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ULTIMATE STRENGTH OF CLAMPED R.C
SQUARE SLABS WITH CENTRAL SQUARE
OPENING UNDER COMBIEND BENDING AND
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Abstract

Based on the flow theory of rigid-plastic bodies, a method is developed
for assessing the ultimate strength as well as determining the post yield
behavior of uniformly loaded R.C square slabs with central square opening
which have all edges restrained against rotation and lateral movement . The
method takes into account the significant effects of membrane forces which are
usually induced in the plane of the slab along sagging and hogging yield lines
as the slab deflects. Considering equilibrium and compatibility of the deformed
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slab element, load-deflections relations are derived starting from the initial
compressive membrane action up to tensile membrane and full-depth cracking
at large deflection.

The solution shows that axially restrained slabs can sustain loads far
beyond those predicated by Johansen's yield line theory and the enhancement
in load is greatest for thinner slabs having lighter reinforcement and smaller
opening. On the basis of an estimated deflection, theoretical ultimate loads are
found comparable with those of existing experimental tests. A theoretical study
of the maximum yield load reveals a promising saving in reinforcement for
using stronger concrete. For an interior square panel with central square
opening, such saving in reinforcement could be as high as 48% if the panel is
lightly loaded, and 25% for a panel under moderate loads.

1. Introduction

In R.C slabs, bending is usually accompanied by lateral displacement at
the edges of the slab. In axially restrained slabs, such displacements are
prevented by the support restraints and, therefore, in-plane compressive
membrane forces appear. These forces generate higher moment capacities for
the slab sections at yield lines and consequently enable the slab to carry
ultimate loads that are far in excess than those indicated by yield line theory
[1], see Fig.(1). Even in the case of unrestrained slabs, a self balanced in-plane
membrane forces have been found [2] to take place in the slab which result in
moderate increases in the yield load with continuing deflection.

Previous studies of membrane action in axially restrained slabs have
rendered several rigorous solutions. These are in particular, the rigid-plastic
and elastic—plastic solutions of slab strips [3, 4, 5, 6].

More studies on the problem were experimental in natural [7, 8, 9] and
empirical correlations were used to explain the high peak loads obtained in
tests. In this research, a rigorous method is presented for the analysis of
membrane action in clamped R.C square slabs with central square opening
covering a wider range of slab deflections and taking into consideration the
crucial effects of the in-plane axial forces.

2. Basic Assumptions

To determine the effect of membrane action in clamped R.C square
slabs with central square opening, it is necessary to make several assumptions.
These are as follows:
1. The slab is carrying a uniformly distributed load.
2. The materials are rigid-perfectly plastic.
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3. The slab is considered, isotropically reinforced in the bottom face only at
middle and column strips and with same amount of reinforcement in the top
face only at support.

4. The slab yields under the simultaneous action of bending moment M and a
compressive axial force N acting at the slab mid-depth.

3. Yield Criterion

For the stress distribution on the slab section at yield shown in Fig. (2),
the equilibrium equations of axial forces and bending moment are:
N =C-T, 1)

M :C(g—kza)+To(d —gj )

Where C=kk; fla, T.=A f,=p d f,.
And the concrete compressive stress block parameter kiks and k;, are Hognestad
27+o.35,fC K, = o5 T

22+ f, 550

A combination of equations (1) and (2) leads to the following non-dimensional
yield criterion:

2ol

Where M, is the yield moment corresponding to N=0;

[10] parameters; kk; =

1h 2%, f Kk, f
o ey ey
M, =p f,d? (1-—2p-—L)andg =~ —2 27, s T e
Kiks f. 1_k72 fy 1_k72&
Kk © 1, R

constants for a particular slab section.
Where A, is Area of tensile reinforcement per unit-width of slab, ais

depth of the equivalent rectangular compression block of concrete, Cis
compressive force on concrete unit-width of slab, T, is Yield force in tensile

reinforcement per unit-width of slab ,dis effective depth of slab |, fC' is
concrete cylinder strength, fyis yield stress of steel reinforcement, his
Overall depth of slab , pis Ratio of steel area to effective area of concrete

=A/d.
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If this yield criterion is denoted by a function f, the ratio of the plastic
axial rate de to the plastic curvature rate dk according to the plastic potential

a N
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T, ﬂTf
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flow rule must be ; Pt
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. 28 28 M,

With deflection of the slab, the neutral axis (1) moves towards the compressed

face of the section .A case will then be reached when the crack penetrates

throughout the whole thickness of the slab. Thus, for two possible ranges of the

neutral axis depth p, the form of the yield criterion will be (as in Table -1).

4. Yield Mechanism and Compatibility Equations

An initial collapse mode of the type shown in Fig (3) is considered and
assumed at large deflection. If the vertical deflection at the edges of the
opening is A, the corresponding rotation of the trapezoidal middle surface
element (Fig.4) relative to the supporting edges is 0. This plastic rotation is
related to the plastic axial elongations e; at hogging yield lines and e,e, at
sagging yield lines according to the following compatibility equations:

Sec. 1-1: 2e1+2%(1— R)cos @ +2e,sin45+RL = L.

2
For small angle of 6,  cos@ = 1—'97
e1+eosin45:%(l—R)¢92 (7)
92
Sec. 2-2: e +e, sin45:7x (8)

A combination of equations (7) and (8) gives:
2
e,sin45—e, sin45:%{x—%(1—R)} 9)

By differentiating Eq. (7) and (9) with respect to 6 and noting that (see Fig.5)

de, de de, 2A . .
=—X  u =0707—, u, =0.707—= and 4= see Fig.4) give:
=g do ' *? do L) CeeFigdg
/Lll :A_ll"lo (10)



ﬂ2=uo—A(l— 2 J (11)

L(1-R)
Where L is span of square slab , R is ratio of opening span to slab span.
Eqg. (10) defines the neutral axis depth along hogging yield lines whereas
Eq.(11) defines the depth of the neutral axis at the four inclined yield lines.

5. Horizontal Equilibrium Equations
The only unknown in Egs.(10) and (11), for a given deflection (A),is

(4, ) and this may be determined by considering the horizontal equilibrium of

trapezoidal element in Fig.(6).
Foru, <h/2: Resolving forces perpendicular to the fixed edge of the

L

—(1-R)csc45
trapezoidal element gives; 2 [N,ds cos45-N,L=0 Where ds =dxcsc45

0

The values of the membrane forces N;, N, acting perpendicular to the yield
lines, for this case of », <h/2 , are obtained by substituting the values of p, p
defined by Egs.(10)and (11) each at a time into Eq.(5a), which give;
N _% e T AT Ny @ o T A 2x

T. 28 ZﬁM 208 M. ' T. 28 28 M, 28 LL-R’M,

When these values of the membrane forces are used, the horizontal
equilibrium equation for trapezoidal element becomes:

Lar)
oT 2{ ﬁ_LL’Jri( - )} x —T. L/j +LL_AL L=0 (12)

0 28 28 M, 28 L(l R)"M 26 M, 28 M,
1 aRg
Solving.(12) gives: =—|A(L5-0.5R) - 13
0.(12) gives: 1. ==/ A( T, (13)

The limiting deflection A'for which Eq.(13) is valid is obtained when u = h/2
(the slab is cracked throughout the depth at end of sagging yield lines);

AI=L{Z—R+ R } (14)

h 3-R a+2p
For 1, >h/2: Once the deflection at edge of the opening exceeds the value  (

A'), the tensile membrane action ( N=-T, ) extends from( x:%(l—R) ) to a
position (x=%(1—R)) as in Fig.(6b) , there will be a discontinuity in the
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distribution of ( N ) along the inclined yield lines at (x=%(1—R) ) and

the horizontal equilibrium equation becomes;
L L
~(-R) ~(-R)
2 T, T, 2 a T, T,
a MU, A 2X BT { U, A

. 2% 2w 2 L(1_R))M01 dx+2To£I (DT, 7 +2,6MD_Z,BMJL:0 (15)

Solving Eq. (15) gives:

4y a 1 (— ] Ly
" h 268 L 2/31 R +A1_|_'2; (16)
1 1
[(ﬁ )(*) (ﬁ )ﬁ] [(r)+ﬁ]

L :
No @ s T Aq =y T _ 1 Solving for . ;

L
Butatx=—(@-R); —2=
2 T 28 28M, 28 L M,

p=eae- 0 (17)
Solving Eq.(16)and (17) gives:
[1+J()+ (7”)(7)
281-R 2°2
w—ap?? / ] (18)
1+(—+1)—
B -R

X
From Egs.(17)and (18), the value of (L—) can be obtained to be;

t; ﬁ[ J 1+2(1—R)(%j(1—(af2ﬁ)RJ —1] (19)

6. Yield Moment and Axial Forces
For A < A:The axial force can be determined by introducing the value of ,

from Eq. (13) into Eq. (5a) and with use of Egs. (10) and (11) the results will
be:




a a Ra 1-R A
ZE“L(EH)[(R—z)(auﬂ)_z—RFj (20)
N _a a Ra B 1-R B 4x é
T, 28 (Zﬂ +1)((R—2)(a+2ﬂ) (2—R L(1—R)) hJ (21)
Substituting these expressions of N/T, into Eq. (5b) gives the corresponding
equations for the yield moments

N,
T,
N

M, Re 1-R AY

M_o_ _ﬂ_ﬁ( 2p i ((R—ZXa+2ﬂ)_2‘RFJ ~
M, o a 2 Ra 1-R )

v g oY ((R_z)(mzﬂ)_(z—R_L(1—R))Fj @

For A>A : The yield axial force and bending moment along part of the four

inclined yield lines within region (%(1—R) SXS%(l—R)) are given directly by

Eqgs.(6);
N,

- 1 (6a)
L A (6b)
For values of (0 sxs%(l—R) ), the axial force N, is found by

substituting (. ) from Eq.(18) into Eq.(5a) and making use of Eq.(11).
149 1 oy e ey

No o @ o 1y [ “2pa- RJ( ) 2(2'3 Y S 2X Ay (25)

T. 28 28 1e(% i1 L LA-R) | h

B 1-R

And the corresponding yield moment equation is;

e 1)L, 1.a L,
[1+j()—2(2ﬂ+1)()

M, .. @ a o\ 281-RJL L Ay

m e ey L | W @
1-R

At the slab edges, the axial force is found by a combination of Egs.

(18), (10) and (5a), the result will be;



L 2
N o 2(_ ) (1+ ZﬂlR]() 5 (ﬁ )(?) (
T, Zﬂ 25 1+ (— +1) —R

) (27)

= | >

And the corresponding yield moment equation is;

(1 ]()—( 1)(—)
ﬂ:1+a_2_4lg(i+1)2 21-R 2°2p
M, ap 23 1_,_( _,_1)7

B T1-R

Al
Gy e

7. Yield Loads

Having expressed the values of the axial forces N/T, and vyield
moments m /M, in terms of deflection A, the yield loads w corresponding to
any given deflection can now be found by considering the equilibrium of the
slab trapezoidal element.

Referring to Fig.(7), by taking moments about the mid-depth of the slab
fixed edge, the following equilibrium equation is obtained;

L L

301 _R)2 311 p\3 S {-R)cscds SU-R)escas

w{RL (18 R) +"(124R) J+2 [ Nyds cos45 (AL) M, L-2" [M,dscos45=0 (29)
0 - 0

Noting that the yield load predicated by Johansen's yield line theory for
this type of slabs is;
M 2-R
—p—e|___ ="
" z (1—3R2 4 2R3j (30)
And ds =dycsc45 , x=y therefore Eq. (29) can be written in the following
form

w 1| 4 Py 2 M1 ) iRy
w_1- My go 2 ML oo @ 22 21 31
W, 4-2R|L(L-R) VLA RM. 8 (2ﬂ+)(h)(L(1—R)) [T (31)

A <A :For deflections less than the critical value A , the appropriate

expressions for N, ,/T, and M _,,/M, are given by EQs.(20) to (24) .
Substituting these expressions into Eq.(31) and reducing;



—2a(—+))

w 1-R a’® 4-2R A a
(—+1) —== -
4B 1-R h 2/

(32)
8 Re____1-RA,4-2R
3 (R-2)(@+28) 2-Rh 1—RJ}

v ﬂ(%m?[(%f

A>A': For deflections greater than the critical value A, the appropriate

expressions for N, /T, and M,/M_ for the central region of the slab where
( %(1—R)Sy§%(1—R)) are given by Egs.(6a) and (6b), but for the corner
regions of the slab , where ( Osys%(l—R)), Egs.(25) and (26) hold instead.

Along the fixed edges of the slab, the values of N, /T, and M, /M, are given

by Egs. (27) and (28) .Substituting these expressions into Eg. (31) and
reducing;

w 1-R| o’ (L 1 L. A «a a L,
WJ_4—2R{2(4ﬂ+1{L+1—R]+ 2(1_a_ﬂ)(l_f)+(F)4ﬂ(ﬁ+l)(l_(ﬁ+l)(f) )
AL [1+ Zo;illR)_;(Zo;’ +1)(t7) L 1. 1L %)
2 a 2 - 2
et e L Y5 |
1-R

Graphical representations of Eqs.(32) and (33) are given in Figs.(8),(9)
and (10).The first two of these figures show respectively the possible
enhancement in the load carrying capacity of clamped square slabs with central
square opening above Johansen's load due to effects of variation in the
percentage of reinforcement (p),and the ratio of opening( R),whereas Fig.(10)
shows the amount of percentage increase in the yield load with variation in the
parameter (p fy/ f'c) and the slab deflection.

8. Study of the Maximum Yield Load

It is apparent from the present analysis that due to compressive
membrane action, fully restrained R.C square slabs with central square opening
can carry load far beyond those of Johansen's simple yield line theory .The
reserves in strength are found to be more pronounced in lightly reinforced slabs
made of concrete with high strength. The assumption of rigid-perfectly plastic
behavior of R.C slabs with edges fully restrained against rotation and
horizontal translation implies that the maximum yield load is attained at zero
deflection. Therefore, from Eq.(32):
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w (@ ([ Ra  Nagoa
E‘((wﬂ) ((R—Z)(a+2ﬂ)J Pl ™D J

If the expression of Johansen's load (w;) given by Eq. (30) is introduced, the
maximum yield uniform load will have the following explicit dimensional
form;

Ve 2@-R) Ay ok [(0’2+1)—( Ra
(

__2 _ Ra o 2
(h/L)Z_ (1—3R2+2R3)(h/d)2( k1k3pfc, 4p R—2)(a+2ﬂ)) ﬁ(25+1) ] (34)

For a certain slab with a specified ratio of opening (R) ,total depth to effective
depth ratio (h/d) and steel yield stress, the maximum yield uniform load
increase linearly with the percentage of reinforcement (p) and non-linear with
the concrete strength f_ , the latter being the more dominant factor . This is

clearly shown in Fig.(11) where EQ.(34) is plotted for a typical slab with
R=0.25, h/d=1.2 and f,=300MPa.as for example , the same maximum yield

load ,say 172(h/L)2 in unit of N/mm? , can be obtained by using a typical
slab with f, =25MPa and percentage of reinforcement p=1% or with minimum
p of 0.2% but f, =33MPa.Thus, to obtain equal maximum vyield loads the
amount of reinforcement can be reduced by using a higher strength concrete.

9. Comparison with Available Experimental Tests

Previous experimental investigations [7,8,9] have show that the actual
load-deflection relationship of axially restrained slabs consists of an initial
ascending part represent the elastic deformation (see Fig.1) followed by an
elastic-plastic stage until peak load is reached at a critical slab deflection and
thereafter declines rapidly . Obviously, a rigid-plastic solution does not predict
such initial rising part of the load-deflection relation but shows instead a rather
continuous descending curve starting from a maximum value of yield load at
zero deflection. Therefore to make use of the rigid-plastic solution in
estimating actual ultimate load, the value of the deflection corresponding to the
ultimate load has to be specified and use directly. The previous tests on R.C
slabs have indicated different values for such deflection depending on the
flexural rigidity ratio of the surrounding elements of the slab. This can be
readily seen in Table (2).Which is basically constructed to show a full detailed
comparison between the results of the present theoretical method and the
finding of previous experimental study [7].
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The table clearly indicates variation in the value of the ratio (4/h)
corresponding to ultimate load, ranging between the case of slabs with stiff
bounders to slabs surrounded by weaker R.C beams. The table also shows that
ultimate loads found by tests are comparable with the corresponding rigid-
plastic theoretical load, with an average value of the ratio (w test/w theory) of
0.9. The 10% deviation between the rigid-plastic solution and experimental
peak load is, therefore, a measure of the effect of neglecting elastic
deformations in the theoretical method of analysis (see Fig.1).

Accordingly , if 4/h=0.7 (considered quite conservative for practical
R.C slab —beam panels) is inserted into the appropriate equation (32) or (33)
and 90% of the resulting yield load is taken, the theoretical estimation of the
ultimate load will be close enough to the corresponding test value. Such a
procedure is followed to construct Fig.(12) &(13).Fig(12) indicates remarkable
enhancements in the ultimate loads above those suggested by yield line theory .
Especially for slabs having smaller values of both the opening ratio (R) and the
parameter (r=p fy/fc') . A practical significance of results is show in Fig.(13)
where certain percentage saving reinforcement is seen to be possibly made in
the slab due to the inclusion of membrane action in the method of slab design ;

100
w/w;

Thus for a lightly loaded interior panel in slab-beam system where only
light steel reinforcement is usually used, say t=0.04 , 48% of the reinforcement
design by the simple yield line theory can theoretically be saved and that if the
panel sustains moderate load ( say t=0.08), saving in the steel reinforcement of
the order 25% seems quite possible.

%reduction in A, =100 -

10. Concluding Remarks

The main conclusions to be drawn from the present study are:

1. The analysis shows that reinforced concrete square slabs with central
square opening and with clamped edges can sustain loads more than those
predicted by Johansen's yield line theory by a big margin.

2. The enhancement in ultimate load above Johansen's load is more
pronounced in slabs with low value of (p) and (fy) and high value of ( fo).

3. The predicated enhancement in the load carrying capacity decreases with
increasing slab opening.

4. In R.C slab-beam panel, the degree of restraint provided by the surrounding
beams has a major influence on the amount of enhancement in the ultimate
load of the slab.
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5. Practically, the predicated increases in the ultimate load can be made use of
in design if corresponding deflection are proved to satisfy serviceability
requirement.

6. Membrane action in restrained slab is a self-prestressing action where the
compressive strength of concrete is the dominate parameter. Thus, some
reinforcement can be saved in a slab by using stronger concrete. For square
panels of slab with central square opening that have edges either
continuous or highly restrained against rotation and translation, such saving
in reinforcement could be as high as 48% if the panel is lightly loaded, and
25% for a panel under moderate load.

Table (1) Cases of Neutral Axis Depth

Neutral
Axis Description Yield Criterion
Depth
The slab i ked o # I (5a)
he slab is not cracke = = a
u <h/2 throughout its depth and T, 2p 28 M,
there are some compressive M ( N ) N
stresses on the concrete =l+a| — |- [—J (5b)
MO o 10
The slab is cracked N
throughout its depth and T — (62)
M =h/2 there are no compressive °
stresses on the concrete (i.e M =l-a - (6b)
C=0) M,

Table (2) Comparison between Experiments and Theory
z £ % s = -3 3
< 2 g = = =
2 OQ
= BN1 0.283% 95 08 2.13 2 | em
= (>3
SRR
EE= BN2 0.283% 12 0.7 2.62 315 183
7z >~
2 E S
| BES | BN3 0.283% 13.5 0.65 2.95 3241001
S &5 E 1.86
e B d CNI1 0.526% 125 0.8 1.51 : 0.81
et =3 [T e ]
= | 2%
£ s £ ¢ CN2 0.526% 13.5 0.75 1.66 1-89 1 088
& S E
) T L8 Q
g | ¢28 CN3 0.526% 14.5 0.7 1271 193 1002
E g gl
8 B = 1.28
£5 g DNI1 1.2% 23 0.8 1.3 1.02
5ol
5L , 1.29
E23 DN1 1.2% 22 0.75 1.26 : 0.98
503
£ 1.30
gz DN1 1.2% 24 0.7 1.37 1.05
Average 0.9
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