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The analysis of the least compressive load that cause buckling failures of 
Euler-Bernoulli beams resting on two-parameter elastic foundations 
(EBBo2PFs) is vital for safety. This article presents Ritz variational method 
(RVM) for the stability solutions of EBBo2PFs under in-plane compressive 
loads. The Ritz total potential energy functional, ,  was derived for the 
problem as the sum of the strain energies of the thin beam, the two-
parameter lumped parameter elastic foundation (LPEF) and the work 
potential due to the in-plane compressive load. Ritz functional   was 
found to depend upon the buckling function w(x) and its derivatives 

( )( ), ( )w x w x   with respect to the longitudinal coordinate. The principle 
of minimization of   was implemented for each considered boundary 
condition to find the w(x) corresponding to minimum .  Three cases of 
boundary conditions investigated were: clamped at both ends, clamped at 
one end and free at the other, simply supported at both ends. For each case, 
w(x) was found in terms of unknown generalized buckling parameters ci, 
and buckling shape functions ( )i x  satisfying the boundary conditions. 
Thus   was expressed in terms of the parameters ci. The Ritz functional 
was subsequently minimized with respect to the parameters yielding an 
algebraic eigenvalue problem. The condition for nontrivial solutions of 
homogeneous algebraic equations was used to find the characteristic 
buckling equations that were solved to find the eigenvalues. The 
eigenvalues were used to find the buckling loads and the critical buckling 
load. It was found that a one-parameter RVM solution for the EBBo2PF 
with both ends clamped, and with one clamped and one free end gave 
similar critical buckling load solutions to those presented in the literature. 
It was also found that an n-parameter RVM solution for the EBBo2PFs with 
both ends simply supported yielded exact buckling load solutions because 
exact sinusoidal buckling shape functions were used. 
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1. Introduction  

1.1. Background  

The subject matter of beams on elastic foundations (BoEFs) has been extensively applied to the study of 

foundation beams. In such studies the governing equations of beam theory are modified by the incorporation of 
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the effect of the reaction forces from the supporting foundation. Beam on elastic foundation studies have been 

influenced by studies on beams, and studies on foundations; and are focused on how the interaction effects of the 

foundation affect the beam behaviour in bending, buckling and vibration. 

The earliest beam theory was proposed by Euler and also by Bernoulli, and is commonly referred to as the 

Euler-Bernoulli beam theory (EBBT) or the classical beam theory (CBT). EBBT was derived using the Navier 

hypothesis that plane cross-sections which are initially normal to the middle plane of the longitudinal axis of the 

beam before deformation would remain plane and normal to the middle plane of the longitudinal axis after 

deformation; and the middle plane of the longitudinal axis is unstretched and free of strains. Hence the middle 

plane is a neutral plane in pure bending. (Ike, 2018a; Ike, 2018b; Ike, 2023a). Consequently, the EBBT disregards 

shear deformation effects and can only apply to slender/thin beams for which the ratio of thickness, h, to the span, 

l, is less than or equal to 0.05. In beams with ratios of thickness to span greater than 0.05, and for composite and 

laminated beams, shear deformation effects have been found to be important factors governing their behaviour in 

bending, stability or vibration. 

Beams with h/l > 0.05 are called moderately thick or thick beams depending on the actual value of h/l. If 

0.05 / 0.10h l   the beam is called moderately thick, and thick when h/l > 0.10. 

Moderately thick beams and thick beams are formulated by consideration of the effects of shear deformation 

in order to truly reflect the actual behaviour of such beams. 

Several shear deformable beam theories have been proposed and implemented by researchers in a bid to 

overcome the limitations of the CBT. Shear deformation beam theories have been derived by Timoshenko, 

Levinson (1981), Dahake and Ghugal (2013), and Sayyad and Ghugal (2011), to name only some contributors. 

Despite the limitations of EBBT, it has been widely used because of the prevalence of thin beams in practical 

structural applications. This work is focused on thin beams and thus uses EBBT. 

Elastic foundations have been described analytically via continuously distributed parameter and 

lumped/discrete parameter idealizations. Continuously distributed parameter idealizations utilize the well-

established elasticity theory framework to determine the mathematical relations for the reaction forces from the 

soil on the beam structures. The resulting mathematical formulations have been found to be extremely complex, 

and have not found extensive usage. On the other hand, lumped parameter idealizations utilize one, two or a 

definite number of soil foundation parameters to derive the soil reaction forces on the beam. They are commonly 

utilized majorly as a result of the simple nature of the resulting equations, leading to simple governing equations 

for the beam or elastic foundation problem. 

Lumped parameter elastic foundation (LPEF) models have been proposed by several researchers. LPEF models 

include: 

(i) Winkler model, also called a one-parameter LPEF model (Ike, 2018a; Ike, 2018b; Ike, 2023). 

(ii) Pasternak, Vlasov, Hetenyi, and Filonenko-Borodich models, also called two-parameter LPEF models 

(Ike, 2023b; Ike, 2023c; Ike et al, 2023a). 

(iii) Kerr (1985), a three-parameter LPEF model. 

The Winkler’s one-parameter LPEF model is illustrated in Figure 1, and it assumes that the soil behaves as a 

bed of vertical, independent, non-interacting, closely spaced, linearly elastic springs that obey Hooke’s law. 

Consequently, the soil reaction at any point on the beam is directly proportional to the beam vertical deflection at 

the concerned point; and the constant of proportionality is the Winkler constant, k, that is used as the one parameter 

to define the soil reaction in the Winkler model. The resulting soil reaction equation is a simple equation, which 

also yields another simple equation when incorporated into the thin beam equation. 

 

 

Figure 1: Thin beam on Winkler foundation and illustration of Winkler one-parameter lumped parameter elastic 

foundation (LPEF) model as a bed of non-interacting, vertical, linear elastic springs 

As such, the Winkler foundation disregards the shear interactions of the vertical springs and yields 

discontinuity issues in deflections and/orslopes especially when the loading is a point load. Other foundation 
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models were proposed to address the shortcomings of the Winkler one-parameter LPEF model. The two-parameter 

LPEF models were proposed variously by Pasternak, Vlasov, Hetenyi and Filonenko-Borodich as shown 

graphically in Figure 2. 

 

Figure 2: Thin beam on two-parameter LPEF with illustration of the two parameter LPEF as a bed of non-interacting, 

vertical, linear elastic springs with a shear coupling introduced at the interface of the vertical springs and 

the beam to model the shear interaction of the vertical springs. 

 

As suggested by the name, two-parameter LPEF models utilize two parameters to determine the reaction of the 

soil on the thin beam. The first foundation parameter is analogous to the Winkler parameter k1. The second 

foundation parameter k2 accounts for the shear coupling effect of the vertical springs. The reaction pressure r(x) 

is consequently expressed using the two parameters, resulting in another simple expression for r(x). 

Researchers who worked on continuously distributed foundation models include: Vlasov and Leontiev (1966), 

Jones and Xenophontos (1977), Vallabhan and Das (1988, 1991), Akhazhanov et al (2020, 2022, 2023a, 2023b), 

Huang et al (2019), Akhmediev et al (2023), and Zhang et al (2020).  

1.2. Literature review 

BoEFs which are under in-plane compressive forces can undergo failure by buckling, even when they have not 

attained their material strengths. This usually occurs when the compressive force reaches a certain critical 

threshold value, usually called the critical buckling load. It is thus significant for the analysis and design of 

EBBo2PFs under in-plane compressive loads to perform a buckling load analysis aimed at determining the least 

load that could cause buckling failures. 

Literature review shows that the study of stability of beams on elastic foundations have been done using the 

following methods: 

(i) Theory of elasticity methods 

(ii) Finite element methods (FEMs) 

(iii) Differential transform methods (DTMs) 

(iv) Variational iteration methods (VIMs) 

(v) Exact methods 

(vi) Recursive differentiation methods (RDMs) 

(vii) Point collocation methods (PCMs) 

(viii) Finite sine transformation method (FSTM) 

(ix) Generalized integral transform method (GITM) 

(x) Fourier series methods 

(xi) Stodola-Vianello iteration methods (SVIMs) 

The methods of the mathematical theory of elasticity were used for BoEF problems by Gholami and Alizadeh 

(2022), Anyaegbunam (2014), and Thanh and Linh (2021), but failed to investigate stability problems. 

FEMs were employed for BoEFs investigations by Mama et al (2020), Worku and Habte (2022), Alzubaidi et 

al (2023), Wieckowski and Swaitkiewicz (2021). Teodoru and Musat (2008) further investigated the use of FEM 

for EBBo2PF. Gulkan and Alemdar (1999) used the exact sinusoidal shape functions in the FEM to derive 

expressions for the stiffness matrices, nodal forces, and geometric matrices for a EBBo2PF with simply supported 

ends. They obtained general solutions that were comparable to those in the literature for simply supported 

boundary condition because exact sinusoidal series shape functions that satisfy all boundary conditions were used 

in the formulations. Soltani (2020) used FEM for solving the GDES of BoEF and found stability solutions for 



IRAQI JOURNAL OF CIVIL ENGINEERING (2024) 018–001                                                                                                                                                                                      29                                                                                                                                                                                                                           

 

EBBoWF for simple boundary conditions. 

Olotu et al (2021) used DTMs to obtain numerical solutions for free transverse dynamic analysis of non-

uniform beams rested on variable one-parameter LPEF. In their study, the Winkler coefficients varied along the 

longitudinal beam directions. The DTM adopted to the governing differential equation of motion which was 

variable in the coefficients, transformed the problem from a differential equation to an algebraic equation. They 

used algebraic matrix solvers in MAPLE computer codes to obtain accurate solutions for the beam vibration 

problems for fixed ends and simply supported ends. Their work however failed to investigate stability problems 

of EBBo2PFs. 

Aslami and Akimov (2016) also worked on analytical solutions of flexural vibrations of EBBo2PFs with 

simply supported ends for continuously distributed parameter thin beams under vibration. Their work  failed to 

investigate stability of EBBo2PFs. 

Exact mathematical methods for solving the buckling problems of EBBo2PFs have been applied by Hetenyi 

(1946), Timoshenko and Gere (1985) and Wang et al (2005) for a variety of end supports for the stability problem. 

The exact solutions were derived by seeking closed form analytical solutions to the governing differential 

equations of stability (GDES) for the EBBo2PF such that the GDES are satisfied over the domain and the 

boundary conditions are simultaneously satisfied. This derivation of exact solutions requires rigorous 

mathematical techniques for solving ODEs and PDEs and exact solutions are unavailable for several cases of non-

homogenous beam materials, non-prismatic beam cross-sections, variable foundations and complex boundaries. 

This explains the necessity for numerical methods that could achieve approximate, yet accurate solutions. 

Hassan (2008) used the exact methods for solving ordinary differential equations to obtain solutions for 

buckling of EBBoEF for different types of supported ends. Aristizabal-Ochoa (2013) investigated the stability 

problems of EBBoEFs for various cases of end supports using approximate methods for solving ordinary 

differential equations. 

Anghel and Mares (2019) obtained accurate critical buckling load solutions for EBBoEFs via collocation 

methods. 

Atay and Coskun (2009) applied the VIM for accurate stability analysis of EBBoEF for cases of beams with 

prismatic and non-prismatic cross-sections. 

Akgoz et al (2016) investigated the bending analysis of EBBoEF via the method of singular convolution but 

failed to consider buckling studies. 

Hariz et al (2022) studied the stability problem of Timeshenko beam on two-parameter LPEFs. Yue (2021) 

used an iterative method for solving the thick Bo2PF where the beam is idealized as refined beam model. 

Ike (2018a) applied the FSTM to obtain exact natural transverse vibration frequencies of prismatic cross-

section EBBoWF, but did not consider buckling investigation of the EBBoWF. Ike (2022) has applied the GITM 

to obtain exact eigensolutions to the transversely vibrating EBBoWF, but did not consider buckling. 

Ike (2018b) applied point collocation method (PCM) to the flexural analysis of EBBoWF, and obtained 

acceptable results; but did not consider buckling. Ike et al (2018) solved Euler buckling problems using Picard’s 

iteration method and found accurate buckling load solutions to the eigenvalue problem. 

Ikwueze et al (2018) applied least squares weighted residual method to find critical buckling load of Euler 

columns with fixed-pinned ends. Ofondu et al (2018) used the Stodola-Vianello iteration method (SVIM) to find 

acceptable approximate solutions to Euler column buckling analysis for clamped-pinned boundaries. 

Ike et al (2023b) and Ike (2023d) applied the SVIM and polynomial displacement basis functions for the 

eigensolutions of EBBoWF where the  beam has clamped-clamped and simple end supports respectively. 

In another work, Ike (2023e) used the SVIM and exact trigonometric basis functions to solve the eigenvalue 

problems of EBBoWF with Dirichlet boundary conditions. 

Ike (2023b) used SVM and exact shape functions for the exact eigen solution of EBBo2PFs. Ike et al (2023a) 

and Ike (2023c) have further used the SVIM for EBBo2PFs based on polynomial basis functions for clamped-

clamped and simply supported boundaries, respectively. 

Ike (2024) used the Fourier series method (FSM) to obtain exact stability solutions for EBBo2PFs with simply 

supported ends. The work used a Newtonian equilibrium technique to formulate the GDES in a first principles, 

rigorous method, and the FSM was adopted for the solution due to the ease of the Fourier series to undergo 

differentiation and integration, because of the inherent orthogonality properties. 

Taha (2014) used a recursive differentiation method (RDM) for the approximate solutions of boundary value 

problems (BVPs) and specifically illustrated the application of RDM to EBBo2PFs under simply supported ends. 
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Taha and Hadima (2015) also presented RDM for buckling analysis of non-uniform BoEFs. Naidu and Rao (1995) 

presented stability solutions for EBBo2PFs for various end support conditions and values of the foundation 

parameters. Rao and Raju (2002) presented closed form solutions for the buckling analysis of EBBo2PFs for 

various foundation parameters and end support conditions. 

Aristizabal-Ochoa (2013) has also investigated the stability of EBBoEF under various support condition cases. 

In this work, the Ritz variational method is adopted to obtain buckling solutions for EBBo2PFs. The Ritz 

vartiational functional   is derived for the thin beam resting on two-parameter LPEF by summing the strain 

energy of the beam, and the elastic foundation and the work potential of the in-plane compressive force. The 

principle of minimum potential energy is applied to minimize the Ritz functional .  

1.3. Novelty of the study 

The novelty of the study is the first principles, systematic derivation of the Ritz functional for the EBBo2PF 

problem under in-plane compression; and the systematic application of the principle of minimum total energy to 

obtain the eigen equation of the system.  

2. Theoretical framework of the studied EBBo2PF  

The EBBo2PF studied is shown in Figure 3 for axial compressive loading by force P. 

 

 

Figure 3: Euler-Bernoulli beam rested on two-parameter elastic foundation 

 

The beam has a span l and the ends are supported according to the support conditions investigated in this paper. 

2.1. Fundamental assumptions 

The following are assumed: 

(i) The thin beam material is linearly elastic, homogeneous and isotropic. 

(ii) The thin beam is resting on a linearly elastic, homogeneous, isotropic two-parameter foundation. 

(iii) The transverse displacements are considered to be very small with respect to the beam thickness. 

(iv) The axial strains are so small and neglected. 

(v) Normal strains in the transverse directions are so small and are insignificant. 

(vi)  Transverse shear stresses are infinitesimally small, and are neglected. 

(vii)  Middle planes to the beam cross-sections are plane and orthogonal to the longitudinal axis of the beam 

before and after deformations.  

2.2. Displacement field 

The displacement field components about the x, y, z Cartesian coordinate directions are: 

( , , )

( , , ) 0

( , , ) ( )

w
u x y z z

x

v x y z

w x y z w x


= −



=

=

          (1) 

where u(x, y, z), v(x, y, z), w(x, y, z) are the displacement field components about the x, y, z Cartesian coordinate 

directions, respectively. 

2.3. Strain field 

The strain field is found using the strain displacement equations of small displacement elasticity theory. Thus, 
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Since w(x) does not vary with z 
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, ,xx yy zz    are normal strains in the x, y, z coordinate directions, , ,xy yz xz    are shear strains. 

 

2.3.1 Stress fields 

The stresses are found from the strain fields using the stress-strain relations. Thus, 
2

2xx xx

w
E Ez

x


 =  = −


          (4) 

0yy yyE =  =   

0zz zzE =  =   

0xy xyG =  =   

0yz yzG =  =   

0xz xzG =  =   

where , ,xx yy zz    are normal stresses in the x, y, z directions, , ,xy yz xz    are shear stresses, E is the Young’s 

modulus of elasticity, and G is the shear modulus. 

2.4. Strain Energy of Euler Bernoulli Beam (SEb) 

The strain energy (SEb) of an Euler-Bernoulli beam is given by the triple integral over the beam domain as: 

( )
− −

=   +   +   +   +   +    
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SE dxdydz     (5) 

where   −   −  0 ; /2 /2; /2 /2,x l b y b h z h  h is the depth (thickness) of the beam cross-section, b is the 

width of the beam, l is the length of the beam. 

Simplifying, the non-vanishing expression for SEb is 
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I is the moment of inertia of the beam cross section, where  
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2

/2 /2
12

b h

b h

bh
I z dydz         (10) 

2.5. Strain energy of the two-parameter elastic foundation (SEf) 

The strain energy of the two-parameter elastic foundation is: 

− −

= +   1 2

/2 /2

/2 0 /2 0

1 1
( ) ( )

2 2

b l b l
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SE r w x dxdy r w x dxdy        (11) 

where rs1 and rs2 are the reactive pressures from the elastic foundation. 

For two-parameter foundations, the reactive pressures rs1 and rs2 are: 

1

2

1

2 2

( )

( )

s
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=
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where k1 and k2 are the two parameters of the foundation. 

Hence, 

( ) ( )
2 2

1 2

0 0

1 1
( ) ( )

2 2

l l

fSE b k w x dx b k w x dx= +         (13) 

2.6. Work potential of the axial load, P 

The work potential Wp of the applied load P on the beam is given by Ike (2024) as: 

( )
2

2

0 0

1 1
( )

2 2

l l

P

dw
W P dx P w x dx

dx

 
= = 

 
          (14) 

2.7. Ritz total potential energy functional ( )  

The total potential energy functional ( )  is: 

b f pSE SE W = + −           (15) 
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Hence, 
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Alternatively, for prismatic, homogeneous beams, EI is a constant which can be factored out to give   as follows: 
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3. Methodology 

The Ritz variational methodology for solving the EBBo2PF buckling problem is illustrated for one-parameter 

buckling shape function, two-parameter buckling shape function, three-parameter buckling shape function and an 

n-parameter buckling shape function. The problem can be solved for any number of parameters used for buckling 

shape configuration. However, with increase in number of parameters, the solution accuracy is expected to 

increase. However, a one-parameter shape function that satisfies all boundary conditions can be used to achieve 

accurate results. 

3.1. One-parameter buckling shape function 

A one-parameter buckling shape function is given by: 

1 1( ) ( )w x c x=             (23) 

where c1 is the generalized parameter of the shape function, 1( )x  is the buckling shape function which is 

constructed or chosen to satisfy both the displacement and force boundary conditions of the problem. 

Then the Ritz functional for the EBBo2PF is: 
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Simplifying Equation (24) gives: 
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 ( )
2

3 1

0

( )

l

I x dx=   

Then, 

( ) = +  +  − = 2
1 1 1 2 2 3 1( ) ( )

2

EI
c I I I c        (27) 

Extrema of   correspond to a zero of derivative   with respect to c1: 

1

0
c


=


           (28) 

Hence, 

( )1 1 1 2 2 3( ) 0EIc I I I+ +  − =          (29) 

Dividing by EI,  

( )1 1 1 2 2 3( ) 0c I I I+ +  − =          (30) 

For nontrivial solutions, 1 0,c   the characteristic buckling equations is: 

1 1 2 2 3( ) 0I I I+  +  − =          (31) 

Solving, 

2 3 1 1 2( )I I I −  = +            (32) 

Dividing by I3 gives: 

1 1 2
2

3

I I

I

+ 
 −  =           (33) 

Solving for ,   

1 1 2
2

3

I I P

I EI

+ 
 =  + =           (34) 

Then, 

1 1 2
2

3
cr

I I
P EI

I

 + 
=  + 

 
         (35) 

In standard form, 

21 1 2
22

3

I IEI
P l

Il

 + 
=  + 

 
         (36) 

( )2
1 22

,cr

EI
P K l

l
=             (37) 

where 

21 1 2
2

3
cr

I I
K l

I

 + 
=  + 
 

         (38) 

3.2. Two-parameter buckling shape function 

Here, 1 1 2 2( ) ( ) ( )w x c x c x=  +           (39) 

where 1( )x  and 2 ( )x  are the buckling shape functions which satisfy the boundary conditions, and c1 and c2 

are the generalized parameters of w(x). 

The Ritz functional corresponding to this two-parameter buckling shape function is: 

( ) ( )( ( ) )    =  +  +   +  +  −  + 
2 2 2

1 1 2 2 1 1 1 2 2 2 1 1 2 2

0

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

l
EI

c x c x c x c x c x c x dx  (40) 

Expanding, 
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( ) ( )( )2 22 2
1 1 1 2 1 2 2 2

0

( ) 2 ( ) ( ) ( )
2

l
EI

c x c c x x c x    =  +   +  ( )2 2 2 2
1 1 1 1 2 2 2 2( ) 2 ( ) ( ) ( )c x c c x x c x+   +   +   

  ( ) ( )( ))   +  −  +   + 
2 22 2

2 1 1 1 2 1 2 2 2( ) ( ) 2 ( ) ( ) ( )c x c c x x c x dx    (41) 

The Ritz functional can be simplified as: 

( ) ( ) ( )2 22 2
1 1 1 1 2 1

0

( ) ( ) ( ) ( )
2

l
EI

c x x x dx


  =  +   +  − 

   

  ( )( )1 2 1 2 1 1 2 2 1 2

0

2 ( ) ( ) ( ) ( ) ( ) ( ) ( )

l

c c x x x x x x dx   +   +    +  −     

  ( ) ( ) ( )( )2 2 22
2 2 1 2 2 2 1 2

0

( ) ( ) ( ) ( ) ( , )

l

c x x x dx f c c


 +  +   +  −  =


    (42) 

For extremizing 1 2( , )c c  with respect to c1 and c2, 

1

2

0

0

c

c


=




=



           (43) 

Hence, 

( ) ( ) ( )( )2 2 2
1 1 1 1 2 1

1 0

2 ( ) ( ) ( ) ( )
2

l
EI

c x x x dx
c

 
 =  +   +  − 

 
   

  ( )2 1 2 1 1 2 2 1 2

0

2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

l

c x x x x x x dx


   +   +    +  −   =


    (44) 

( )( )1 1 2 1 1 2 2 1 2
2 0

2 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

l
EI

c x x x x x x dx
c

 
   =   +    +  −  

 
   

   ( ) ( ) ( )( )2 2 2
2 2 1 2 2 2

0

2 ( ) ( ) ( ) ( )

l

c x x x dx


 +  +   +  −  


    (45) 

Simplifying, 

( ) ( ) ( )( )2 2 2
1 1 1 1 2 1

0

( ) ( ) ( ) ( )

l

EI c x x x dx


   +   +  − 


   

  ( )2 1 2 1 1 2 2 1 2

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

l

c x x x x x x dx


    +   +    +  −   =



    (46) 

( )1 1 2 1 1 2 2 1 2

0

( ) ( ) ( ) ( ) ( ) ( ) ( )

l

EI c x x x x x x dx


      +    +  −  


   

   ( ) ( ) ( )( )2 2 2
2 2 1 2 2 2

0

( ) ( ) ( ) ( ) 0

l

c x x x dx


  +  +   +  −  =



    (47) 

But 0,EI   hence we have: 

1 11 2 12

1 21 2 22

0

0

c k c k

c k c k

+ =

+ =
          (48) 
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where, 

( ) ( ) ( )( )2 2 2
11 1 1 1 2 1

0

( ) ( ) ( ) ( )

l

k x x x dx =  +   +  −        (49) 

( )( )2
12 21 1 2 1 1 2 2 1 2

0

( ) ( ) ( ) ( ) ( ) ( ) ( )

l

k k x x x x x x dx   = =   +    +  −       (50) 

( ) ( ) ( )( )2 2 2
22 2 1 2 2 2

0

( ) ( ) ( ) ( )

l

k x x x dx =  +   +  −        (51) 

In matrix form, 

11 12 1

21 22 2

0

0

k k c

k k c

    
=    
   

          (52) 

For nontrivial solutions, the characteristic buckling equation is: 

11 12

21 22

0
k k

k k
=            (53) 

Expanding, 

11 22 12 21 0k k k k− =           (54) 

3.3. n-parameter buckling shape function 

For Ritz solution using an n-parameter buckling shape function, 

1

( ) ( )
n

i i

i

w x c x
=

=            (55) 

Then 

= = =

       
  =  +   +  −  =            

       

  

2 2 2

1 2 1 2

1 1 10

( ) ( ) ( ) ( ) ( , ,..., )
2

l n n n

i i i i i i n

i i i

EI
c x c x c x dx c c c   (56) 

For extrema, 

1

2

0

0

0
n

c

c

c


=




=




=



           (57) 

Or,  0
ic


=


  

where i = 1, 2, …, n. 

The conditions for extremum yield a system of n equations as follows: 

11 12 1 1

21 22 2 2

1 2

0

0

0

n

n

n n nn n

k k k c

k k k c

k k k c

    
    
    =
    
    

   

         (58) 

For nontrivial solutions, 
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1

2
0

n

c

c

c

 
 
  
 
 
 

  

The characteristic buckling equation is 

11 12 1

21 22 2

1 2

0

n

n

n n nn

k k k

k k k

k k k

=          (59) 

where kij are the elements of the buckling matrix. 

4. Results 

The results are presented for different boundary conditions of the EBBo2PF problem. 

4.1. Results for EBBo2PF with clamped ends 

The boundary conditions for EBBo2PF with both ends (x = 0, and x = l) clamped are: 

= =

 = =

(0) ( ) 0

(0) ( ) 0

w w l

w w l
          (60) 

Using trigonometric shape functions, one particular ( )x  that satisfies the clamped boundary conditions is: 

( )1
2( ) 1 cos xx

l
 = −           (61) 

A one-parameter deflection function, would therefore be: 

( )( )1 1 1
2( ) ( ) 1 cos xw x c x c

l
=  = −         (62) 

where c1 is a, yet, undetermined deflection parameter. 

Then, I1, I2 and I3 are evaluated as: 

( )

2
2

2
1 1

0 0

2 2
( ) cos

l l
x

I x dx dx
l l

     
  =  =         

   

4 4 4
2

4 3
0

2 2 16 8
cos

2

l
x l

dx
l l l l

      
= = =   
   

   (63) 

( )
           

=  = − = − + =        
        

  
2

2 2
2 1

0 0 0

2 2 2 3
( ) 1 cos 1 2cos cos

2

l l l
x x x l

I x dx dx dx
l l l

   (64) 

 ( )
2 2

2 2
3 1

0 0 0

2 2 2 2
( ) sin sin

l l l
x x

I x dx dx dx
l l l l

           
  =  = =               

     

2 2 2
2

3 2 2
0

4 2 4 2
sin

2

l
x l

I dx
l ll l

    
= = = 

 
         (65) 

Substituting the above obtained particular vales of I1, I2, and I3 into Equation (35) or Equation (36) the following 

is obtained: 

 
=  + + 

  

22
1

2 2 2

34

4
cr

l
P EI

l
         (66) 

Or, in the standard form 
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 
=  + + 

  

22
21

22 2 2

34

4
cr

lEI
P l

l l
         (67) 

The least value of P that causes buckling is the critical buckling load Pcr expressed as: 

4
2 2 1

22 2

3
4

4
cr

lEI
P l

l

 
=  +  + 

  

         (68) 

Equation (106) is expressed in terms of critical buckling load coefficient 1 2( , )K    as: 

1 22
( , )cr

EI
P K

l
=             (69) 

where, 

2
4 2 22

1 2 12 2

3
( , ) 4

4

l
K l


  =  +  + 

 
        (70) 

Let  
2 2

2 2
2 2 2

l k l

EI


 = =

 
         (71) 

Then, 

4 2 2
1 2 1 22

3
( , ) 4

4
K l  =  +  +  


  

Further simplification gives: 

4 2
1 2 1 22

3
( , ) (4 )

4
K l  =  + +  


        (72) 

The buckling load parameters 1 2( , )K    are calculated for values of 4
1 0,1,100l =  and for values of 

2 0, 0.5,1.0 =  and 2.5 and presented in Table 1. Table 1 also shows 1 2( , )K    obtained by Rao and Raju (2002) 

and by Naidu and Rao (1995) using the Finite Element Method. 

 

Table 1: Buckling load parameters of EBBo2PF with clamped ends at x = 0 and x = l  

2
2

2 2
l

 =


 
Method / Reference 4

1l  

0 1 100 

0 Present study 39.4784176 39.5544089 47.07750638 

Rao and Raju (2002) 39.478 39.554 47.077 

FEM (Naidu and Rao, 

1995) 

39.479 39.555 47.077 

0.5 Present study 44.4132198 44.48921069 52.01230858 

Rao and Raju (2002) 44.413 44.489 52.012 

FEM (Naidu and Rao, 

1995) 

44.414 44.490 51.542 

1 Present study 49.34802201 49.02401289 56.94711078 

Rao and Raju (2002) 49.348 49.424 56.9471 

FEM (Naidu and Rao, 

1995) 

49.349 49.425 56.877 

2.5 Present study 64.15242861 64.22841949 71.75151738 

Rao and Raju (2002) 64.152 64.228 71.751 

FEM (Naidu and Rao, 

1995) 

64.153 64.229 71.681 
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4.2. Results for EBBo2PF with clamped free ends 

The boundary conditions are: 

=

 =

(0) 0

(0) 0

w

w
 

=

 =

( ) 0

( ) 0

w l

w l
         (73) 

A shape function that satisfies the geometric conditions, but does not satisfy the force boundary condition 

 =( ) 0w l  is: 

( ) 1 cos
2

x
x

l

 
 = −  

 
          (74) 

Hence, 1( ) 1 cos
2

x
w x c

l

   
= −  

  
         (75) 

1

0
c


=


  

1 1 2 2 3( ) 0I I I+  +  − =   

( )

2
2

2
1 1

0 0

( ) cos
2 2

l l
x

I x dx dx
l l

     
  =  =         

         (76) 

4 4 4
2

1 4 4 3
0

cos
2 216 16 32

l
x l

I dx
ll l l

    
= =  = 

 
          (77) 

( )
2

2
2 1

0 0

(3 8)
( ) 1 cos

2 2

l l
x l

I x dx dx
l

    − 
=  = − =  

  
        (78) 

( )
2

2
3 1

0 0

( ) sin
2 2

l l
x

I x dx dx
l l

    
=  =   

  
    

2 2 2
2

3 2
0

sin
2 2 2 84

l
x l

I dx
l l ll

        
= = =     
     

         (79) 

Hence, 
4 2

1 23

(3 8)
( ) 0

2 832

l

ll

  − 
+  +  − =


        (80) 

Simplifying, 
2 4

2 13

3 8
( )

8 232
l

l l

   − 
 − = +   

 
        (81) 

Further simplifying, 

4
1

2 2 3

(38

232

ll

l

   −)
 −  = +    

         (82) 

Hence, 
22

1
2 2 3

8 (3 8)

4 2

l

l

  −
 − = +


         (83) 

Then, 
22

1
2 2 3

4 (3 8)

4

l

l

  −
 − = +


         (84) 

Making   the subject, we have: 
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22
1

2 2 3

4 (3 8)

4

lP

EI l

 −
 = =  + +


        (85) 

Expressed in terms of P, gives: 

22
1

2 2 3

4 (3 8)

4

l
P EI

l

   −
=  + + 

  

        (86) 

The critical value of P is Pcr which is: 

   −
=  + + =   

  

42
2 1

2 1 22 3 2

4 (3 8)
( , )

4
cr

lEI EI
P l K

l l
      (87) 

where: 
4 22 2

2 2 41 2
1 2 2 13 2 3

4(3 8) 4(3 8)
( , )

4 4

l l
K l l

 −     −
  =  + + =  + + 

  
    (88) 

Alternatively,  

( )2 4
1 2 2 13

4(3 8)
( , ) 0.25K l

 −
  =   + + 


  

where, 
2

2
2 2

l
 =


           (89) 

2
1 2( 0, 0) 0.25 2.4674011K  =  = =  =   

1 2( 1, 1) 12.5208106K  =  = =   

1 2( , )K    are calculated for 4
1 0,1,100l =  and 2 0, 0.5,1, 2.5 =  and presented in Table 2 together with 

previous results by Naidu and Rao (1995) using the FEM, and Rao and Raju (2002). 

Table 2: Buckling load coefficients of EBBo2PF clamped at x = 0 and free at x = l  

2
2

2 2
l

 =


 
Method / Reference 4

1l  

0 1 100 

0 Present study 2.4674011 2.651206202 20.84791128 

Rao and Raju (2002) 2.4674 2.6512 20.848 

FEM (Naidu and Rao, 1995) 2.467 2.652 20.848 

0.5 Present study 7.402203301 7.586008403 25.78271349 

Rao and Raju (2002) 7.4022 7.5860 25.783 

FEM (Naidu and Rao, 1995) 7.402 7.591 25.79 

1 Present study 12.3370055 12.5208106 30.71751569 

Rao and Raju (2002) 12.337 12.521 30.717 

FEM (Naidu and Rao, 1995) 12.337 12.521 30.718 

2.5 Present study 27.1414121 27.3252172 45.52192229 

Rao and Raju (2002) 27.141 27.325 45.522 

FEM (Naidu and Rao, 1995) 27.142 27.325 45.522 

 

4.3. Results for EBBo2PF with simply supported ends 

The boundary conditions for EBBo2PF with both ends (x = 0 and x = l) simply supported are: 

= =

= =

(0) ( ) 0

(0) ( ) 0

w w l

M M l
          (90) 

where M(x) is the bending moment at x. 

Hence using the bending moment-deflection equation, the force boundary conditions are expressed using 
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deflections as: 

 = =(0) ( ) 0w w l           (91) 

Suitable functions, ( )x , can be found as: 

( ) sin ,n

n x
x

l

 
 =  

 
  n = 1, 2, 3, …       (92) 

Then, for an analytical solution, w(x) is given in the infinite sine series: 

1

( ) sini

i

n x
w x c

l



=

 
=  

 
           (93) 

i = 1, 2, 3, …,   ; ci are the generalized displacement parameters. 

For a truncated series solution, 

1

( ) sin
n

i

i

i x
w x c

l=

 
=  

 
           (94) 

Then, for n-parameter Ritz buckling solutions, the Ritz functional   is: 

( )
2 2

2
1 1 1 2 1 2

1 1 10

( ) ( ) ( ) ( ) ( , ,..., )
2

l n n n

i i i i n

i i i

EI
c x c x c x dx c c c

= = =

         =  +   +  −  =               

     (95) 

Simplification of Equation (95) gives: 

2 22

1 1

1 10

sin sin
2

l n n

i

i i

EI i i x i x
c c

l l l= =

              
  = − +                   

    

     

2

2 1

1

( ) cos
n

i

i i x
c dx

l l=

       
+  −                

   (96) 

Hence, 

2 2

1

0

sin sin sin sin
2

l

i j

EI i j i x j x i x j x
c c

l l l l l l

                   
 = +             

            
   

    2( ) cos cos
i j i x j x

dx
l l l l

          
+  −        

       
  (97) 

(i = 1, 2, 3, …, n; j = 1, 2, 3, …, n) 

Thus, 

2 2

1 1 1 2 2( )
2

i j

EI i j i j
c c I I I

l l l l

        
 = +  +  −    

     

      (98) 

where  1

0

sin sin

l
i x j x

I dx
l l

    
=    

   
         (99a) 

  2

0

cos cos

l
i x j x

I dx
l l

    
=    

   
         (99b) 

Using the orthogonality properties of the trigonometric functions, the integrals I1 and I2 are easily evaluated. 

1

0

0
sin sin

2

l i ji x j x
I dx

l i jl l

     
= =    

=    
        (100a) 
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2

0

0
cos cos

2

l i ji x j x
I dx

l i jl l

     
= =    

=    
        (100b) 

Hence for nontrivial solutions, i = j and 1 2 2
lI I= =   

Then, 

4 2
2

1 2( )
4

i

EIl i i
c

l l

       
  = +  +  −           

   (i = 1, 2, 3, …, n)   (101) 

From the principle of minimization of total potential energy, the functional   is minimum with respect to ci when 

0
ic


=


           (102) 

(i = 1, 2, 3, …, n) 

Hence, 

4 2

1 22 ( ) 0
4

i
i

EIl i i
c

c l l

        
 = +  +  − =            

       (103) 

This is an algebraic homogeneous eigenvalue equation. 

For nontrivial solutions, 0,ic   the characteristic buckling equation is: 

4 2

1 2( ) 0
i i

l l

    
+  +  − =   

   
         (104) 

Solving for ,  gives: 

2 4

2 1( )
i i

l l

    
 −  = +    

   
         (105) 

Simplifying, 

2 4 2 2

2 1 1

l i i l

i l l i

         
  −  = +  = +                  

       (106) 

Making   the subject gives: 

2 2

2 1

l i P

i l EI

   
 =  +  + =   

   
         (107) 

Hence, 

2 2

2 1

l i
P EI

i l

    
 =  +  +        

         (108) 

Expressing in the standard form, 

      
 =  +  + =  + +              

2 2 4
2 2 21

2 1 22 2 2
( )

( )

lEI l i EI
P l l i

i ll l i
    (109) 

Thus, 

1 22
( , )

ib

EI
P K

l
=             (110) 

where Kbi is the ith buckling load coefficient 
4

2 21
1 2 2 2

( , ) ( )
( )

ib

l
K l i

i


  =  + + 


        (111) 

The least value of P occurs when i = 1 and 
( 1)ibK
=

 is called the critical buckling load parameter, Kbcr 
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( 1)

4
2 2 21

2 2i crb b

l
K l K

=

 
=  + +  = =  
  

        (112) 

where   is a buckling load parameter related to 
crbK   

( 1)

4
2 21

22 2 2icr b

lEI EI
P K l

l l
=

 
= =  + +  

  

  

2

2cr

EI
P

l
=             (113) 

2 4
2 22 1

2 2 4 2
1cr

l lEI EI
P

l l

  
= + +  =  

   

  

( ) 2 2
2 12 2

1cr

EI EI
P

l l
=  +  +  =    

Values of 
2

crbK =   are calculated for 4
1 0,l =  and ( )

2

2 0,l =


 1, and 2.5, and for 4
1 100l =  and 

( )
2

2 0,l =


 1, 2.5; and presented as   in Table 3, along with previous results presented by Ike (2023b, 2024), 

Taha (2014), Anghel and Mares (2019) and Ike (2023c). 

 

Table 3 

Critical buckling load coefficient crK =  of EBBo2PF with simply supported ends (x = 0, and x = l) 

4
1l   ( )

2

2 2 0l =  =


 

Taha (2014) Anghel and 

Mares (2019) 

Ike (2023b, 2024) Ike (2023c) Present 

0 3.1415 3.1413 3.141593 3.143621 3.141593 

100 4.4723 4.4721 4.472329 4.473579 4.472329 

 
( )

2

2 2 1l =  =


 

 Taha (2014) Anghel and 

Mares (2019) 

Ike (2023b, 2024) Ike (2023c) Present 

0 4.4428 4.4427 4.44283 4.444317 4.44283 

100 5.4654 5.4653 5.465467 5.466505 5.465467 

 
( )

2

2 2 2.5l =  =


 

 Taha (2014) Anghel and 

Mares (2019) 

Ike (2023b, 2024) Ike (2023c) Present 

0 5.8774 5.8772 5.877382 5.878466 5.877382 

100 6.6840 6.6838 6.683991 6.68484 6.683991 

 

5. Discussion 

5.1. General discussion 

This article has presented Ritz variational method (RVM) for buckling solutions of EBBo2PFs. The Ritz total 

potential energy functional   was derived for the EBBo2PF under in-plane compressive force. This functional, 

 , was found as the sum of the strain energies of EBB, the two-parameter LPEF, and the work potential due to 
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the in-plane compressive load. The displacement field used was that of the EBBT and the strain field components 

were found using small displacement linear elasticity theory. Stress fields were found from the strain field using 

one-dimensional constitutive relations. 

The Ritz functional,  , was constructed as a function of x, w(x), ( )w x  and ( ).w x  The principle of 

minimization of   was used to find w(x) corresponding to minimum .  The boundary conditions considered 

were: 

(i) EBBo2PFs with clamped ends at x = 0, and x = l 

(ii) EBBo2PFs clamped at x = 0, and free at x = l 

(iii) EBBo2PFs with simple supports at x = 0, and x = l. 

For each of the boundary conditions considered, w(x) was determined in terms of generalized unknown 

buckling parameters ci, and buckling shape functions ( )i x  constructed to satisfy the boundary conditions. Thus 

  become expressed in terms of the generalized unknown buckling parameters ci as 1 2( , ,. . . , )nc c c  for an n-

parameter Ritz formulation. 

The criterion for the calculus of minimization of the Ritz functional,  , was then used to determine the 

eigenvalue equation for the problem as an algebraic equation in terms of the unknown parameters. The condition 

for nontrivial solutions of the eigenvalue problem was used to determine the characteristic buckling equation. 

5.2. Discussion on EBBo2PF with clamped ends 

A one-parameter Ritz formulation was used for EBBo2PFs with clamped ends. The buckling shape function 

was expressed in trigonometric basis functions as Equation (61) and the buckling deflection function expressed 

as Equation (62). By substitution in the Ritz functional and minimization, the characteristic buckling equation was 

found as Equation (66). Solving Equation (66) yielded the critical buckling load Pcr as Equation (68). The buckling 

load coefficients 1 2( , )K    for the EBBo2PFs with clamped ends were calculated for 4
1 0,1,l =  and 100 for 

2 0, 0.5,1.0, =  and 2.5 and shown in Table 1 along with previous solutions by Rao and Raju (2002), and by 

Naidu and Rao (1995) using the FEM. Table 1 illustrates that the present results are closely similar to previous 

results by Naidu and Rao (1995) via the FEM and the results by Rao and Raju (2002). 

5.3. Discussion on results for EBBo2PFs with clamped-free ends 

In this case, a one-parameter buckling shape function shown in Equation (74) was used to express the buckling 

function as Equation (75). The algebraic eigenvalue problem obtained by minimizing   with respect to ci gave 

Equation (80) which was solved to obtain the critical buckling load Pcr expression given by Equation (77). The 

critical buckling load coefficients 1 2( , )K    were calculated for various values of 4
1 0,1,100l =  and for 

2 0, 0.5,1 =  and 2.5, and presented in Table 2; along with previous results from the literature by the FEM method 

and by Rao and Raju (2002). Table 2 shows that the present Ritz results are similar to the previous results by 

Naidu and Rao (1995) using the FEM and by Rao and Raju (2002). 

5.4. Discussion on results for EBBo2PF with simply supported ends 

In this case n-parameter buckling function is constructed as Equation (93) using sinusoidal basis functions in 

Equation (92) which satisfy the boundary conditions of simple supports at the beam ends. Substitution of Equation 

(94) into the Ritz functional gave   as 1 2( , ,. . . , )nc c c  which is shown explicitly as Equation (101). The 

eigenvalue equation is obtained for minimization of   as Equation (103). The conditions for nontrivial solutions 

yield the characteristic buckling equation as Equation (104). The eigenvalue is found as the buckling load 

expression given for the ith buckling load as Equation (109). The buckling load coefficient for the ith buckling 

mode is given by Equation (111). The least buckling load is found for the first buckling mode when i = 1 and thus 

the critical buckling load Pcr for this case is found as Equation (113). The critical buckling load coefficient given 

by Equation (112) is evaluated for various values of 4
1 0,1,100l =  and for 2 0,1, =  and 2.5; and presented in 

Table 3, along with previous results by Taha (2014), Anghel and Mares (2019), Ike (2023b, 2023c, 2024). Table 

3 illustrates that the present RVM results are identical with results obtained by Ike (2023b, 2024). The identical 

results obtained in this work and the previous results by Ike (2023b, 2024) was because the exact buckling shape 

functions were used in this work (for the case of simply supported boundaries) and those research works that 
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applied the SVIM and the Fourier series method. Similarly, the present RVM results were similar to previous 

results by Ike (2023c), which used the polynomial basis functions in the SVIM for the eigensolution of the 

problem. Table 3 further shows that the present RVM results are similar to previous results by Taha (2014), 

Anghel and Mares (2019). 

6. Conclusion 

This article has studied the Ritz variational method for the buckling load solutions of EBBo2PFs under in-

plane compressive load, P. The study was done for three cases of boundary conditions; namely: 

(i) EBBo2PFs with clamped ends at x = 0, and x = l 

(ii) EBBo2PFs clamped at x = 0, and free at x = l 

(iii) EBBo2PFs with simple supports at x = 0, and x = l. 

In conclusion, 

(i) The results for critical buckling load for EBBo2PF with clamped ends are closely similar to previous 

results that used the FEM and results by Rao and Raju (2002). 

(ii) The present RVM results for critical buckling load are similar to previous results in the literature that 

used the FEM and results by Rao and Raju (2002). 

(iii) The present RVM critical buckling load solutions for EBBo2PFs with simple end supports are identical 

with previous solutions that used the exact sinusoidal buckling shape functions in the SVIM and the 

Fourier series method (FSM). The present RVM results for critical buckling loads are similar to pervious 

results that used fourth degree polynomial shape functions in the SVIM, and other previous solutions by 

Taha (2014) and Anghel and Mares (2019) who applied collocation methods. The present RVM results 

for simply supported EBBo2PFs are exact because exact buckling shape functions were used to construct 

the solutions, and the total potential energy functional   was minimized everywhere in the domain and 

all the boundary conditions were also satisfied. 

(iv) Expectedly, the critical buckling load solutions obtained in the present RVM study for EBBo2PFs 

reduced to the critical buckling load solutions for EBBoWFs when the second foundation parameter 2  

became equal to zero. 

Notation 

x, y, z  three dimensional Cartesian coordinates 

z  transverse coordinate 

x  longitudinal coordinate 

y  coordinate determining the beam width 

u  displacement in longitudinal (axial) x direction 

v  displacement in the y direction 

w  displacement in the z direction 

xx    normal strain in x direction 

yy    normal strain in y direction 

zz    normal strain in in the transverse z direction 

,xy yz    shear strains 

xz    transverse shear strain 

E  Young’s modulus of elasticity 

G  shear modulus 

xx    normal stress in x direction 

yy    normal stress in y direction 

zz    normal stress in z direction 

,xy yz     shear stresses 

xz    transverse shear stress 

h  depth (thickness) of beam 

b  breath of beam 

l  span (length) of beam 
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SEb  strain energy of thin beam in bending 

I  moment of inertia of beam cross-section 

SEf  strain energy of the two-parameter elastic foundation  

rs1 reaction pressure from the two-parameter foundation corresponding to the first Winkler-

parameter 

rs2 reaction pressure from the two-parameter foundation corresponding to the second parameter of 

the foundation 

k1  Winkler foundation parameter or first parameter of the two-parameter elastic foundation 

k2  second foundation parameter of the two-parameter elastic foundation 

1k    foundation parameter defined in terms of k1 and b 

2k    foundation parameter defined in terms of k2 and b 

p  axial compressive force 

Wp  work potential of the applied load  

    total potential energy functional  

1    parameter defined in terms of 1,k  and EI 

2    parameter defined in terms of 2,k  and EI 

    compressive load parameter defined in terms of P and the beam properties EI 

( ), ( ), ( ), ( )F x w x w x w x    integrand in the total potential energy functional 

     integral 

( )i x    i buckling shape function 

M(x)  bending moment distribution 

ci  i generalized parameter of the buckling function 

I1  integral defined in terms of ( )i x   

I2  integral defined in terms of ( )i x   

I3  integral defined in terms of ( )i x   

Pcr  critical buckling load 

Kbcr  critical buckling load coefficient 

Kij  elements of the buckling matrix 

1    parameter defined in terms of 1  and l 

2    parameter defined in terms of 2, l  and    

    buckling load parameter defined in terms of bcrK   

   determinant 

cos  cosine function 

sin  sine function 

x




   partial differential operator with respect to x 

ic




   partial differential operator with respect to ci 

0

( )

l

dx   integration with respect to x between the limits x = 0, and x = l 

EBBo2PF Euler-Bernoulli beam on two-parameter elastic foundation 

EBB  Euler-Bernoulli beam 

EBBT  Euler Bernoulli beam theory 

CBT  classical beam theory 

TBT  Timoshenko beam theory 

EBBoWF Euler-Bernoulli beam on Winkler foundation 

EBBoEF Euler-Bernoulli beam on elastic foundation 

VIM  variational iteration method 

GDES  governing differential equation(s) of stability 

GITM  generalized integral transform method 

SVIM  Stodola-Vianello iteration method 

BoEF  beam on elastic foundation  

DTM  differential transform method 

RDM  recursive differentiation method 

PCM  point collocation method 

FSM  Fourier series method 
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ODEs  ordinary differential equations 

PDEs  partial differential equations 

BVPs  boundary value problems 

LPEF  lumped parameter elastic foundation 

RVM  Ritz variational method 

FEM  Finite element methods 
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