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Abstract.  
     In 2005 Halgwrd [3], introduced a paper for ]1,1[−∈ Cf with ∞<< p1 , be a convex 
function, we are interested in estimating the degree of 3-monotone approximation for the 
function f , which are copositive on ]1,1[− . We obtained that f  and g  are piecewise 

positive in [ ]1,1−  in terms of the Ditzian-Totik modulus of smoothness . 
 

1. Introduction and auxiliary results. 
 
      Let { }byyyaY ss <<<<<= ...21 , 0≥s  . We denote by ( )sY0∆ , the set of all 

functions f , such that ( ) ( ) 01 ≥− − xfks , for [ ]1, +∈ jj yyx , k≤0  s≤  . Functions f  and 

g , that belong to the same class ( )sY0∆  are said to be copositive on [ ]ba,  . Copositive 

approximation is the approximation of a function f , from ( )sY0∆ , class by polynomials 

that are copositive with f  . Also , let ( )Pn kfE ,0

( ) Pn
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pf
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−=
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inf
I

 be the degree of 

copositive polynomial approximation of f  .  

     We denote ( ) ( ) ( )[ ] [ ]banyynyynJ jnjjnjj ,,, I
εεε ∆+∆−= , 10 +≤≤ sj , and 

denote ( ) ( )εε ,,
1

nJYO j

s

j
sn

=
= U , and ( ) ( )εε ,,

1

0
nJYO j

s

j
sn

+

=

∗ = U  . [2] 

     Functions f  and g  are called weakly almost  copositive on I , with respect to sY  if 

they are copositive on ( )ε,\ sn YOI ∗ , where 0>ε  . We define a function class 

( ) ( ) ( ) ( ){ ,01:0 ≥−=∆− − xffYalm ks
snε  ( )}ε,\ sn YOIxfor ∗∈ , the set of all weakly almost 

nonnegative functions on I , if 0>ε  . 
     The degree of weakly almost copositive polynomial approximation of f  in 

[ ] ( )sP YbaL 0, ∆I , by means ( ) ( )snn Yalmp 0∆−Π∈ εI  is ( )Psn almYfE −ε,0  

{ ( ) ( )}snnP
Yalmppf 0:inf ∆−Π∈−= εI  . 

     These results can be summarized in the following theorem ( see [5] and [8] ) . 
 
Theorem A. 
There are functions 1f  and 2f  in [ ]1,11 −C , with 1≥r , sign changes such that  
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,
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nf
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 and  

( )
[ ]( ) ∞=
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P
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rfE
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,
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1
22

2
0

ω
, ∞<< p1 ,  

where ( )
Pn rfE ,0  is the degree of the best copositive PL  ( C  if ∞=p  ), approximation 

to f , by polynomials from nΠ  . 
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      Recently , Y. Hu , D. Leviatan and X. M. Yu [6], showed that theorem A can be 
considerably improved , thus together with theorem A, revealing an interesting and 
unexpected difference between the cases ∞=p , and ∞<< p1 , for copositive 
polynomial approximation . Their result is stated as follows . 
 
Theorem B. 
Let [ ]1,1−∈Cf , change sign r , times at 1...1 1 <<<<− ryy , and let 

=δ ii
ri

yy −+≤≤ 1
0
min , where 1−=oy  and 11 =+ry  . Then there exists a constant 

( )δ,rCC = , but otherwise independent of f  and n , such that for each 14 −≥ δn , there 

is a polynomial Cnnp Π∈ , copositive with f ,   

 satisfying  
                          [ ] [ ]( ) ( )1.1.1,1,, 1

21,1
−≤− −

−∞
nfCpf

Ln ω           

 
      In [2] Bhaya , E. and other , showed that in the second result 2ω  in (1.1) can not 

replaced by [ ]( )Pbaabf ,,,3 −ω , for 10 << p , i.e., she proved .  

  
Theorem C.  
Given any 0>A , Ν∈ ~

n , 0<a , b<0 , 10 << p   and 20 << ε , there exists f  in 

[ ] ( )sP YbaL 0, ∆I , such that 

                          ( ) [ ]( ) ( )2.1.,,,, 3
0

PPsn baabfalmYfE −>− ωε  

 
    The second result in [2], shows that τ -modulus of any order 0>k  can be used for 

10 << p  . 
 
Theorem D.  
Let f in [ ] ( )sP YbaL 0, ∆I , 10 << p , and k  be a positive integer . Then there exists a 

polynomial 1−kp  in ( ) ( )snk Yalm 0
1 ∆−Π − εI , satisfying ( ) [ ]( )PkPn baabfpcPf ,,, −≤− τ  .  

 
2. The main results 

     We will modify this polynomial near the points of sign change obtaining a smooth 
piecewise polynomial approximation nf , with controlled first and third derivatives . We 

will consider iσ  that  its convexity at { }iii yyy ′′′,,  with f  .  

 
Theorem 2.1 
Let f  in [ ] ( )sP YbaL 0, ∆I  . Then for each 14 −≥ δn , there exists a function nf  in 

[ ] ( )( )sYS 03 1,1 ∆−−∆ I , copositive with f  in i

k

i
ρ

1=
=Υ U  , such that  

            [ ] ( ) [ ]( ) ( )2.2,1,1,, 1
31,1 PLn nfkCff

P
−≤− −

−
φω  
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−
φω , for ( )4.2,Υ∈x  

where ( )( )sYS 0∆−  is the set of all piecewise positive .   
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Proof. Let 14 −≥ δn , and index ki ≤≤1 , be fixed . For ∗Ι∈ ix , we set iσ  to be the 

polynomial of degree 2≤ , which vanishes at iy , 
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where ( )ii y′σ  and ( )ii y ′′σ  are chosen so that  
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       If ( ) 0=′iyf , then ( )( )iyf ′sgn , equals the sign f  on ( )ii yy ,1−  . Since 2Π∈iσ , and 

( )ii y′σ  and ( )ii y ′′σ , have opposite signs , then the only  zero of iσ  in ∗Ι i  is iy  . 

      Hence , iσ  is copositive with f  in ∗Ι i  . Also , the first derivative of iσ , 
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is a linear function , and  
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are of the same sign , which implies that iσ ′ , does not change sign in  

iρ , and for any ix ρ∈  . 
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From [3], we have  
                          [ ] [ ]( ) ( )6.2.1,1,, 1

31,1 PLi nfCf
P

−≤− −
−

φωσ  

      It is well known ( see proof of Lemma 8 in [7] ), that there exists a polynomial 
( )xQn , of degree n≤ , which is a polynomial of  best approximation to f  in [ ]1,1− , and 

satisfying  
                           [ ] [ ]( ) ( )7.2,1,1,, 1

31,1 PLn nfCQf
P

−≤− −
−

φω   

and  

                  ( ) ( )( )
[ ]

[ ]( ) ( )8.2.1,1,, 1
3

3

1,1

33
P

L
n nfCnxQx

P

−≤ −

−

φωφ  

      Now , we define the piecewise polynomial function ( ) [ ]1,1−∈ CxS , as follows  
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Finally , the function  
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is copositive with f  in i

k

i
ρ

1=
=Υ U , and indeed nf , coincides with iσ  in  

iρ , and , let C  be an absolute constant such that  

[ ] [ ]1,11,1 −−
−≤−

PP LiLn fCff σ  [ ]( )PnfC 1,1,, 1
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Now , from (2.6) and (2.7), we get  
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   Also , let us introduce the following auxiliary proposition . 
 
Proposition 2.9 

If f̂  in [ ] [ ]1,11,13 −− PLC I  is such that ( ) ( ) ( ) Mxfx ≤− 32
3

2 ˆ1 , [ ]1,1−∈x , 

1...1 1 <<<<− kyy , and ii
ki
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11

minδ , then for every Cn ≥ , there exists a 

polynomial nnp Π∈ , such that  
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where the constant C , depends only on k  and p  . 
Proof. Note that (2,10) is trivial ( see [1] theorem 3.2.1 ) . In (2.11) is valid  since 

[ ]1,1−∈x , then from [1], we get  
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     Now , let us introduce the following theorem as a main result  
Theorem 2.12 
Let f  in [ ] ( )sP YbaL 0, ∆I , change sign 1≥k , times at kyy <<<− ...1 1  1< , and let 

ii
ki

yy −= +≤≤ 1
0
minδ , where 1−=oy  and 11 =+ky  . Then there exists a constant C , such 

that for each Cn > , there is a function g  in [ ] ( )sP YbaL 0, ∆I , copositive with f , and 

satisfying  
                          [ ] [ ]( ) ( )13.21,1,, 1

31,1 PL
nfCgf
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−
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where the constant C , depends only on k  . 
 

Proof. If 14 −≥ δn , there exists NNp Π∈ , let [ ] ( )∏
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  Also , let nf  in [ ] ( )( )sYS 03 1,1 ∆−−∆ I  be a function which was described  

in theorem 2.1 . (3.9) can be written as  
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      It follows from proposition 2.9, that there exists a polynomial Np  NΠ∈ , best 

approximation to nf  and satisfies (2.7), such that    

                      [ ] [ ] [ ]1,11,11,1 −−−
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      In turn , it follows that Np  is copositive with f  in i

k
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(2.10) and (2.14), we get  
   [ ] [ ]1,11,1 −−

−+−=−
PP LnnL

gfffgf  

                    [ ] [ ]1,11,1 −−
−+−≤

PP LnLn gfff  

                     [ ] [ ] ( )
[ ]1,11

1,11,1
,2

−=
−− ∏−−−+−≤

P

PP
L

k

i
iNLN

k
NnLn xyTpfpfff η  

                    [ ] [ ] [ ]1,11,11,1 −−−
−+−+−≤

PPP LNLNnLn pfCpfff  

                    [ ]( )PnfC 1,1,, 1
3 −≤ −φω  . 

 
References 

[1] Al-Muhja , Malik S. , On k -monotone approximation in p
L

 spaces , M. Sc.   
    Thesis , University of Kufa , 2009 . 
[2] Bhaya , E. and A. H. , Weak Copositive Approximation and Whitney Theorem in 

PL , 10 << p  , J. J. App. , Sci. , Vol8 , No.2 , 51-57 , 2006 . 



 6 

[3] Halgwrd M. , On the Shape Preserving Approximation , Mc. Sc. Thesis , Babylon 
University , 2005 .  
[4] Kopotun , Kirill A. , On Copositive Approximation by Algebraic Polynomials , AMS 
, 1991 . 
[5] S. P. Zhou , A Counterexample in Copositive Approximation , Israel J. Math. , 78 ; 
75-83 , 1992 . 
[6] Y. Hu , D. Leviatan and X. M. Yu , Copositive Polynomial Approximation in [ ]1,0C  
, J. Anal. , 1 ; 85-90 , 1993 . 
[7] Yingkang Hu , On Equivalence of Moduli of Smoothness of Polynomial in PL , 

∞≤< p0  , J. Approx. Theory , 136 ; 182-197 , 2005 . 
[8] Zhou , S. P.  , On Copositive Approximation , Approx. Theory Appl. , 104-110 , 
1993 .  
 


