

 

Fractal Koch Dipole Antenna 
 
 

 قسم الفيزياء-كلية العلوم/المثنى  -جامعة القادسية -عـامر باسم شـعلان  / وزارة التعليم العالي والبحث العلمي
 مركز بحوث الليزر –دائرة الفيزياء  –محمد عبد الزهرة حبيب /  وزارة العلوم والتكنولوجيا 

 
A.B. Shaalan / Ministry of Higher Education and Scientific Research – University of 

Al-Qadisiya – College of Science/Muthana – Physics Department. 

 

M. A. Z. Habeeb / Ministry of Science & Technology – Physics Research Directorate –

Laser Center. 

 

 

 الخلاصـة:
 

كبيرة في التصميم الهندسي للهوائيات بشكل عام ولهوائي ثنائي القطب   تعتبر هندسة الكسوريات ذات فائدة 
بشكل خاص. إن الاستفادة التي يمكن تحقيقها من استخدام نموذج كوخ كثنائي قطب هو تقليل الارتفاع لهوائي ثنائي 

 القطب الكلاسيكي عند التردد الرنيني.
أساسـيات الهندسـة الكسـورية وأتهـرت النتـائ  انـ   تم إجراء الحسابات لهوائي ثنـائي القطـب بالاعتمـاد علـى 

 بالإمكان تقليل الارتفاع الكلي لهذا الهوائي كما أتهرت تحسنا في خصائص الموائمة الممثلة بعامل الانتقائية
(SWR)  .أما الاتجاهية ومعامل الكسب فقد بقيت ثابتة إلى حد ما ، 

 
 

Abstract: 

 

 It is well established that fractal geometry is of benefit in the design of 

antennas in general and dipole antenna in particular. The benefit of using 

fractal Koch as a dipole antenna is to miniaturize the total height of the 

classical antenna at resonance. 
  

Calculations based on fractal geometry are made for the classical dipole 

antenna. Results indicate that it is feasible to reduce the total height of the 

classical dipole and improve the matching properties represented by (SWR) 

ratio, while the gain and directivity remain slightly constant.  
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1. Introduction:  

 

 Fractal is a term coined by Mandelbrot in 1975 while studying irregular 

shapes [1]. Fractal objects have two common properties: self-similarity that 

means the object has many copies of itself at several scales, and fractal 

dimension, which represents the space-filling properties of the object [2,3]. 

 

Fractals have wide varying applications. As far as the technological 

applications of fractals are concerned the field of antennas has witnessed a 

surge of activity in the last few years. 

In this area, the most important fractal application is fractal antenna 

design. Fractal antennas are very useful tools to solve two of the limitations of 

classical antennas, the single band performance and the dependence of 

antenna’s size on the operating frequency [4]. 

 

The first scientist to work in this field was Cohen, N. at Boston 

University. He published his first article “ Fractal Antennas ” on 15August 

1995 [5]. Few months later, Puente, C. at University of Catalonia, Barcelona 

in Spain published papers about fractal antennas [6,7]. Fractal 

electrodynamics is a research area connecting the fractal geometry and 

electromagnetic theory, the term was coined by Jaggard, D.L. [8].  

 

 In this study, we start with a dipole antenna that is resonant at 1900 

MHz as a zero iteration of Koch model. It is known from previous studies in 

this field if the height of the antenna is held constant, the resonant frequency 

decreases as the number of iteration increases and If the resonant frequency is 

held fixed, miniaturization of antenna height is possible. 

 

 However, most of previous studies dealing with the investigation of the 

possibility of height reduction as a result of Koch fractalization of the 

classical dipole antenna used very small radius which make the designed 

antenna impractical. Also, the previous studies did not investigate the 

radiation pattern of the fractalized dipole and hence did not make clear 

suggestion as regard the areas of application. Besides, no mention of antenna 

gain was made in previous studies.  

 

 To this end, the present work has been performed to address these 

issues. The rest of the paper is organized as follows. In section (2) a 
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description of the main ideas and tools of the computer simulation techniques 

are given.  

Section (3) describes the algorithm for the generation of the Koch fractal that 

will be used in the present work. Section (4) presents the result obtained in the 

present work. Finally, the main conclusions are presented in section (5).  

 

 

2. Computer Simulation Technique. 

 

Method of Moments is a numerical method for solving integral 

equations. The general form of this equation is [9]: 
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    The kernel K(z, ź) depends on the specific integral equation formula. The 

procedure of moments’ method is, reducing this integral equation to a system 

of linear algebraic equations in terms of the unknown current I(ź). Most 

electromagnetic radiation problems are expressed as integral equations with a 

source term on the right hand side and the unknown within the integral. 

Total sharing of the electric field over the wire volume is :- 
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 ψ ( zz , ) is the free space green function [10] 

 

If we assume the conductivity is infinity, then the current is confined to the 

surface of the wire and by considering the distribution of the current as 

uniform with respect to (φ), then equation (2) is reduced to a line integral of 

current [11].   
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where: L is the wire length.  

 
 

   We can set the quantity ( zE


) in equation (2) as the scattered field ( s

zE


) that 

is radiated by the equivalent current I( z ). There is also the incident field ( i

zE


) 
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at the surface of a perfectly conducting wire, and the sum of the scattered and 

incident fields must be zero, i.e., s

zE


= - i

zE


 

Thus, equation (2) becomes: 
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This equation was derived by Pocklington [9] and it is equivalent to equation 

(1). The expansion functions are a stair step approximation to the current 

distribution on the wire. 





2/

2/

2211 )(),(...),(...),(),(),()(

L

L

m

i

zNmNnmnmmm zEzzfIzzfIzzfIzzfIzdzzKzI                                                                               

…………………. (5) 

 

   The physical interpretation of this equation is illustrated in figure (3) 

 

     From the computed currents we can calculate the radiation pattern of the 

simulated antenna by using the standard far field approximations [11,12]: 
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3. Fractal generation: 

 

 For the Koch fractal, the generator is a straight segment that has been 

broken into three pieces of equal size. The middle one is removed and 

replaced by two segments equal in size to the removed one, these two 

segments are fit into the gap in an equilaterally triangular fashion [13,14] as 

shown in figure (1). 
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                                      Figure (1): Koch generator 

 

 The total length of the generator is one third longer than it has 

previously. If the process is carried out for an infinite numbers of times, Koch 

model will have an infinite length while the height will not change [15,16]. 

The total length of Koch model is given by [17] and is given by: 

 

LKoch = h(4/3)
n
 ……… (10) 

 

where h is the height of the starting generator and n is the number of 

iterations. This algorithm has been translated into a computer program written 

in FORTRAN 90.  

 

4. Results:  
 

          The initial height of the dipole is chosen to be (7.5 cm) and its diameter 

(0.5 mm) and connected to 50 Ω coaxial cable. These dimensions make the 

dipole resonant at 1900 MHz, which make it applicable in the wireless 

communication band. 

 

To make all fractal Koch iterations resonant at the same frequency, 

scaling each iteration is required. The relative height and length of the dipole 

and the three iterations of fractal Koch fractal is given in table (1):  

 

Table (1): Relative height and length of Koch fractal 

Iteration Height (cm) Length (cm) 

0 7.5 7.5 

1 6.47 8.63 

2 6.12 10.83 

3 6 14.28 
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The following figure shows the relative heights of Koch dipole for 

different iterations, while only half of the dipole is shown. 
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                           Figure (2): Relative heights of fractal Koch dipole  

 

 

 The following figures represent the standing wave ratio (SWR) and 

Smith chart for fractal Koch iterations which are represented by the symbols 

K0, K1, K2 and K3 respectively. 
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                                   Figure (3):  SWR and Smith chart for K0 
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                                  Figure (4):  SWR and Smith chart for K1 
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                                Figure (5):  SWR and Smith chart for K2 
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                              Figure (6):  SWR and Smith chart for K3    

 

The following figure represent the far field radiation pattern in zenith plane 

for the three iterations. 
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                   Figure (7): Far field radiation pattern for Koch dipole antenna 

 

 

The values of (SWR) gain of the Koch dipole antenna are given in Table (2). 

 

 

 

 

Table (2): gain and SWR for Koch fractal antenna in its first three iterations. 

Iteration SWR Gain (dBi) 

0 1.45 2.12 

1 1.06 2.04 

2 1.05 2.01 

3 1.05 2.02 
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5. Conclusions: 

  

 The result of the present work presented in section (4) lead to the 

following conclusions: 

 

 The height of fractal Koch dipole is reduced at every iteration, but 

the  

      benefits of fractal geometry in reducing the height of the antenna became  

      very little at high iterations (after third one) as seen in Table (1). 

 

 The matching properties of the antenna represented by (SWR) was 

improved because increasing in the number of segments add loads to the 

end of the antenna which reduce the reactance or the imaginary part in the 

input impedance of the antenna as shown in Figures 3,4 and 5. 

 

 The gain of fractal Koch is remained slightly constant. 

 

 Far field radiation remains similar in shape as the dipole far field. 
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