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This paper attempts to obtain bending solutions to plates under uniformly 
distributed and hydrostatic load distributions using Ritz variational 
methods and basis functions that are found by superposing trigonometric 
series and third-degree polynomials. Two cases of boundary conditions 
were considered. In one case, three edges were simply supported and the 
fourth edge ( )x a=  was clamped (SSCS thin plate). In the second case, the 
adjacent edges ( , )y b x a= =  were clamped and the other edges 
( , )x y= =0 0  were simply supported (SCCS thin plate).  This work 
presents first principles, rigorous derivation of the governing Ritz 
variational functional and the displacement basis functions for the 
boundary conditions investigated. The solution is presented in analytical 
form. The obtained results are compared with previous results obtained 
using Levy series and Ritz methods and found to be in close agreement. 
The disadvantage of the method is the associated computational rigour, 
but the benefit is the accuracy of the results. Comparisons of the present 
results for center deflections and center bending moments with results in 
the literature show that there is negligible difference. Double series 
expressions were found for deflections and bending moments for the plate 
bending problems solved. Evaluation of the double series expressions at 
the plate center gave center deflection results that differed from the exact 
solutions by . %−0 215  for /a b = 2  to . %0 29  for / .a b = 1 1  for uniformly 
loaded thin plates with three simply supported edges and one clamped 
edge (SSSC). The differences in the center bending moments Mxx were 
found to vary from . %2 34  for /a b = 2  to . %1 19  for / . .a b = 1 1  In general, 
the present results yielded reasonably accurate solutions for the plate 
bending problems studied. 
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1. Introduction  

Plates are idealizations of structural members of building, aerospace, mechanical, naval and foundation 

structures which have transverse dimensions that are much smaller than their in-plane dimensions. They are thus 
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spatial structures that may be subjected to transverse static, dynamic forces or in-plane loads. They can thus 

respond to loading by transverse static flexure, dynamic flexure or in-plane compression. According to their 

materials, they can be classified as homogeneous or nonhomogeneous, isotropic or non-isotropic, elastic or non-

elastic. They may also be made of composite, laminated or functionally graded materials (FGM). Their surfaces 

may be flat or curved. Based on their in-plane shapes, they may be called rectangular, polygonal, circular, rhombic, 

skewed, elliptical, quadrilateral, oval, etc. 

Plates with disturbed (D) regions at which a considerable disturbance of the contour lines of the flexural 

stresses, leading to a severe concentration of stress at these regions have been studied and present more complex 

problems than D-beams which were studied by Shakir and Hanoon (2023, 2024). D-regions occur at the supports, 

pile caps, non-prismatic plates and can be induced by abrupt changes in geometry, such as openings, in the plate 

domain (Shakir and Yahya, 2024; Shakir and Farooq alghazali, 2023). 

The Bernoulli regions (B-regions) are regions of the plate with no significant turbulence in stress contour lines. 

The flexural stress theory can then be applied in B-regions (Shakir and Alliwe, 2020; Shakir and Hanoon, 2024).         

Plate behaviour depends on the ratio of their least in-plane dimensions, a, to thickness, h; and accordingly they 

have been classified as thin plates, moderately thick plates, and thick plates. 

For thin plates, / 20,a h   for moderately thick plates 10 / 20,a h   for thick plates, a/h < 10.  

Thin plate theory was originally derived by Kirchhoff based on the hypothesis that the cross-sectional planes 

that are initially normal to the middle surface remain normal to the middle surface after deformation. 

The middle surface is the reference surface. The implication of the normality hypothesis is that shear stresses 

that could introduce distortions of the plane cross-section are disregarded in the formulation and this restricts the 

scope of the thin plate theory to cases where such shear stresses are insignificant. Thus, the Kirchhoff plate theory 

(KPT) is scoped to thin plates for which / 0.05h a  . 

When shear deformation effects begin to exert appreciable effects on the plate behaviour as noticed in thick 

and moderately thick plates, and laminated and composite plates, the normality hypothesis no longer applies 

because the plane cross-sections experience distortion during bending and can no longer be normal to the middle 

surface during and after deformation (Koc, 2023). The KPT gives inaccurate results for the bending, buckling and 

dynamic analysis of moderately thick and thick plates.  

Research efforts directed at offering improvements to KPT such as to take shear deformations into account led 

various scholars to develop several theories, models and formulations of plates. Reissner (1945) used a stress-

based method to derive Reissner plate theory that considered shear deformation effects, resulting in a sixth order 

shear deformation plate theory.Mindlin (1951) used a displacement based approach to derive the Mindlin plate 

theory as a first order shear deformation theory that considered shear deformation effects by relaxing the normality 

hypothesis.Other shear deformation theories of plates were formulated using various assumptions about the 

kinematics of displacement by Reddy (1984); Ghugal and Gajbhiye (2016); Ghugal and Sayyad (2010); Soltani 

et al (2019) and Nareen and Shimpi (2015). 

The focus of this work is on thin plates flexural analysis using a novel solution method which assumes the 

basis function to be a combination of sine series and polynomial functions in the principle of minimization of the 

Ritz energy functional. 

The solution methods for plate analysis are categorized as approximate (numerical) methods, and exact 

(analytical) methods. The approximate (numerical) methods are the: 

❖ finite difference method (FDM) 

❖ finite element method (FEM) (Karttunem et al, 2017) 

❖ collocation method (Guo et al, 2019) 

❖ Ritz variational method (RVM) (Lytvyn et al, 2018) 

❖ Galerkin variational method (GVM) 

❖ Method of Weighted Residuals (MWR), Meshless methods (Du et al, 2022) 

Analytical methods of solving plate bending problems are scarce. The reason is that the mathematical solutions 

of the governing partial differential equations for plates is very difficult to obtain except for the cases of plates 

with two opposite simply supported edges, which are solved using the classical Levy semi-inverse single 

trigonometric series method. 

For rectangular thin plates with two opposite edges simply supported, the analytical methods used include 

semi-inverse superposition method, series method (Fogang, 2023); integral transform methods; symplectic 

elasticity method (Shuang, 2007; Ma, 2008; Lim et al, 2007; Zhong and Li, 2009; Wang et al, 2016; Su et al, 
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2023; Zheng et al, 2021). 

Rezaiee-Pajand and Karkon (2014) presented hybrid stress and analytical functions for the finite element 

analysis of thin plates in bending. Their work presented two efficient plate bending finite elements: namely, 

triangular element (THS) and a quadrilateral element (QHS) with 9 and 12 degrees of freedom respectively. 

Formulation of the elements utilized hybrid variational principle and analytical homogeneous solution of thin 

plate equation. They verified the high accuracy of the elements. 

Rouzegar and Abdoli-Sharifpoor (2015) derived a finite element formulation based on two-variable refined 

plate theory (RPT) for the bending analysis of isotropic and orthotropic plates. Their work is applicable to thin 

and thick plate and satisfies the transverse shear stress free boundary conditions at the plate surfaces. 

The focus of this work is thin plate bending analysis; which has been studied in the literature using various 

methods. Galerkin-Vlasov method has been applied for the flexural analysis of rectangular thin plate bending 

problems by Osadebe et al (2016).Kantorovich methods and various variants of Kantorovich methodology using 

Vlasov and Ritz refinements have been used for obtaining accurate solutions to flexural analysis of rectangular 

Kirchhoff plate bending problems by Ike (2017c) and Onah et al (2017). Ritz variational method has been 

effectively used for accurate solutions of plate bending problems by Ike (2018), Nwoji et al (2018c). 

Gao et al (2019) presented accurate solutions for flexural analysis of SCSF and CCCF rectangular thin plates 

subjected to hydrostatic loads. Razaiee-Pajand and Karkon (2014) presented analytical solutions for thin plate 

bending problems.Oba et al (2018) used energy minimization method to obtain accurate solutions to thin 

rectangular plate bending problems. Ibearugbulam et al (2019) used Taylor-Mclaurin series shape functions that 

were made to satisfy simply supported boundary conditions to solve thin rectangular SSSS plate bending 

problems. 

Li et al (2015) used a novel symplectic superposition method to derive a unified analytical solution to both 

static flexure and natural vibrations problems of rectangular thin plates for cases of corner-supported plates. Their 

symplectic superposition method transformed the problems into the Hamiltonian system, yielding accurate results 

via systematic rigorous approach. The major merit is the extensive scope of application since it needs no prior 

determined shape functions, which is a departure from commonly found methods. Illustrative examples in their 

study validated their results and gave new results for previously unsolved problems. Their study offered 

benchmark analytic solutions, and was effective and accurate. 

Wang et al (2016) used symplectic superposition method to derive new analytical solutions for buckling of 

rectangular Kirchhoff plates, but did not solve bending problems.Recently, Su et al (2023) used symplectic 

superposition method to present unified solution for some problems of rectangular plates with four free edges. 

Fogang (2023) used Fourier series method to solve the bending analysis of isotropic, rectangular Kirchhoff plates 

under applied bending moments.Ike (2023) used variational Kantorovich-Vlasov method to derive exact 

mathematical solutions to bending problems of SFrSFr Kirchhoff plates. Ike (2021) used variational Ritz-

Kantorovich-Euler-Lagrange method to solve the elastic buckling problems of clamped rectangular thin plates, 

but did not extend the method to flexural analysis of plate problems. 

Ike et al (2020) used Least squares weighted residual methods to obtain elasticity solutions for stresses in 

rectangular plates subjected to uniaxial parabolically distributed edge loads. Mama, Oguaghamba and Ike (2020) 

used single finite Fourier sine transform method to obtain exact bending solutions for rectangular Kirchhoff plate 

with opposite edges simply supported, other edges clamped, which is under triangular load distribution. 

Ike (2021) used generalized integral transform method (GITM) for the flexural analysis of rectangular thin 

plates with clamped boundaries and a mixture of clamped and simply supported boundaries; and obtained accurate 

solutions. Musa et al (2020) applied Ritz method to the flexural analysis of Kirchhoff plates with mixed boundary 

conditions and supported on inhomogeneous, variable subgrade. Their study presented a systematic means for 

finding the Ritz basis functions satisfying the geometric boundary conditions for different types of plate edge 

restraints. They presented illustrative numerical examples to verify the results’ accuracy. 

Lytvyn et al (2018) presented an algorithm for solving the biharmonic differential equation for clamped plate 

using the Ritz method, and via explicit splines of degree 5. Xia and Li (2021) used the variational method and R 

function theory to solve the thin plate bending problem with complex boundary configurations. The R function 

was used to express the complex area as an implicit function, thus making easier, the determination of trial 

functions for the complex shape; and ensuring the satisfaction of the complex boundary conditions. This enables 

the determination of the variational equations of the problem that is solved. Their solutions were validated by 

numerical solutions of rectangular, and complex shapes that compared favourably with previous solutions in the 
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literature. Zerfu and Ekaputri (2017) used the principle of minimization of the total energy of a bending plate 

under applied loads to determine an approximate deflection function for the bending analysis of thin quadrilateral 

plate. Arnold, Brezzi and Marini (2005) developed locking-free finite elements for moderately thick plates using 

Discontinuous Galerkin Finite Element Method (DGFEM). 

Hansbo and Larson (2017) extended the continuous/discontinuous Galerkin finite element method to the 

analysis of arbitrarily oriented plates that permit for membrane deformations. They used surface differential 

calculus to derive Kirchhoff plate models that include in-plane membrane deformations; and finite element 

method for solving the resulting set of partial differential equations. 

Goloskokov and Matrosov (2017) presented the study of structures with non-continuous properties. 

This work explores the detailed, systematic solution of the plate bending problems for SSSC and SCCS thin 

plates using the Ritz variational methodology and basis functions that are derived using a superposition of sine 

and polynomial functions. The problem was first solved using dimensionless approach by Zhou Ding (1993), who 

limited his solutions to SSSC thin plate but in this work, the problem is presented in a first principles, rigorous, 

step by step manner, and extended to plates with adjacent clamped, and simply supported (SCCS) plates. This 

work is different from Zhou Ding (1993) work because it does not use dimensionless coordinate variable approach 

in the derivations and implementation. 

2. Ritz variational functional (RVF) for Kirchhoff plate bending analysis 

2.1. Kirchhoff plate bending problem studied 

The Ritz variational functional (RVF) is derived for the thin plate bending problems shown in Figures 1a, 1b 

and 2. 

 

Figure 1a: SSSC thin plate under uniformly distributed load 

 

 

Figure 1b: SSSC thin plate under hydrostatic load distribution 
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Figure 2: SCCS thin plate under uniformly distributed load 

2.2. Theoretical framework of Kirchhoff plate bending theory (KPBT) 

The assumptions are (Timoshenko and Woinowsky-Krieger, 1959): 

(i) the mid surface deflection is small compared to the plate thickness, and small deflection theory is used 

(ii) the mid-plane is unstretched prior to flexure 

(iii) stress normal to the mid-plane, z  is small relative to other stresses and hence neglected 

(iv) normality hypothesis is valid and transverse shear strains ,xz yz   are neglected. 

Displacement field components are: 

( , )
, , ( , )

w x y w
u z v z w w x y

x y

 
= − = − =

 
        (1) 

where u, v, w are the displacement field components in the x, y, and z directions. 

The strains are, from the kinematic equations: 
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where ,xx yy   are normal strains, xy  is the shear strain 

The material constitutive relations for linear elastic, homogeneous, isotropic plate materials are: 

2

2

( )
1

( )
1

2(1 )

xx xx yy

yy yy xx

xy xy xy

E

E

E
G

 =  + 
− 

 =  + 
− 

 =  = 
+ 

         (3) 

,xx yy   are normal stresses, xy  is the shear stress,   is the Poisson ratio, E is the Young’s modulus, G is the 

shear modulus. 

Substituting the expressions for strain-displacement in Equation (3), the stress displacement equations are: 

2 2

2 2 21
xx

Ez w w

x y

 −  
 = +   −    
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2 2

2 2 21
yy

Ez w w

y x

 −  
 = +   −    

         (4) 

2 2

2
1

xy

Ez w w
Gz

x y x y

−  
 = = −

+     
  

Internal force resultants 

The bending moments, Mxx, Myy, and twisting moments, Mxy are: 
/2 2 2

2 2
/2

h

xx xx

h

w w
M z dx D

dx y−

  
=  = − +    
   

/2 2 2

2 2
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h
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3 2

6
xy

Gh w
M

x y

  
= −     

  

where 
3

212(1 )

Eh
D =

−
          (6) 

D is the flexural rigidity. 

Strain-Energy, U, of Kirchhoff plate is: 

( )
/2

/2 0 0

1

2

h a b

xx xx yy yy xy xy

h

U dxdydz

−

=   +   +            (7) 

Substituting the expressions for stresses and strains in Equation (7) gives: 

/2 2 2 2 2 2 2

2 2 2 2 2 2 2 2
/2 0 0

1

2 1 1
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U z z
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     

    
2 2

2
1

Ez w w
z dxdydz

x y x y

    
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    (8) 

Simplifying Equation (8) gives: 
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2 2 2 2 2 2 2
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    (9) 

Further simplification yields: 
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Hence, 
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2 2
2 2 2 2 2

2 2 2 2
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2(1 )
2
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Alternatively, 

( )( )2 2 2

0 0

( ) 2(1 ) ( )
2

a b

xx yy xy

D
U w w w w dxdy=  − − −        (12) 

where 
2 2 2 2 2

2

2 2 2 2
, , ,xx yy xy

w w w
w w w

x yx y x y

    
 = + = = =

    
     (13) 

The work potential, Wp, due to the applied load q(x, y) is: 

0 0

( , ) ( , )

a b

pW q x y w x y dxdy=            (14) 

Total potential energy functional    

The total potential energy functional,   is: 

pU W = −      (15) 

Then, 

( )( )2 2 2

0 0 0 0

( ) 2(1 ) ( , ) ( , )
2

a b a b

xx yy xy

D
w w w w dxdy q x y w x y dxdy =  − − − −       (16) 

In the method adopted, w(x, y) is expressed in the form of linearly independent functions Fm(x) and Gn(y) as 

follows: 

,

( , ) ( ) ( )mn m n

m n

w x y A F x G y=     (17) 

where Amn are amplitude parameters of w(x, y) and Fm(x) and Gn(y) are expressed using superposed sine and 

polynomial functions such that relevant boundary conditions are satisfied. 

The functional   then becomes expressible in terms of Amn, and the work aims to minimize   with respect 

to Amn in order to achieve equilibrium of the plate system. This principle of minimization of the total potential 

energy of the structural system yields equilibrium equations from which deflections and internal bending moments 

are determined. 

3. Method of superposition of trigonometric series and polynomials shape functions 

3.1. General form of the basis functions 

In the method of superposition of trigonometric series and polynomial shape functions, the general form of Fm(x) 

and Gn(y) are: 

( ) sin ( )m m

m x
F x P x

a

 
= + 
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         (18a) 

where ( ) ( ) ( )0 1 2 3

2 3
( )m m m m m

x x xP x A A A A
a a a

= + + +       (18b) 

Hence, 

0 1 2 3

2 3

2 3
( ) sinm m m m m

m x x x x
F x A A A A

a a a a

 
= + + + + 

 
      (19) 

where m = 1, 2, 3, 4, 5, … 

( ) sin ( )n n

n y
G y P y

b

 
= + 

 
         (20a) 
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where ( ) ( ) ( )0 1 2 3

2 3

( )n n n n n
y y y

P y A A A A
b b b

= + + +       (20b) 

Hence, 

0 1 2 3

2 3

2 3
( ) sinn n n n n

n x y y y
G y A A A A

b b b b

 
= + + + + 

 
       (21) 

where n = 1, 2, 3, 4, 5, … 

Pm(x), Pn(y) are polynomial functions of x and y respectively, Am0, Am1, Am2, Am3 are the four coefficients of the 

polynomial function Pm(x) such that Fm(x) satisfies the plate’s boundary conditions at x = 0, and x = a. An0, An1, 

An2, An3 are the four coefficients of the polynomial function Pn(y) which are found such that Gn(y) satisfies the 

plate’s boundary conditions at y = 0, and y = b. 

3.2. Basis function coefficients for different support conditions 

The boundary conditions depend on the type of restraint along the plate edges x = 0, x = a, y = 0, y = b. The 

following edge support conditions are investigated: 

(i) Simply supported edges at x = 0, and x = a, and y = 0, and y = b (SSSS plate). 

(ii) Edges are simply supported at x = 0, clamped at x = a, simply supported at y = 0, and y = b (SSSC plate). 

(iii) Plate is simply supported at x = 0 and clamped at edge x = a, simply supported at y = 0 and clamped at y = 

b (SCCS plate). 

(i) Plate is simply supported at x = 0, and x = a 

Figure 3 shows a cross-sectional view of a thin plate simply supported at x = 0, and x = a. 

 

Figure 3: Cross-section of thin plate simply supported at x = 0 and x = a 

The boundary conditions are: 

( 0) ( ) 0

( 0) ( ) 0

m m

m m

F x F x a

F x F x a

= = = =

 = = = =
         (22) 

Applying the boundary conditions, 

0
( 0) sin 0 0m mF x A= = + =          (23) 

0
0mA =            (24) 

2 3

2

2 3

1
( ) sin 2 6m m m

m m x x
F x A A

a a a a

    
 = − + +   

   
       (25) 

2

2

2

1
( 0) sin 0 2 0m m

m
F x A

a a

 
 = = − + = 

 
        (26) 

So,  
2

0mA =           (27) 

1 3

3

3
( ) sin( ) 0m m m

a a
F x a m A A

a a

  
 = =  + + =       

       (28) 

1 3
sin( ) 0m mm A A + + =           (29) 

1 3
sin( ) 0m mA A m+ = −  =          (30) 

1 3m mA A= −            (31) 

3

2

3
( ) sin( ) 6 0m m

m a
F x a m A

a a

   
 = = −  + =   

   
       (32) 
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3

2

2

6
sin( ) 0

mAm
m

a a

 
−  + = 
 

         (33) 

3
0mA =            (34) 

1
0mA =            (35) 

Then,  

( ) sinm

m x
F x

a

 
=  

 
          (36) 

Similarly, for plate simply supported at y= 0, and y = b, 

( ) sinn

n y
G y

b

 
=  

 
          (37) 

 

(ii)  Kirchhoff plate is simply supported at x = 0 and clamped at x = a 

Figure 4 shows a cross-sectional view of thin plate simply supported at x = 0, and clamped at x = a. 

 

Figure 4: Cross-section of thin plate simply supported at x = 0, and clamped at x = a 

 

The boundary conditions are: 

( 0) 0

( 0) 0

( ) 0

( ) 0

m

m

m

m

F x

F x

F x a

F x a

= =

 = =

= =

 = =

           (38) 

0
( 0) sin 0 0m mF x A= = + =          (39) 

0
0mA =            (40) 

2

2

2

1
( 0) sin 0 2 0m m

m
F x A

a a

 
 = = − + = 

 
        (41) 

2
0mA =            (42) 

1 3
( ) sin( ) 0m m mF x a m A A= =  + + =         (43) 

1 3
0m mA A+ =            (44) 

1 3m mA A= −            (45) 

1 3

1 1
( ) cos( ) 3 0m m m

m
F x a m A A

a a a

     
 = =  + + =     

     
      (46) 

Multiplying by a, 

1 3
cos( ) 3 0m mm m A A  + + =          (47) 

From Equation (45) relating Am1 and Am3, 

3 3
cos( ) 3 0m mm m A A  − + =          (48) 

3
2 cos( ) 0mA m m+   =           (49) 

3

cos( )
( 1)

2 2

m
m

m m m
A

  
= − = − −         (50) 
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Then, 
1 3

( 1)
2

m
m m

m
A A


= − = −         (51) 

So, 

1 3

3

3
( ) sinm m m

m x x x
F x A A

a a a

    
= + +            

        (52) 

where  
1

( 1)
2

m
m

m
A


= −          (53) 

 
3

( 1)
2

m
m

m
A


= − −         (54) 

Similarly, for thin plates simply supported at y = 0, and clamped at y = b, 

1 3

3

3
( ) sinn n n

n y y y
G y A A

b b b

    
= + +            

        (55) 

where  
1

( 1)
2

n
n

n
A


= −           (56) 

 
3

( 1)
2

n
n

n
A


= − −          (57) 

 

(iii)  Plate is clamped at x = 0, and simply supported at x = a 

Figure 5 shows a cross-section of the thin plate clamped at x = 0, and simply supported at x = a. 

 

Figure 5: Cross-section of thin plate clamped at x = 0, and simply supported at x = a 

The boundary conditions are: 

( 0) 0

( 0) 0

( ) 0

( ) 0

m

m

m

m

F x

F x

F x a

F x a

= =

 = =

= =

 = =

           (58) 

0
( 0) sin 0 0m mF x A= = + =          (59) 

0
0mA =            (60) 

1

1
( 0) cos0 0 0m m

m
F x A

a a


 = = + + =         (61) 

1 0
mAm

a a


+ =            (62) 

1mA m= −             (63) 

2 3
( ) sin( ) ( ) 0m m m

a
F x a m m A A

a

 
= =  + −  + + = 

 
       (64) 

2 3
sin( )m mA A m m m+ = −  =           (65) 

2 3

2

2 3

1
( ) sin( ) 2 6 0m m m

m a
F x a m A A

a a a

     
 = = −  + + =     

     
     (66) 

32
2

2 2 2

62( )
sin( ) 0

mm AAm
m

a a a


−  + + =         (67) 
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2 3

22 6 ( ) sin( ) 0m mA A m m+ =   =         (68) 

2 3
3 0m mA A+ =            (69) 

2 3
3m mA A= −            (70) 

Then, substitution of Equation (70) in Equation (65) gives: 

3 3
3 m mA A m− + =            (71) 

3
2 mA m− =             (72) 

3 2
m

m
A


= −            (73) 

Then from Equation (70), we have: 

2 3

3
3

2
m m

m
A A


= − =           (74) 

Then, 
2 3

3
( ) sin ( )

2 2
m

m x x x m x
F x m

a a a a

           
 = + −  + + −                  

     (75) 

2 3
3

( ) sin
2 2

m

m x x x m x
F x m

a a a a

          
= −  + −        

        
      (75a) 

Similarly, for plate clamped at y = 0 and simply supported at y = b,  
2 3

3
( ) sin

2 2
n

n y y y ny y
G y n

b b b b

        
= −  + −       

       
       (75b) 

3.3. Ritz variational formulation in terms of Fm(x) and Gn(y) 

Substitution of the expression for w(x, y) into the Ritz variational functional gives: 

2
2

2

2
0 0

( ) ( ) 2(1 ) ( ) ( )
2

b a

mn m n mn m n

m n m n

D
A F x G y A F x G y

x

         
 =  − −                      

    

  

2
2 2

2
( ) ( ) ( ) ( )mn m n mn m n

m n m n

A F x G y A F x G y dxdy
x yy

          
−                 

    

  

0 0

( , ) ( ) ( )

b a

mn m n

m n

q x y A F x G y dxdy
 

−        (76) 

( ) ( )
2

2

0 0

( ) ( ) 2(1 ) ( ) ( ) ( ) ( )
2

b a

mn m n m n m n

m n

D
A F x G y F x G y F x G y

  
  =  − − 


    

  ( ) 2

0 0

( ) ( ) ( , ) ( ) ( )

b a

m n mn m n

m n

F x G y dxdy A q x y F x G y dxdy
 

 − −
      (77) 

3.4. Minimization of the Ritz variational functional 

The first variation   of   is equal to zero, for a minimum of ;  which is the equivalent statement of 

equilibrium of the plate bending problem. Thus, 

0 =            (78) 

The resulting system of algebraic equations become: 
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( )ij
mn mn ij

m n

K A F
 

=           (79) 

where ( )ij
mnK  is the stiffness matrix, Fij is the force matrix. 

( )( ) ( )2 2

0 0

( ) ( ) ( ) ( ) (1 ) ( ) ( ) ( ) ( )

b a
ij
mn m n i j m i j nK D F x G y F x G y F x F x G y G y  =   − −

    

   ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )i m j n i m j nF x F x G y G y F x F x G y G y dxdy     + −     (80) 

0 0

( , ) ( ) ( )

b a

ij i jF q x y F x G y dxdy=            (81) 

(
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

b a
ij
mn m n i j m n i j m n i jK D F x G y F x G y F x G y F x G y F x G y F x G y      = + +

    

  ) (( ) ( ) ( ) ( ) (1 ) ( ) ( ) ( ) ( )m n i j m i j nF x G y F x G y F x F x G y G y   + − −   

  )( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )i m j n i m j nF x F x G x G y F x F x G y G y dxdy     + −


    (82) 

( )1 2 3 4 5 6 3 4 7 82 (1 ) 2 2ij
mnK D I I I I I I I I I I = + + − −  −        (83) 

For 0.30, =   

( )1 2 3 4 5 6 3 4 7 82 0.7 2 2ij
mnK D I I I I I I I I I I = + + − −        (84) 

2
1 2

0 0

3 4

0 0

5 6

0 0

7 8

0 0

( ) ( ) ; ( )

( ) ( ) ; ( ) ( )

( ) ( ) ; ( ) ( )

( ) ( ) ; ( ) ( )

a b

m i n

a b

m i n j

a b

m i n j

a b

m i n j

I F x F x dx I G y dy

I F x F x dx I G y G y dy

I F x F x dx I G y G y dy

I F x F x dx I G y G y dy

 = =

 = =

 = =

   = =

 

 

 

 

       (85) 

But  ( )2 ( ) ( ) ( ) ( ) ( ) ( )m n m n m nF x G y F x G y F x G y  = +       (86) 

where 
2

2

( )
( ) m

m

d F x
F x

dx
 =          (87) 

 

2

2

( )
( ) n

n

d G y
G y

dy
 =         (88) 

Then, 

( )( )
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

b a
ij
mn m n m n i j i jK D F x G y F x G y F x G y F x G y    = + +

    

  ( )((1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )m i j n i m j nF x F x G y G y F x F x G y G y   − − +   

  )2 ( ) ( ) ( ) ( )i m j nF x F x G y G y dxdy   −


      (89) 

When 0.30, =   

( )( )
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

b a
ij
mn m n m n i j i jK D F x G y F x G y F x G y F x G y    = + +

    
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  ( )(0.7 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )m i j n i m j nF x F x G y G y F x F x G y G y   − +   

  )2 ( ) ( ) ( ) ( )i m j nF x F x G y G y dxdy   −


      (90) 

For uniformly distributed loading, of intensity q0, 

0( , )q x y q=            (91) 

Then, 

0

0 0

( ) ( )

b a

ij i jF q F x G y dxdy=            (92) 

0 0 9 10

0 0

( ) ( )

a b

ij i jF q F x dx G y dy q I I= =          (93) 

where, 

9 10

0 0

( ) ; ( )

a b

i jI F x dx I G y dy= =         (94) 

For hydrostatic distribution of load, 

0( , )
q x

q x y
a

=            (95) 

0

0 0

( ) ( )

b a

ij i j

x
F q F x G y dxdy

a
=            (96) 

0

0 0

( ) ( )

a b

ij i j

q
F xF x dx G y dy

a
=            (97) 

0 0 11 10

0 0

( ) ( )

a b

ij i j

x
F q F x dx G y dy q I I

a
= =          (98) 

where, 

11

0

( )

a

i

x
I F x dx

a
=            (99) 

4. Results 

4.1. Results for SSCS Kirchhoff plate bending problem (KPBP) 

For KPBP with simple supports at x = 0, y = 0, y = b and clamped edge x = a, as shown in Figure 6, Fm(x) and 

Gn(y) are: 

 

Figure 6: SSCS thin plate 
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1 3

3

3
( ) sinm m m

m x x x
F x A A

a a a

    
= + +            

        (100) 

where  
1

3

( 1)
2

( 1)
2

m
m

m
m

m
A

m
A


= −


= − −

        (101) 

( ) sin ; ( ) sinn j

n y j y
G y G y

b b

    
= =   

   
        (102) 

1 3

3

3
( ) sini i i

i x x x
F x A A

a a a

    
= + +            

        (103) 

1 3
( 1) , ( 1)

2 2

i i
i i

i i
A A

 
= − = − −          (104) 

1 3

2

3

1
( ) cos 3m m m

m m x x
F x A A

a a a a

     
 = + +            

       (105) 

3

2

3
( ) sin 6m m

m m x x
F x A

a a a

      
 = − +     

     
        (106) 

2

( ) sinn

n n y
G y

b b

    
 = −   

   
         (107) 

The deflections found as: 

1 3

3

( , ) sin sinmn m m

m n

m x x x n y
w x y A A A

a a a b

           
 = + +                

      (108) 

The center deflection is found as: 

( ) 31, sin sin
2 2 2 2 8 2

mm

mn

m n

AAm na bw x y A
         

= = = + +           
      (109) 

Bending moments 

The bending moment-deflection relations are used to find the bending moments from the deflections. 

( )

( )

xx xx yy

yy yy xx

M D w w

M D w w

= − + 

= − + 
          (110) 

( ) ( )

( ) ( )

xx mn m n

m n

yy mn m n

m n

w A F x G y

w A F x G y

 

 

=

=





         (111) 

3

2

3
sin 6 sinxx mn m

m n

m m x x n y
w A A

a a ba

           
 = − +                  

      (112) 

1 3

2 3

sin sinyy mn m m

m n

n n y n x x x
w A A A

b b a a a

             
  = − + +                      

     (113) 

The bending moments are: 

3

2

3
sin 6 sinxx mn m

m n

m m x x n y
M D A A

a a ba

             
 = − − +                   

   
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1 3

3 2

sin sinm m

m x x x n n y
A A

a a a b b

        
  +  + + −            

    (114) 

The bending moment at the center is: 

( ) 3

2

2

6 1
, sin sin

2 2 2 2 2

m

xx mn

m n

Am m na bM x y D A
a a

          
 = = = − − +              

   

  31

2

sin sin
2 2 8 2

mm AAm n n

b

          
 +  + + −                 

     (115) 

3

2

2

3
(0.5 , 0.5 ) sin sin

2 2

m

xx mn

m n

Am m n
M a b D A

a a

             
 = − − +               

   

  31

2

sin sin
2 2 8 2

mm AAn n n

b

          
 +  + + −                 

     (116) 

Similarly, at the center, Myy, is: 

31

2

(0.5 , 0.5 ) sin sin
2 2 8 2

mm
yy mn

m n

AAm n n
M a b D A

b

             
 = − + + −                

   

  3

2

2

3
sin sin

2 2

mAm m n

a a

          
 +  − +                

     (117) 

The results for deflections and bending moments at the plate center for SSSC KPBP under uniformly distributed 

loading are shown in Tables 1 and 2, while Table 3 displays the results for center deflections and bending moments 

of SSSC KPBP under hydrostatic load distribution. 

 

Table 1. Deflections and bending moments at the center of SSSC KPBP under uniformly distributed loading 

( 0.30) =   

a
b

  Method / Reference 

4

( 0.5 , 0.5 )Dw x a y b

qb

= =
 

2

(0.5 , 0.5 )xxM a b

qb
 

2

(0.5 , 0.5 )yyM a b

qb
 

2 Present 0.00928 (−0.215%) 0.0481 (2.34%) 0.0947 (0.745%) 

Zhou Ding (1993) 0.00928 0.0481 0.0947 

Timoshenko & 

Woinowsky-Krieger 

(1959) 

0.0093 0.047 0.094 

1.5 Present 0.00644 (0.625%) 0.0486 (1.25%) 0.0695 (0.725%) 

Zhou Ding (1993) 0.00644  0.0486 0.0695 

Timoshenko & 

Woinowsky-Krieger 

(1959) 

0.0064 0.048 0.069 

1.4 Present 0.00576 (−0.69%) 0.0478 (1.70%) 0.0631 (0.159%) 

Zhou Ding (1993) 0.00576 0.0478 0.0631 

Timoshenko & 

Woinowsky-Krieger 

(1959) 

0.0058 0.047 0.063 

1.3 Present 0.00501 (0.2%) 0.0465 (3.33%) 0.0561 (0.179%) 

Zhou Ding (1993) 0.00501 0.0465 0.0561 

Timoshenko & 0.0050 0.045 0.056 
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Woinowsky-Krieger 

(1959) 

1.2 Present 0.0427 (−0.70%) 0.0449 (2.05%) 0.0490 (0%) 

Zhou Ding (1993) 0.0427 0.0449 0.0490 

Timoshenko & 

Woinowsky-Krieger 

(1959) 

0.043 0.044 0.0490 

1.1 Present 0.00351 (0.29%) 0.0425 (1.19%) 0.0415 (1.22%) 

Zhou Ding (1993) 0.00351 0.0425 0.0415 

Timoshenko & 

Woinowsky-Krieger 

(1959) 

0.0035 0.042 0.041 

The terms enclosed in brackets are differences (in percentage) between the present results and exact results by 

Timoshenko and Woinowsky-Krieger (1959). 

 

Table 2. Deflections and bending moments at the center of SSSC KPBP under uniformly distributed loading 

( 0.30) =   

a
b

  Method / Reference 

4

(0.5 , 0.5 )Dw a b

qa
 

2

(0.5 , 0.5 )xxM a b

qa
 

2

(0.5 , 0.5 )yyM a b

qa
 

1  Present 0.00279 (−0.36%) 0.0395 (1.28%) 0.0342 (0.59%) 

Zhou Ding (1993) 0.00279 0.0395 0.0342 

Timoshenko & 

Woinowsky-Krieger 

(1959) 

0.0028 0.039 0.034 

1
1.1

 Present 0.00317 (−0.94%) 0.0436 (1.40%) 0.0335 (1.51%) 

Zhou Ding (1993) 0.00317 0.0436 0.0335 

Timoshenko & 

Woinowsky-Krieger 

(1959) 

0.0032 0.043 0.033 

1
1.2

 Present 0.00350 (0%) 0.0473 (0.64%) 0.0325 (1.56%) 

Zhou Ding (1993) 0.00350 0.0473 0.0325 

Timoshenko & 

Woinowsky-Krieger 

(1959) 

0.00350 0.047 0.032 

1
1.3

 Present 0.00380 (0%) 0.0502 (0.4%) 0.0314 (1.29%) 

Zhou Ding (1993) 0.00380 0.0502 0.0314 

Timoshenko & 

Woinowsky-Krieger 

(1959) 

0.0038 0.050 0.031 

1
1.4

 Present 0.00404 (1%) 0.0526 (1.15%) 0.0302 (0.67%) 

Zhou Ding (1993) 0.00404 0.0526 0.0302 

Timoshenko & 

Woinowsky-Krieger 

(1959) 

0.0040 0.052 0.030 

1
1.5

 Present 0.00424 (0.95%) 0.0547 (1.30%) 0.0290 (3.57%) 

Zhou Ding (1993) 0.00424 0.0547 0.0290 

Timoshenko & 

Woinowsky-Krieger 

(1959) 

0.0042 0.054 0.028 
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0.5 Present 0.00489 (−0.20%) 0.0606 (1%) 0.0243 (5.65%) 

Zhou Ding (1993) 0.00489 0.0606 0.0243 

Timoshenko & 

Woinowsky-Krieger 

(1959) 

0.0049 0.060 0.023 

 

Table 3. Deflections and bending moments at the center of SSSC KPBP under hydrostatic load distribution 

for 0.30 =   

a
b

  Method / Reference (0.5 , 0.5 )w a b  (0.5 , 0.5 )xxM a b  (0.5 , 0.5 )yyM a b  

0.5 Present 4
00.00221

q a
D

 

(−3.91%) 

2
00.0285q a  

(1.72%) 

2
00.0113q a  

(18.18%) 

Zhou Ding (1993) 4
00.00221

q a
D

 
2

00.0285q a  2
00.0113q a  

Timoshenko & 

Woinowsky-Krieger 

(1959) 

4
00.0023

q a
D

 
2

00.029q a  2
00.011q a  

2
3

  Present 4
00.00193

q a
D

 

(1.58%) 

2
00.0259q a  

(−0.38%) 

2
00.0134q a  

(3.08%) 

Zhou Ding (1993) 4
00.00193

q a
D

 
2

00.0259q a  2
00.0134q a  

Timoshenko & 

Woinowsky-Krieger 

(1959) 

4
00.0019

q a
D

 
2

00.026q a  2
00.013q a  

1 Present 4
00.00129

q a
D

 

(−0.77%) 

2
00.0190q a  

(0%) 

2
00.0160q a  

(0%) 

Zhou Ding (1993) 4
00.00129

q a
D

 
2

00.0190q a  2
00.0160q a  

Timoshenko & 

Woinowsky-Krieger 

(1959) 

4
00.0013

q a
D

 
2

00.019q a  2
00.016q a  

1.5 Present 4
00.00304

q b
D

 

(1.33%) 

2
00.0241q b  

(−3.21%) 

2
00.0331q b  

(2.65%) 

Zhou Ding (1993) 4
00.00304

q b
D

 
2

00.0271q b  2
00.0331q b  

Timoshenko & 

Woinowsky-Krieger 

(1959) 

4
00.0030

q b
D

 
2

00.028q b  2
00.034q b  

2 Present 4
00.00447

q b
D

 

(0.67%) 

2
00.0242q b  

(0.83%) 

2
00.0459q b  

(−0.22%) 

Zhou Ding (1993) 4
00.00447

q b
D

 
2

00.0242q b  2
00.0459q b  
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Timoshenko & 

Woinowsky-Krieger 

(1959) 

4
00.0045

q b
D

 
2

00.024q b  2
00.046q b  

 

4.2. Results for SCCS Kirchhoff plate bending problem (KPBP) 

For KPBP with SCCS boundaries, which is shown in Figure 7, Fm(x) and Gn(y) are given by: 

 

Figure 7: SCCS Kirchhoff plate 

1 3

3

( ) sinm m m

m x x x
F x A A

a a a

   
= + +   

   
        (118) 

1 3

3

( ) sinn n n

n y y y
G y A A

b b b

   
= + +   

   
        (119) 

Then, 

1 3 1 3

3 3

( , ) sin sinmn m m n n

m n

m x x x n y y y
w x y A A A A A

a a a b b b

              
  = + + + +                          

   (120) 

3 31 1( 0.5 , 0.5 ) sin sin
2 2 8 2 2 8

m nm n

mn

m n

A AA Am n
w x a y b A

      
= = = + + + +            

    (121) 

3 31

2

2

3
(0.5 , 0.5 ) sin sin

2 2 2 8

m nn
xx mn

m n

A AAm n n
M a b D A

aa

            
 = − − + +                 

   

   3 31

2

2

3
sin sin

2 2 8 2

m nm A AAm n n

bb

          
 +  + + −                 

   (122) 

3 31

2

2

3
(0.5 , 0.5 ) sin sin

2 2 2 8

m mm
yy mn

m n

A AAn n m
M a b D A

bb

            
 = − − + +                 

   

   3 1 1

2

2

3
sin sin

2 2 2 8

m n nA A Am m n

aa

          
 +  − + +                

   (123) 

 

The results for w(0.5a, 0.5b) and Mxx(0.5a, 0.5b), Myy(0.5a, 0.5b) are presented for SCCS thin plates under 

uniformly distributed loading in Equations (121), (122) and (123). Tables 4 and 5 show the present results center 

deflection and bending moments of SCCS plates. 
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Table 4. Deflections and bending moments in SCCS square KPBPs under uniformly distributed load 

( 0.30) =   

b
a

  Reference / Method 
4

cw

qa
D

 
 
 

 2( )
xxM

qa
 

2( )

yyM

qa
 

1 Present 0.0021040 0.0304 0.0304 

Al-Ali (2016) 0.00210364 0.0304254 0.0304285 

Timoshenko and 

Woinowsky-Krieger 

0.00230 0.0304 0.0304 

 

Table 5. Deflections and bending moments in SCCS rectangular KPBPs under uniformly distributed load 

( 0.30) =   

b
a

  Method / Reference 
4

cw

qa
D

 
 
 

 2( )
xxM

qa
 

2( )

yyM

qa
 

0.5 Present 0.00295 0.00624 0.0146 

Al-Ali (2016) 0.0029493 0.00624311 0.0146149 

0.75 Present 0.0011 0.0172 0.0251 

Al-Ali (2016) 0.00106057 0.0172099 0.0251479 

1 Present 0.0021040 0.0304 0.0304 

Al-Ali (2016) 0.00210364 0.0304254 0.0304285 

4
3

  Present 0.00335 0.0448 0.0306 

Al-Ali (2016) 0.00335123 0.0448045 0.0306366 

2 Present 0.0047 0.0591 0.025 

Al-Ali (2016) 0.00468565 0.0590626 0.0249673 

 

5. Discussion 

This work has presented the flexural analysis of rectangular Kirchhoff SSSC and SCCS plates subjected to 

uniformly distributed load, and hydrostatic load distribution using the Ritz variational method (RVM). The 

important feature of this work is that the basis functions are derived using a superposition of sine functions and 

third degree polynomial functions, with the four polynomial constants determined such that the boundary 

conditions are satisfied. 

The small displacement assumptions of Kirchhoff plate theory are used in the Ritz formulation to obtain the 

total potential energy functional; which is minimized with respect to the parameters of the displacement. 

Tables 1, 2, and 3 which display the present results and earlier results by Zhou Ding (1993) and Timoshenko 

and Woinowsky-Krieger (1959) show that the results for center deflections and bending moments are in agreement 

with previous results of Zhou Ding (1993), and Timoshenko and Woinowsky-Krieger (1959). 

Tables 4 and 5 which show the present results for center deflections and bending moments for SCCS square 

and rectangular plates at various values of b/a ranging from 0.5 to 2 and the corresponding previous result by Al-

Ali (2016) confirm that the present results are in close agreement with previous polynomial solutions results by 

Al-Ali (2016). 

Table 1 presents the deflections and bending moments at the center of SSSC KPBT under uniformly distributed 

load for / , . , . , . , .a b = 1 1 5 1 4 1 3 1 2  and .1 1  and compares the present results with Zhou Ding (1993) and the exact 

results of Timoshenko and Woinowsky-Krieger (1959). Table 1 illustrates that for / ,a b = 2  the center deflection 

obtained in the present study differ from the exact results by Timoshenko and Woinowsky-Krieger (1959) by 

−0.215%. The differences between the present results and the exact Timoshenko and Woinowsky-Krieger (1959) 

results vary between −0.215% for /a b = 2  to . %0 29  for / . .a b = 1 1  
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Similarly, the present results for center bending moments Mxx differ from the exact value by 3.34% for / ,a b = 2  

1.25% for / . ,a b = 1 5  1.70% for / . ,a b = 1 4  3.33% for / . ,a b = 1 3  2.05% for / .a b = 1 2  and 1.19% for / . .a b = 1 1  

The differences calculated for center bending moments Myy are smaller. Center bending moments Myy differ from 

the exact value by 0.745% for / ,a b = 2  0.725% for / . ,a b = 1 5  0.159% for / . ,a b = 1 4  0.179% for / . ,a b = 1 3  0% for 

/ .a b = 1 2  and 1.22% for / . .a b = 1 1  

Table 2 compares the present results with results by Zhou Ding (1993) and Timoshenko and Woinowsky-

Krieger (1959) for center deflections and center bending moments in SSSC KPBP under uniformly distributed 

load for / ,a b = 1  1/1.1, 1/1.2, 1/1.3, 1/1.4, 1/1.5 and 1/2. 

Table 2 further shows that the present center deflection results differ from the exact Timoshenko and 

Woinowsky-Krieger (1959) results by −0.36% for / ,a b = 1 −0.94% for / / . ,a b = 1 1 1 0% for / / . ,a b = 1 1 2  and 

/ / . ,a b = 1 1 3  1% for / / . ,a b = 1 1 4  0.95% for / / .a b = 1 1 5 and −0.2% for / /2.a b = 1  

Center bending moments Mxx of present study differ from the exact Timoshenko and Woinowsky-Krieger 

(1959) results by 1.28% for /a b = 1  to 1% for / . .a b = 0 5  Center bending moment Myy of present study differ from 

the exact results of Timoshenko and Woinowsky-Krieger (1959) by various percentages ranging from 0.59% for 

/a b = 1  to 5.65% for / . .a b = 0 5  

Table 3 compares the present results for SSSC KPBP under hydrostatic load for . = 0 30  with previous results 

by Zhou Ding and Timoshenko and Woinowsky-Krieger (1959) who presented exact solutions. Table 3 illustrated 

that the present results for center deflections differ from the exact results by −3.91% for / . ,a b = 0 5 1.58% for 

/ /3a b = 2  and 0.67% for / .a b = 2   

The center bending moments Mxx also differ from the exact results by 1.72% for / .a b = 0 5 to 0.83% for / .a b = 2  

Center bending moments Myy differ from the exact results by 18.18% for / .a b = 2  Table 3 further shows that the 

present results are identical to results by Zhou Ding (1993). 

Table 4 presents comparison of present results for SCCS square KPBP under uniformly distributed load with 

previous results by Al-Ali (2016) and Timoshenko and Woinowsky-Krieger (1959). Table 4 shows that the present 

results are remarkably close to the previous results by Al-Ali (2016) and Timoshenko and Woinowsky-Krieger 

(1959). 

Table 5 compares the present results for SCCS rectangular KPBP under uniformly distributed load with results 

by Al-Ali (2016) who used polynomial shape functions. Table 5 illustrates that there are negligible differences 

between the present results and results by Al-Ali (2016) for SCCS KPBP under uniform loading. 

6. Conclusion 

In this work, the Ritz variational method has been used for the analysis of thin rectangular plate bending 

problems with adjacent edges clamped and simply supported.  The deflection functions used were derived by the 

superposition of trigonometric series and algebraic polynomial functions such that the geometric and force 

boundary conditions of the plate bending problems were satisfied. 

In conclusion, 

(i) The method of superposition of trigonometric series and polynomial basis functions in the Ritz 

variational method has been presented in a first principles, rigorous manner and shown to give accurate 

analytical solutions to the bending problems of SSSC plate under uniformly and hydrostatically 

distributed loads over the domain and SCCS plate under uniformly distributed load. 

(ii) The basis functions used for the plate bending problems are derived to satisfy the clamped-simply 

supported boundary conditions in the x-direction and the simply supported boundary conditions in the 

y-direction, for the SSSC thin plate problem. 

(iii) The basis functions for the SCCS thin plate were constructed to satisfy the simply supported-clamped 

boundary conditions in the x and y directions respectively. 

(iv) The obtained shape functions are then used to perform a minimization of the obtained Ritz total potential 

energy functional to give equivalent equilibrium equations for the bending plate. 

(v) The solutions for center deflections and center bending moments in SSSC problem are identical with 

solutions obtained by Zhou Ding (1993) who used a variant of this method, and Timoshenko and 
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Woinowsky-Krieger (1959) who used the Levy single series method. 

(vi) The present solutions for center deflections and center bending moments for SCCS KPBP under 

uniform load are close to the equivalent solutions obtained using a polynomial solution by Al-Ali 

(2016). 
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