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Abstract:

This paper focuses on studying the dynamical behavior of a discrete-time stage
structured prey-predator fractional model with Crowley-Martin type functional
response. This study starts with the construction of a discretization of the fractional
stage structured prey-predator model by using piecewise constant arguments process
then we determine and set conditions that are required to achieve the local stability
of all the equilibrium points of the considered system. The results of the study show
that the discrete—fractional system may have one or two non-negative interior
equilibrium points. One of them becomes locally asymptotically stable under certain
conditions. Also, we present and extend the considered system to the optimal control
problem to get maximum harvest profit strategy. For that, the Pontryagin’s maximal
principal to get the optimal solution is applied. Numerical simulation is given to
verify the analytical results.

Keywords: Difference-equations, Stage structured model, Crowley-Martin, Optimal
harvesting.
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1. Introduction:

The Biological mathematical modelling concerns with the interaction among two or more
populations. The relationship of prey—predator species is well known and widely employed in
the past and it becomes prominent and remarkable works nowadays. Scientists and many
researchers have modified and analysed the prey—predator models by applying and employing
many factors, namely time delay, disease, harvesting, functional response, scavenger etc., in
their works, see, [1]-[6]. The dynamics of diffusive prey predator model was studied with
different functional responses and stage-structured for the prey in [7]-[12]. One of the most
efficient methods of obtaining precise information on the behaviour of the biological system
is the difference equations due to have no overlap between successive generations and for
which births occur in regular [13]and[14]. A discrete-time and fractional predator-prey system
have widely investigated and studied in the last decades, see [12], [15]-[20] and references
therein. Fractional order derivative becomes one of the central interdisciplinary subjects in
physical, biological, sciences and engineering. In [21]-[23], the authors discussed the
harvesting for a prey-predator model with stage-structured for the prey and investigated the
stability concepts using different mathematical techniques. In [24], the authors studied and
investigated a fractional-order prey-predator system with with Crowley-Martin functional
response and constant harvesting rate. Their system is given as follows:

D (r1(£)) = 122(8) = (1 + b)xy (8) |
DI (xa()) = dyxy (£) = (da + W)xp(t) = el | )
q _ azx,(t)x3(t) _
Dt (x3 (t)) - (1+x2(t))(1+x3(t)) d3x3 (t) J

Where x;(t) , x,(t) and x5(t) are the density of immature prey species, mature prey
species positive constants. The description and interpretation of them can be found in [24].
D/ f (¢) stands for Caputo fractional order derivatives.

The main objective of this paper is to study the dynamical behavior of the discretization of
model (1) with Crowley -Martian functional response and we extend the consider model to
the optimal harvesting, for more details about the using optimal control theory to get the
optimal harvesting amount, see [25]-[28].

2. Discrete Fractional-Order Model:

In this section, the discretization process that is found in [29]-[31] is applied on the
system (1) and the process is given as follows:
Let x10(t) = x19 ,%20(t) = x50 and x34(t) = x3, be the initial conditions for system (1),
then the corresponding discrete time model with piecewise constant argument is:

D (i (1) = rp([] ) — (1 + Byxa([E] 9)

D (e (®) = dixa (|4 ) = (@z + W, ([F] ) - (([(][)]) fjﬂﬂ%s))

. B azxz([ﬂs)m([ﬂs)
Dy (x5(t)) = (1+x2([§]5))(1+x3([§]5))

First, let t € [0, s)asg € [0,1) then we get:

- d3x3([§] s)
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D (x, () = Tx50 — (1 + b)x1
A1X2,0X3,0
D (x2(£)) = dyx10 — (da + h)xz0 — (1+ 230) (1 + x30)
2,0 3,0
a2X20X3,0

(1 + x20) (1 + x3)
And the solution of the new system is:

t4
x1,1(t) = X1,0 +]q[ TXx20— (1+ b)x1,o] =X1,0 T m [xz,o -1+ b)x1,0]

D} (x3(t)) = — d3X3 J

X2 (t) = Xz +J° Idlxl 0 = (d + W)xy — N7
| ' ’ T (T x20)(1 + x3)
t a1X2,0X3,0
= X0t 3 [d1x1,o —(dy + h)xy0 — D73,
ql'(q) (1 +x20)(1 +x30)
= q| 27z0%s0 = t1 azX2,0X30
x31(t) = x30+] [(1+XZ,0)(1+X3‘0) d3x3,o] X309+ @ [ Tran) (Lxnd) d3x3,0] .

Therefore, the discrete time model becomes as follows:

Xin+1 = X1n + ql"( ) [rx2n — (1 + b)xyp]
sq A1X2 nX3.n
X =x —\dqx,, — (d h)x,, — ——=t—~=
Zn+l 2'"+qr(q)[ 110~ (dz + h)xzp (1+22,2)(1+23.0) )
sq A2X2 nX3n ]
X =Xx3,+ — —dsx
3t TN T gr(e) |(1+ag ) Atxs,) o oM

Where q € (0,1)and s > 0.

To get the fixed points of the discrete time system (2), we can solve the following
algebraic system:

X, =x1 + [rxz (1+b)xq]

F( )
= x, + _ L aadpxs

Xy = Xy + ) [d1x1 (d, + h)x, Tl |

q

s ArXX3 _ d3x3] J

qr(q@) L(1+x3)(1+x3)

X3 = x3 +

It is clearly that the system (2) has at least three equilibrium points these points are:
1- The trivial fixed point e, = (0,0,0) always exists.
2-  The free predator fixed point e; = (x;*, x,%, 0) exists if

X" = (h;—b) x,* and = JetNtbdp¥hb Therefore, the system (2) may have two positive
1

equilibrium points.

3- Theinterior fixed pointe, = (x7, x5, x3) exists ifH >d, + hand

a1x3 * a1X3
> 1,where x —)x,, and x3IS a positive root
(143 (5 d2) 27 Gex & dy-h) (1+b) 2 31 ap

of the following equation:

a,(ds)— a1a2+a2(1+b dy—h) and b (1+b d;—h)
al(d3) 1 al(d3)

+axi+b,=0 ,where a =

3. Stability Analysis:
In this section, the properties of the local stability for the discretized fractional-order
model (2) are determined. The stability of the system (2) is investigated based on the values
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of the roots (eigenvalues) of characteristic polynomial of variation matrix J(x;,x,,x3)
evaluated at fixed point of system (2), so the variation matrix J(x,, x,, x3) of the system (2)
at any point (x4, x5, x3) is given by:

J(x1, x5, %3) =

[1—-W(1+b) Wr 0 1

I a1X3 a1 x; |

I Wdl 1-w (dz Tht (1+x3)(1+x2)2) -w ((1+x2)(1+x3)2) | (3)
azX3 axxy

l 0 w ((1+x3)(1+x2)2) L+w ((1+x2)(1+x3)2 N d3)J

Where W = T

Lemma (3.1):A fixed point e* = (x4, x,,x5) of the system (2) is said to be a sink (locally
asymptotically) stable if |&;| < 1 for all i =1,2,3, source or unstable if |¢;| > 1 for all i=1,2,3
and non-hyperbolic fixed point if |&| =1 for at least one i =1,2,3. Where &; are the
eigenvalues of characteristic polynomial of the Jacobian matrix evaluated at the fixed
pointe*. The following theorem is helpful for the investigated of the nature dynamical
behavior of system (2) at the fixed points.

Theorem(3.2): [13], [31]
1- Let F(x) =x>+px+q be a polynomial of degree two. If F(1)>0,F(—1) >
0 and q < 1. Then the roots of F(x)inside the unit circle.
2- Let F(x) = x3 + p;x? + p,x + p; be a polynomial of degree three. The roots of F
inside the unit circle if and only if the following conditions hold:

i. F(1)>0

ii. F(-1)<o0

i |pz — psp1l <1 —p3?

Proof :See [13,31]
Theorem (3.3): The trivial fixed pointe, of system (2) is:

i. Asink pointif (d, +h+ bd, + bh) >rd; ,W € (0,N;), and N, < r < N3, otherwise it
is unstable point.

ii. A non-hyperbolic pointif W = N, orr =N, orr = Nj.

Where N, = =, N, = 2zt tbdatbR)-QAtbtdath) ony N = 2 [(d, + h + bd, + bh + h) —
d3 wdq dq
2 4
W(1+b+d2+h)+ﬁ]'
Proof:
The Jacobian matrix at e, is given by:
1-W(Q1+b) Wr 0
J(ey) = wd, 1-W(d,+h) 0 , The characteristics
0 0 1—Wds

polynomial equation is:

FQO) = 1-Wd;—2)(F.(2) =0 ,where () =22 +pl+q

, p=WQ@+b+d,+h)—2and q=1+W?3(d, +h+ bd, + bh —rd;) —
W@ +b+d,+h).
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It is clear that the first eigenvalue A; = 1 — W d3 and the other eigenvalues are 4, ; which are
the roots of F,(4) . Now if W € (0,N;), then 0 < W < dz— ©-2<-Wd; <0 &-1<

3
1—-Wd; <1 then [14]| < 1.
If d,+h+bd,+bh>rd,, thenW?(d, +h+ bd, + bh—1rd;) >0 this gives 1+
Wld+b+d,+h)—2-W@A+b+d,+h)+1+W?(d, +h+bd, +bh—1d,) >0.
Therefore, F,(1) > 0. Ifr < N, then r<dil[(d2+h+bd2+bh+h)—%(1+b+d2+

h) + %]. Hence, W?2rd, <W?2(d, +h+bd, + bh—rd;) —2W (1 +b+d, + h) + 4.

Therefore, F,(—=1) > 0.

If 7> N, then r > ZetbR V=MD Yence, rWd, > W(d, + h + bd, + bh) —
1

(1+b+d,+h).Thus, W?(d, + h+ bd, + bh—1rd) — WA +b+d, +h) <

0 .Therefore, q < 1. According to Theorem (3.2) part 1, the trivial fixed pointe, is a sink
point. . Otherwise e, is unstable. If W = N, or r = N, or r = N3, e, is a non-hyperbolic
point.

Theorem (3.4): The free predator fixed point e; is always a non-hyperbolic point.

Proof:

The Jacobian matrix at e, is given by:

dy+h+dyb+hb

1-W(L+b) wEHE 0
wd 1-W(d, +h e
J (e1) = 1 (@ +h) ((1+(#)x1*)) ;
0 0 1+W () d

The characteristics equation is then:
1+b

az()x’ > )
G =(1+W|—Zp——-ds|—1)(G.(1)=0.
( ) ( ((1+(—)x1*) 3 ( ( ))

T

Where G, (1) = 22+ @1+ @, ,

p,=WA+b+d,+h)—2,andp, =1-W(A +b+d, +h).
We can easily see that G,(1) = 0. Therefore, the A = 1 is an eigenvalue of J (e,) and the free
predator fixed point e;is a non-hyperbolic point.

To discuss the local stability of the positive point e, of the system (2), we have the next
theorem.
Theorem (3.5): The positive fixed pointe, is a locally stable if the following conditions
hold:
1— K K3;K, +rd;Ks > K, K, K-,
2— 71 < Z,,
3= lpz — psp1l <1-—ps*
Where, Z; = 4W (K, + K;) + 2W?(K,Ks + rd, + K Ks) + W3 (K, K3K, + rd,K) :
Z, = 8+ 4WKs + 2W?(K K, + K3K,) + W3K K;Ks, py = W(K, + K, — Ks) — 3, p,=
2W (K5 — K, — K1) + W?(K3K, — KoK —rdy + Ky (K, — Ks)) + 3
and ps = W(K, + K, — Ks) + W?(K,Ks — K3K, — Ky (K, — Ks) + rdy) + W3 (K, K;K, —
KK, Ks +rd,Ks) — 1.
Proof:
The Jacobian matrix of system (3) at e, is:
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1—- WK, Wr 0
J(e2) =| Wd, 1-WK, -WK; |,
0 WK, 14+ WK;
_ _ asx3”
Ki=(1+b), Ky = (da + h+ i)

_ a;x;” _ azxz"
Ky = ((1+x2*)(1+x3*)2)’K4 - ((1+x3*)(1+x2*)2)’ and

ax,”*

Ks = ((1+x2*§(12+x3*)2 N d3) '
Therefore, the characteristic polynomial equation of the Jacobian matrix is:
PA=2+4+pA2+p,A+p3=0.

Now, by simple computation, we can get that if rd;Ks+ K;K3K, > K;K;K5, then
(1)>0.
We assume that Z, < Z, that is
AW (K, + K) + 2W?(KyKs + rdy + K1 Ks + W3 (K K3K, + 1d Ks) < 8 + 4WK; +
2W2K, K, + 2W?K;K, + W3K,K,K:, then with some computation steps, we can get
P(—1) < 0. Finally, if condition (3) holds, we can apply Theorem 3.2 part (2), and we obtain
that the fixed point e, is locally stable.

4. Optimal Harvesting:
In this section, we focus on examining how to maximize the profits from harvesting
mature prey species which can be defined by:

J(hi) = max T528(crhyxz e — Czhkz) : (4)

Where c, represents the price for harvesting, c,h,* is the total cost and k represents the
step of time. In this problem , the aim is to maX|m|ze (4) subject to the state- equatlons

Xig+1 = X1k T e )[sz,k (1+ b)xy ]
_ s4 _ _ A1X2 kX3 k
Xop+1 = Xo Tt @ [dlxl,k (dy + hi)xa i (o) () | ©)
s4 A2X2 kX3 k
X3jet1 = X3k ¥ res (1+x20)(14x3)) 3]

The control harvesting variable hyis subjected to the constrains 0 < h;, < hmax,k =
1,2,3..T.

Theorem (4.1): Suppose that the optimal harvesting is given by h; with the optimal state
solutions x; x, x,  and x3 . , then the adjoint functions p y, 5, and ps . exist and satisfy the
following:

Hik = Hik+1 (1 [1 + b])+l12,k+1 (id )'

r(q) qr(q) !

s
=c h; + (—r) + 1-
nu'Z,k 1tk nu'l,k+1 C[F(CI) nu2,k+1( 1—-( )

s4
+
y’3,k+1 C[F(CI)

U3k = U3 k+1

(dy + hy) + a132c3,k D
(1 + xz’k) (1 + x3’k)

AX3k >
(1+x2;0)° (1 + x3)
s4 arX7 k

CIF(CI) (1 + Xy k)(l + X3 k)

( s4 a1Xy i )
. _
HENAT@ [(1 4 x5, (1 + x30)°)

—d3
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With py r = pupr= pzr = 0. In addition, the optimal solution is given by

( (Cl ~ H2k+1 s )ka
0 “gl(q)) ™ <0
2c,
) ( )
ci — — | x ci — — | x
h = ( 1~ Uz k+1 FINC)) 2,k 0< 1~ Uz k+1 FINC)) 2,k <h .
2¢, 2¢, -
sd
C1 — H2k+1 177y ) X2,k
( ' qF(Q))
k hmax hmax < 2C2

Proof: The Hamiltonian function of the problem is given by:
q
Hy = cihyxa ) — ey’ + M1 k+1 (xl,k + ﬁ [sz,k -1+ b)xl,k]) + U2 k+1 <x2,k +

q
ﬁ [dlxl,k —(dy+h)xyp —

_GaXakXzk s A2X2,k X3k
(14x21) (1423 k) qr(q) | (1+x2,k) (1+x3 k)

d3x3k]) . Then by applying Pontryagin’s maximum principle [21], [32], the necessary

) + U3 k41 <x3,k +

conditions for the optimal control strategy are:

dH a
P =5, kk = Uik+1 (1 r( ) —[1+ b])+#2,k+1 (—qlf(q) dl)'
aHk Sq
Uz k = 9%y 1 = crhy + e k1 (Tq)r>
s a X3k
+ U k+1 <1 T (dy + hy) + 123' )
( ) (1 + x2,k) (1 + .X'3'k)
N < s Ay X3k )
U3 k+1 ,
qr(q) (1 + lek)z(l + X3'k)

_ OHk _ s4 a2X2k ]) ( s a1 %ok ])
= —k — 1 — —
Hak = gy, — Mokt < T @ (1422 1) (1423 1) ds)) = Hzper1 \grgy (14205 1) (1423 1) ’
with the optimality condition
oH
0= e £ = C1Xzk — 2C2h — U k41 (
k

solution.

s

qr(q)ka) we get the characterization of the optimal

5. Numerical Simulation:

In this section, we give a numerical simulation that confirms our analytical results,
especially the conditions of Theorems (3.3) and (3.5) in the section (3). Moreover, we solve
the optimal control problem by using iterative method that can be found in [1,14,20,25,33] to
get the optimal harvesting strategy on the mature prey species.

Example 1. In Table 1, we consider a set of parameters that confirm our analytical results

for the equilibrium pointseyande,, respectively. Figures 1-2 show the stability at different
values of fractional order q of the equilibrium point e, and e,, respectively.
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Table 1: The parameter values at the equilibrium point eyande,
Parameter’s value At the fixed point e, At the fixed point e,
d, 0.1 0.16
b 0.1 0.88
0.03 0.18
ds 0.5 0.2
r 2 7.78
a, 0.5 0.73
d, 0.3 0.42
a; 0.6 0.79
x,(0) 0.5 2.4
x,(0) 0.6 0.5
x3(0) 0.1 0.09
S 0.65 0.5
T 200 4000
‘( ("‘1‘3'7‘
| (sly0 s
0.1 —
= 01,
S om =
% % 008 4
§ N —§ 006 1
é 04 é it}
: 3 |
£ o £ e
0 ¥ 0.
06 N\ 05
BECN, ! i s
02 N/ 02 N\ _~— 05
0.u 0 .(u
x! {Immature prey popalstion | x1 {Immature prey population )
2 (mature prey popuiation ) ¥2 (mature peey poputation )
(B)g=0.9
oy 2=
(x0,y0,20)=+
0.1
;% 008
.§. 0.06
-‘% 0.04
§ 0.02
- al
0.6
1
“os

-
o o
x1 (Immature prey population )

%2 (mature prey population )

Figure 1: This figure represents the local stability of the trivial equilibrium point e, for
system (2) for different values of g, namely: A) g=0.8,B)q=0.9and C)g=0.98with s = 0.65

andT = 200

(C) q=0.98
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e

: R oy 2E
2040 0= = 0020
T 28 ~.s
% é 5.
24
3 2 234
222 : !
g < 224
3 . \
a 2 £ 2|
B ‘
e ) a '8
£, .
E'5 £ 18
g 14 t = 4]
X056 % 0e N
5 0 05 } ?
o 015 : 0.5
0 & - a1 04 i
03 Qo8 03 040§
x3(1) { preciator papulalion) x3{t) | preciator poputation)
x2{1) (mature prey population § x2{1) {melure pesy populaton )
PRI
+  (0.y0,20)=

5 26,

=

-g 24

+

g 22

>

p

a 2

»

& 18

o}

E

E 16

=14

* 08 .

-
o5 O 92
o 0.15
0.4 _ a4
D3 08

%3(1) ( predater population )
x2(t} {mature prey population )

(C) g=0.98
Figure 2: This figure represents the local stability of the positive equilibrium point e, for
system (2) for different values of g, namely: A)g= 0.8,B)g=0.9,and C)=0.98with s = 0.5
andT = 4000 .

Also, in Figure (3),the dynamical of a discrete system (2) with time T, for g=0.8 and 0.98
at the positive equilibrium point e, is illustrated.
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25 2a7 T - -
Trah mmatumm peey |

I+ —— Mare ey j- Metues prey
3 Prodsix _x; Preden:
po2r g 2r
a o (8
R R T RTRTATRA S 2
5 L]
5. > 5|
o g g 1.5
s -
g 5
2 2
gL < it
E g
:
2] [
El ! 'g 05 H
E'T-S{' i an IeiRinGaEaihig
g E

ol

0 AN A 0 500 100 150 20 250 LA
0 Sl 1000 150 0 || 30
tima
time

Figure 3: The dynamical of immature, mature prey, and predator populations of system (2)
with time for g=0.8 and 0.98 at the equilibrium point e,in(A) and (B) the blue line represents
the immature prey populations, pink line represents the, mature prey populations and orange
line represents the predator populations.

Example 2. We choose the values of parameters which are given in Table 2, with these values
of parameters fractional order g =0.9, T = 6000, and s=0.05. For the control problems (5)
and (6) with the initial conditions, and by using the iterative method which is founded in
references [23], [32], [33]we obtain the total optimal harvesting /] = 0.5871. So, Figures 5-6
represent the effect of optimal harvesting on the mature prey species and the optimal control
variables a function of time illustrates in Figure 7.

Table 2: The parameter values at optimal harvesting

Parameter’s values

d, 0.145
0.88

0.065
d; 0.2
T 7.78
a, 0.7
d, 0.6
a, 0.75

x1(0) 2

x,(0) 0.419

x5(0) 0.0002
c 0.01
Cy 0.01
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N

with control
. — without control
18¢ with harvest h=0.065
16
=
[ 147+
@
o
§ 12
o
g 1t
=
£
E 0.8

o
)

o
'

0.2 R . .
0 1000 2000 3000 4000 5000 6000

Time
Figure 4: The trajectory with, without and constant harvesting 0.065 of the immature prey
populations for the discrete system (2). The blue line represents the immature prey
populations with control problem, the orange line represents the immature prey populations
without harvesting, and pink line represents the immature prey populations with a constant
harvesting 0.065.

3 2 107* ,
= with control
without control
with constant harvest h=0.065
25¢
> 2
R
-
(]
8 =]
§ 1.5
[
©
&
a 1
05
0 A A
0 2000 4000 6000

Time
Figure 5: The trajectory with, without and constant harvesting 0.065 of the mature prey
populations for the discrete system (2). The blue line represents the mature prey populations
with control problem. the orange line represents the mature prey populations without
harvesting, and pink line represents the prey populations with a constant harvesting 0.065.
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0.45 1
| ‘ with control

‘ without control
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Figure 6: This figure represents the plotting of trajectory with, without and constant
harvesting 0.065 of the predator populations for the discrete system (2) .The blue line
represents the predator populations with control problem , the orange line represents predator
populations without harvesting, and pink line represents the predator populations with a
constant harvesting 0.065.
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Figure 7: This figure represents the plotting of the effect of optimal harvesting for the
discrete system (2) as a function of time.

6. Conclusions:

In this paper, the discrete system is extended to the optimal harvesting on mature prey
species. In addition, the considered has at least three local stability at all three fixed points of
the discrete system was presented according to Theorems (3.3) and (3.5). It found that Both
step size s and fractional order g and the relation among the parameters in the system (2) have
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been influence on the properties of stability of the system. Also, the necessary conditions for
the optimal control strategies were derived so, the ecological interpretation for the local
stability of the interior equilibrium point system (2) was given that the ecosystem life under
control for time. Finally, random values of the system's parameters have been selected to
illustrate the stability of all three fixed points and optimal harvesting. These numerical values
exactly meet the theoretical results.
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