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ULTIMATE STRENGTH OF CLAMPED R.C 

SQUARE SLABS WITH CENTRAL SQUARE 

OPENING UNDER COMBIEND BENDING AND         

   MEMBRANE ACTION                            
Thaar Saud Al-Gasham - Civil Engineering Department / University of Wassit 

 

المقاومة القصوى في بلاطة خرسانية مربعة الشكل ذات فتحة مركزية 
مربعة الشكل ومقيدة من جميع الإتجاهات تحت التأثير المشترك للإنحاء 

 والقوة الغشائية
جامعة واسط/  قسم الهندسة المدنٌة / كلٌة الهندسة -ثائر سعود سلمان الغشام   

 

 الخلاصة
ام الجاسئة اللدنة تم استحداث طرٌقة جدٌدة لاحتساب الحمولة بالاعتماد على نظرٌة سٌولة الاجس:

القصوى واٌجاد التصرف اللدن لبلاطات خرسانٌة مسلحة .  مربعة الشكل . ومقٌدة الجوانب ضد 
الدوران والحركة المحورٌة . وتحتوي على فتحة مربعة الشكل فً منتصفها . ومحملة حملا منتظما. 

التأثٌرات المهمة للقوى الغشائٌة المتولدة فً مستوى البلاطة على طول تأخذ الطرٌقة بنظر الاعتبار 
خطوط الخضوع اثناء هطول البلاطة. استخدمت قوانٌن الاتزان والتوافق لعناصر البلاطة المشوهة لا 
شتقاق علاقات الحمل بالهطول بدءاً بالضغط الغشائً المبكر ولحٌن حصول تشققات نافذة فً البلاطة 

مركزي. ٌشٌر التحلٌل الى الزٌادة الواضحة فً تحمل البلاطات المسندة محورٌا ٌفوق وشد غشائً 
تخمٌنات نظرٌة خط الخضوع , وان الزٌادة فً نسبة الحمولة هذة تتضاعف كلما قل فً البلاطة سمكها 

دٌدة وحجم فتحتها وخف التسلٌح فٌها . عند قٌمة معٌنة للهطول تم احتساب الاحمال بطرٌقة النظرٌة الج
فوجدت مقاربة لنتائج الفحوصات السابقة. اجرٌت دراسة نظرٌة على قٌمة الحمولة القصوى فاتضح انه 

% 84بالامكان تقلٌل حدٌد التسلٌح باستخدام خرسانة اقوى. تمت التوصٌة على امكانٌة توفٌر بحدود 
د مربعة من حدٌد التسلٌح المصمم بطرٌقة خط الخضوع لبلاطة وسطى وتحتوي على فتحة مصع

 % عندما تكون الاحمال معتدلة .52الشكل فً نظام سقفً لاحمال خفٌفة و 

 
Abstract  

Based on the flow theory of rigid-plastic bodies, a method is developed 

for assessing the ultimate strength as well as determining the post yield 

behavior of uniformly  loaded R.C square slabs with central square opening 

which have all edges restrained against rotation and lateral movement . The 

method takes into account the significant effects of membrane forces which are 

usually induced in the plane of the slab along sagging and hogging yield lines 

as the slab deflects. Considering equilibrium and compatibility of the deformed 
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slab element, load-deflections relations are derived starting from the initial 

compressive membrane action up to tensile membrane and full-depth cracking 

at large deflection. 

 The solution shows that axially restrained slabs can sustain loads far 

beyond those predicated by Johansen's yield line theory and the enhancement 

in load is greatest for thinner slabs having lighter reinforcement and smaller 

opening. On the basis of an estimated deflection, theoretical ultimate loads are 

found comparable with those of existing experimental tests. A theoretical study 

of the maximum yield load reveals a promising saving in reinforcement for 

using stronger concrete. For an interior square panel with central square 

opening, such saving in reinforcement could be as high as 48% if the panel is 

lightly loaded, and 25% for a panel under moderate loads. 

 

1. Introduction 
In R.C slabs, bending is usually accompanied by lateral displacement at 

the edges of the slab. In axially restrained slabs, such displacements are 

prevented by the support restraints and, therefore, in-plane compressive 

membrane forces appear. These forces generate higher moment capacities for 

the slab sections at yield lines and consequently enable the slab to carry 

ultimate loads that are far in excess than those indicated by yield line theory 

[1], see Fig.(1). Even in the case of unrestrained slabs, a self balanced in-plane 

membrane forces have been found [2] to take place in the slab which result in 

moderate increases in the yield load with continuing deflection.  

Previous studies of membrane action in axially restrained slabs have 

rendered several rigorous solutions. These are in particular, the rigid-plastic 

and elastic–plastic solutions of slab strips [3, 4, 5, 6]. 

 More studies on the problem were experimental in natural [7, 8, 9] and 

empirical correlations were used to explain the high peak loads obtained in 

tests. In this research, a rigorous method is presented for the analysis of 

membrane action in clamped R.C square slabs with central square opening 

covering a wider range of slab deflections and taking into consideration the 

crucial effects of the in-plane axial forces. 

 

2. Basic Assumptions 
  To determine the effect of membrane action in clamped R.C square 

slabs with central square opening, it is necessary to make several assumptions. 

These are as follows: 

1. The slab is carrying a uniformly distributed load. 

2. The materials are rigid-perfectly plastic. 
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3. The slab is considered, isotropically reinforced in the bottom face only at 

middle and column strips and with same amount of reinforcement in the top 

face only at support. 

4. The slab yields under the simultaneous action of bending moment M and a 

compressive axial force N acting at the slab mid-depth. 

 

3. Yield Criterion  
For the stress distribution on the slab section at yield shown in Fig. (2), 

the equilibrium equations of axial forces and bending moment are: 

TCN                                                                                                          (1)   
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CM                                                                                (2) 

Where  afkkC c 31 ,  yys fdfAT  . 

And the concrete compressive stress block parameter k1k3 and k2 are Hognestad 

[10] parameters; 
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A combination of equations (1) and (2) leads to the following non-dimensional 
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Where Mo is the yield moment corresponding to N=0;   
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  are 

constants for a particular slab section. 

 Where  sA
 
is Area of tensile reinforcement per unit-width of slab, a is 

depth of the equivalent rectangular compression block of concrete, C is 

compressive force on concrete unit-width of slab, T  is Yield force in tensile 

reinforcement per unit-width of slab , d is  effective depth of slab ,
 

'
cf is 

concrete cylinder strength, yf is  yield stress of steel reinforcement, h is 

Overall depth of slab ,  is Ratio of steel area to effective area of concrete 

= dAs / . 
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If this yield criterion is denoted by a function f, the ratio of the plastic 

axial rate dε to the plastic curvature rate dk according to the plastic potential 

flow rule must be ;  
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With deflection of the slab, the neutral axis (µ) moves towards the compressed 

face of the section .A case will then be reached when the crack penetrates 

throughout the whole thickness of the slab. Thus, for two possible ranges of the 

neutral axis depth µ, the form of the yield criterion will be (as in Table -1). 

 

4. Yield Mechanism and Compatibility Equations 
 An initial collapse mode of the type shown in Fig (3) is considered and 

assumed at large deflection. If the vertical deflection at the edges of the 

opening is Δ, the corresponding rotation of the trapezoidal middle surface 

element (Fig.4) relative to the supporting edges is θ. This plastic rotation is 

related to the plastic axial elongations e1 at hogging yield lines and e2,eo at 

sagging yield lines according to the following compatibility equations: 

Sec. 1-1:   LRLeR
L

e  45sin2cos1
2

22 1  . 

For small angle of θ,      
2

1cos
2

   

  2
1 1

4
45sin R

L
ee                                                                                       (7) 

Sec. 2-2:    xee
2

45sin
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21


                                                                           (8) 

A combination of equations (7) and (8) gives: 
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By differentiating Eq. (7) and (9) with respect to θ and noting that (see Fig.5) 


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 707.0 , 
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)1(
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  (see Fig.4) give: 

 1                                                                                                      (10) 
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x
                                                                                   (11) 

Where L is span of square slab , R is ratio of opening span to slab span. 

Eq. (10) defines the neutral axis depth along hogging yield lines whereas 

Eq.(11) defines the depth of the neutral axis at the four inclined yield lines. 

 

5. Horizontal Equilibrium Equations 
The only unknown in Eqs.(10) and (11), for a  given deflection ( ),is  

(  ) and this may be determined by considering  the horizontal equilibrium of  

trapezoidal element in Fig.(6).  

For 2h : Resolving forces perpendicular to the fixed edge of the 

trapezoidal element gives; 045cos2 1

45csc)1(
2

0
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LNdsN
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L

   Where 45cscdxds    

The values of the membrane forces N1, N2 acting perpendicular to the yield 

lines, for this case of 2h  , are obtained by substituting the values of µ1, µ2 

defined by Eqs.(10)and (11) each at a time into Eq.(5a), which give;         
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 When these values of the membrane forces are used, the horizontal 

equilibrium equation for trapezoidal element becomes: 
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Solving.(12) gives: 
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 The limiting deflection ' for which Eq.(13) is valid is obtained when 2h  

(the slab is cracked throughout the depth at end of sagging yield lines);   
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For 2h : Once the deflection at edge of the opening exceeds the value     ( 

' ), the tensile membrane action ( N=-To ) extends from( )1(
2

R
L

x   ) to a 

position ( )1(
2

'
R

L
x  ) as in Fig.(6b) , there will be a discontinuity in the 
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distribution of ( N ) along the inclined yield lines  at ( )1(
2

'
R

L
x   ) and                                 

the horizontal equilibrium equation becomes; 
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Solving Eq. (15) gives: 
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Solving Eq.(16)and (17) gives: 
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From Eqs.(17)and (18), the value of (
L

L'

) can be obtained to be; 
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6. Yield Moment and Axial Forces 
'For :The axial force can be determined by introducing the value of µo 

from Eq. (13) into Eq. (5a) and with use of  Eqs. (10) and (11) the results will 

be: 
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Substituting these expressions of N/To into Eq. (5b) gives the corresponding 

equations for the yield moments 
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'For   : The yield axial force and bending moment along part of the four 

inclined yield lines within region ( )1(
2

)1(
2

'
R

L
xR

L
 ) are given directly by 

Eqs.(6); 
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For values of ( )1(
2

'
0 R

L
x   ), the axial force 2N  is found by 

substituting (  ) from Eq.(18) into Eq.(5a) and making use of Eq.(11). 
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And the corresponding yield moment equation is; 
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          (26) 

At the slab edges, the axial force is found by a combination of         Eqs. 

(18), (10) and (5a), the result will be; 
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And the corresponding yield moment equation is; 
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             (28) 

 

7. Yield Loads 

Having expressed the values of the axial forces  TN /  and yield 

moments MM /  in terms of deflection , the yield loads  w corresponding to 

any given deflection can now be found by considering the equilibrium of the 

slab trapezoidal element.  

Referring to Fig.(7), by taking moments about the mid-depth of the slab 

fixed edge, the following equilibrium equation is obtained; 

045cos2
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 R

L
R

L

dsMLM
RL

y
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RLRRL
w      (29) 

Noting that the yield load predicated by Johansen's yield line theory for 

this type of slabs is; 
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322 231

2
24
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M
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                                                                             (30) 

And    45cscdyds   , yx    therefore Eq. (29) can be written in the following 

form 

































dyy
T

N

RLhM

M

R
dy

M

M

RLR

R

w

w
R

L
R

L

J

)1(
2

0

212

)1(
2

0

2 )
)1(

2
())(1

2
(8

1

1

2

)1(

4

24

1

 


          (31)  

' :For deflections less than the critical value '  , the appropriate 

expressions for TN /21  and MM /21  are given by Eqs.(20) to (24) . 

Substituting these expressions into Eq.(31) and reducing; 
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                (32) 

' : For deflections greater than the critical value '  , the appropriate 

expressions for TN /2  and MM /2  for the central region of the slab where     

( )1(
2

)1(
2

'
R

L
yR

L
 ) are given by Eqs.(6a) and (6b), but for the corner 

regions  of the slab , where ( )1(
2

'
0 R

L
y  ), Eqs.(25) and (26) hold instead. 

Along the fixed edges of the slab, the values of TN /1  and MM /1  are given 

by Eqs. (27) and (28) .Substituting these expressions into Eq. (31) and 

reducing; 
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      (33) 

Graphical representations of Eqs.(32) and (33) are given in Figs.(8),(9) 

and (10).The first two of these figures show respectively the possible 

enhancement in the load carrying capacity of clamped square slabs with central 

square opening above Johansen's load due to effects of variation in the 

percentage of reinforcement (ρ),and the ratio of opening( R),whereas Fig.(10) 

shows the amount of percentage increase in the yield load with variation in the 

parameter (ρ ƒy/ ƒ'c) and the slab deflection. 
 

8. Study of the Maximum Yield Load 
It is apparent from the present analysis that due to compressive 

membrane action, fully restrained R.C square slabs with central square opening 

can carry load far beyond those of Johansen's simple yield line   theory .The 

reserves in strength are found to be more pronounced in lightly reinforced slabs 

made of concrete with high strength. The assumption of rigid-perfectly plastic 

behavior of R.C slabs with edges fully restrained against rotation and 

horizontal translation implies that the maximum yield load is attained at zero 

deflection. Therefore, from Eq.(32): 
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If the expression of Johansen's load (wJ) given by Eq. (30) is introduced, the 

maximum yield uniform load will have the following explicit dimensional 

form; 
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     (34) 

For a certain slab with a specified ratio of opening (R) ,total depth to effective 

depth ratio (h/d) and steel yield stress, the maximum yield uniform load 

increase linearly with the percentage of reinforcement (ρ) and non-linear with 

the concrete strength '

cf  , the latter being the more dominant factor . This is 

clearly shown in Fig.(11) where Eq.(34) is plotted for a typical slab with 

R=0.25, h/d=1.2 and ƒy=300MPa.as for example , the same maximum yield 

load ,say 172 2)/( Lh  in unit of 2/ mmN  , can be obtained by using a typical 

slab with MPaf c 25'   and percentage of reinforcement ρ=1% or with minimum 

ρ of 0.2%  but MPaf c 33'  .Thus, to obtain equal maximum yield loads the 

amount of reinforcement can be reduced by using a higher strength concrete. 
 

9. Comparison with Available Experimental Tests  
Previous experimental investigations [7,8,9] have show that the actual 

load-deflection relationship of axially restrained slabs consists of an initial 

ascending part represent the elastic deformation (see Fig.1) followed by an 

elastic-plastic stage until peak load is reached at a critical slab deflection and 

thereafter declines rapidly . Obviously, a rigid-plastic solution does not predict 

such initial rising part of the load-deflection relation but shows instead a rather 

continuous descending curve starting from a maximum value of yield load at 

zero deflection. Therefore to make use of the rigid-plastic solution in 

estimating actual ultimate load, the value of the deflection corresponding to the 

ultimate load has to be specified and use directly. The previous tests on R.C 

slabs have indicated different values for such deflection depending on the 

flexural rigidity ratio of the surrounding elements of the slab. This can be 

readily seen in Table (2).Which is basically constructed to show a full detailed 

comparison between the results of the present theoretical method and the 

finding of previous experimental study [7]. 
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The table clearly indicates variation in the value of the ratio (Δ/h) 

corresponding to ultimate load, ranging between the case of slabs with stiff 

bounders to slabs surrounded by weaker R.C beams. The table also shows that 

ultimate loads found by tests are comparable with the corresponding rigid-

plastic theoretical load, with an average value of the ratio (w test/w theory) of 

0.9. The 10% deviation between the rigid-plastic solution and experimental 

peak load is, therefore, a measure of the effect of neglecting elastic 

deformations in the theoretical method of analysis (see Fig.1). 

Accordingly , if   Δ/h=0.7 (considered quite conservative for practical 

R.C slab –beam panels) is inserted into the appropriate equation (32) or (33) 

and 90% of the resulting yield load is taken, the theoretical estimation of the 

ultimate load will be close enough to the corresponding test value. Such a 

procedure is followed to construct Fig.(12) &(13).Fig(12) indicates remarkable 

enhancements in the ultimate loads above those suggested by yield line theory . 

Especially for slabs having smaller values of both the opening ratio (R) and the 

parameter (t=ρ ƒy/ƒc' ) . A practical significance of results is show in Fig.(13) 

where certain percentage saving reinforcement is seen to be possibly made in 

the slab due to the inclusion of membrane action in the method of slab design ;  

J
s

ww
A

/

100
100inreduction%   

Thus for a lightly loaded interior panel in slab-beam system where only 

light steel reinforcement is usually used, say t=0.04 , 48% of the reinforcement 

design by the simple yield line theory can theoretically be saved and that if the 

panel sustains moderate load ( say t=0.08), saving in the steel reinforcement of 

the order 25% seems quite possible. 
 

10. Concluding Remarks  
The main conclusions to be drawn from the present study are: 

1. The analysis shows that reinforced concrete square slabs with central 

square opening and with clamped edges can sustain loads more than those 

predicted by Johansen's yield line theory by a big margin. 

2. The enhancement in ultimate load above Johansen's load is more 

pronounced in slabs with low value of (ρ) and (ƒy) and high value of (ƒ
'
c). 

3. The predicated enhancement in the load carrying capacity decreases with 

increasing slab opening. 

4. In R.C slab-beam panel, the degree of restraint provided by the surrounding 

beams has a major influence on the amount of enhancement in the ultimate 

load of the slab. 
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5. Practically, the predicated increases in the ultimate load can be made use of 

in design if corresponding deflection are proved to satisfy serviceability 

requirement. 

6. Membrane action in restrained slab is a self-prestressing action where the 

compressive strength of concrete is the dominate parameter. Thus, some 

reinforcement can be saved in a slab by using stronger concrete. For  square 

panels of slab  with central square  opening that have edges either 

continuous or highly restrained against rotation and translation, such saving 

in reinforcement could be as high as 48% if the panel is lightly loaded, and 

25% for a panel under moderate load. 
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