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 الخلاصة:
درست   اسستارارا اسلكاروةيتة الروليتة ايتتر المرةتة        (F(q)'s) والماضتمةة اةااتال كفا تة الةتت ةة  

اخذين بةظر اسعابار الاةوه  ي الأةمار الاجميعية الةووية إلت  جاةتك كفا تة اسةااتال لأةمتوذش الاةترا و 
Tassieاسااراك الالك لكفا ة اسةااال  سب  باسعاماد عل  ةكل أةموذش   صيغة لاوزيعا  كفا ة  مع 
SRCالة ةة الةووية للجسيمين  ي ال الة الأرضية والماظمةة اأفير دالة ارابرهما قصيرا المدى)   .  )
س ظةا بان اأفير اسااراك الالك الذي يمفل ةمر اجميعي يكون جوهريا لل صول علت  اوا تج جيتد بتين 
(F(q)'s) سابا  اسسارارا الرولية اير المرةة  العملية للةوااين للةوااين                        و الايم  
                                               20

Ne  24و
Mg  . 

ABSTRACT 

           The inelastic longitudinal electron scattering form factors F(q)'s, an 

expression for the transition charge density are studied where the deformation 

in nuclear collective modes is taken into consideration besides the shell model 

transition density. The core polarization  transition density is evaluated by 

adopting the shape of Tassie model together with form of the ground state two-

body charge density distributions which included the effect of short range 

correlation(SRC). It is noticed that the core polarization effects which represent 

the collective modes are essential in obtaining a good agreement between the 

calculated inelastic longitudinal F(q)'s and those of experimental data for 
20

Ne 

and 
24

Mg  nuclei. 
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1-INTRODUCTION 

       Inelastic scattering of medium energy electron provides a well-understood 

probe of the charge, current and magnetization densities which characterized 

nuclear excitations. In light nuclei, where the plan-wave Born approximation is 

quate accurate, provided a simple correction to the momentum transfer for 

Coulomb distortion is made, the connection between the measured  form 

factors  and the transition densities is direct and is simply expressed as Bessel 

transform. Also, it is for light nuclei that the most extensive microscopic 

calculations of the transition densities can be performed and tested[1]. 

         Large basis space projected Hartree-Fock wave functions were used by 

Amos and Steward [2] to calculate the longitudinal and transverse form factors 

from the excitations of 2
+

1and 4
+

1  states in 
12

C, 
20

Ne and 
24

Mg. The result 

obtained using such large basis space models of structure were compared with 

limited basis space (shell-model) predictions to show that momentum-transfer-

dependent corrections can be quite diverse. Karataglidis et. al. [3] compared 

between the calculation of transverse electric form factor using the standard 

expression for the electric multipole operator and those obtained by invoking 

current conservation. The results of E2 transitions in 
12

C, 
20

Ne, 
24

Mg and 
28

Si 

were found that the form factors yielded by the various operators differ 

significantly when the conventional  0   shell model wave function is 

used.The charge density distribution of 
24

Mg, 
28

Si and 
32

S nuclei were 

calculated  by Mashaan [4] using the wave function of a harmonic oscillator on 

the assumption that the occupation number of the states in real nuclei differ 

from the prediction of the simple shell model. The elastic electron scattering 

form factors of the considered nuclei were calculated using the ground state 

charge density distribution.Coulomb form factors of C4 transitions in even-

even N = Z sd-shell nuclei (
20

Ne, 
24

Mg, 
28

Si and 
32

S) have been discussed by 

Radhi [5] taking into account higher-energy configurations outside the sd-shell 

model space which are called core polarization effects. Higher configurations 

are taken into account through a microscopic theory, which allows particle-hole 

excitations from the 1s and 1p shells core orbits and also from the 2s1d-shell 

orbits to the higher allowed orbits with excitations up to 4  . The effect of 

core polarization was found essential in both the transition strengths and 

momentum transfer dependence of form factors, and gives a remarkably good 

agreement with the measured data with no adjustable parameters.The 

calculations were based on the Wildenthal interaction for the sd-shell model 

space and on the modified surface delta interaction (MSDI)for the core 

polarization effects. Shell-model wave functions obtained from a unified 
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treatment of the structure of the positive parity states in sd- shell nuclei have 

been used by Flaih [6] to calculate the feature of the inelastic transition from 
J (0

+
 →2

+
 and 4

+
 ) states in this region. 

        The purpose of the present work are to calculate the longitudinal C2 and 

C4 form factors for 
20

Ne and 
24

Mg nuclei depending on the ground state two 

body charge density distributions which included the effect of short range 

correlation (SRC). The Wildenthal (W) [7] interactions are used to get the sd-

shell model space wave functions. The two-particle wave functions are those of 

the harmonic oscillator (HO) potential with size parameter b chosen to 

reproduce the measured root mean square charge radius of the nuclei 

considered in this work. The results will be compared with the available 

experimental data and for different range of momentum transfer(q). 

2-THEORY 

2-1 Inelastic Longitudinal Form Factors  

         Inelastic longitudinal electron scattering form factors involving angular 

momentum J and momentum transfer q  which can be written as [8]. 

22
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where )(ˆ qT L
J  is the longitudinal electron scattering operator. The nuclear 

states have well defined isospin fiT , therefore the form factors of eq (1) may 

be written in terms of the matrix elements reduced in both angular momentum 

and isospin [9] .  
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where T  is restricted by the following selection rule: 

ifif TTTTT            ………………………………….           (3) 
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and 
2

NZ
TZ


  . The bracket    in eq (2) is the three – j symbol  and the 

reduced matrix elements in spin and isospin space of the longitudinal operator 

between the final and initial many particles states of the system including the 

configuration mixing are given in terms of the One Body Density Matrix 

(OBDM) elements times the single particle matrix elements of the longitudinal 

operator [10], i.e. 

     aTbbaJfiOBDMiTf L
TJ

ba

TJL
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ˆ),,,,(ˆ
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…………………  (4) 

The OBDM elements are calculated in terms of the isospin–reduced matrix 

elements [7], i.e. 
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The OBDM( T ) is defined [7] as : 
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(6)                     

The operator

ja creates a neutron or proton in the single nucleon state j  and the 

operator ja~  annihilates a neutron or proton in the single nucleon state j .  

 

2-2 Core – Polarization Effects 

         The model space matrix elements is not adequate to describe the absolute 

strength of the observed gamma-ray transition probabilities, because of the 

polarization in nature of the core protons by the model space protons and 

neutrons [11]. Therefore the many particle reduced matrix elements of the 

longitudinal operator, consists of two parts one is for the model space and the 

other is for core Polarization matrix element [12].  
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       iqTfiqTfiqTf Z

core
L

JZ

ms
L

JZ
L

J ),(ˆ),(ˆ),(ˆ      

…………………….      (7)              

where the model space matrix element in eq.(7) has the form [12].  

          )r,,()r(rr),(ˆ
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………………………..         (8)              

The model space transition   density )r,,(, fi
ZJ

ms

  is expressed as the sum of 

the product of the OBDM times the single  particle matrix elements, and is 

given by [7]. 
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      The core- polarization matrix element in eq. (7) takes the following form 

[12]. 

 )r,,()r(rr),(ˆ

0
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J
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L
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   ………………………………      

(10)  

where 
J

core

 is the Core- Polarization transition density which depends on the 

model used for core polarization. To take the core- polarization effects into  

consideration, the model space transition density is added to the core-

polarization transition density that describes the collective modes of nuclei. 

The total transition density becomes 

)r,,()r,,()r,,( fififi
ZZZ J

core

J

ms

J    …………………………             

(11) 

    In the present work, the shape of the Tassie Model (TM)[13] is employed for  

core-polarization.  

2-3 Tassie – Model  

      This model has been used to describe gamma-transition and the excitation 

of nuclei by electron scattering. It is the multiple analysis of the inelastic 

scattering. For a uniform charge distribution this model is reduced to the usual 



 

 

 

 

 

 

 

 

 

 

 

 

 

6 

liquid drop model. Tassie–Model is an attempt to a model with more elasticity 

and modification that permits for a non-uniform charge and mass density 

distribution. According to this model, the core- polarization transition density 

depends on the ground state charge density of the nucleus. In this work, the 

ground state charge density is formulated in terms of the two-body charge 

density for all occupied shells including the core. According to the collective 

modes of nuclei, the core polarization transition density is given by the Tassie 

shape [13]. 

r
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where N  is a proportionality constant and o  is the ground state two – body 

charge density distribution, which is given 
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and i  and j  are all the required quantum numbers, i.e. 

mtmjni
itiiiii ,,,,,   and mtmjnj

jtjjjjj ,,,,,  

where the functions )r( ijf are the two – body short range correlation (SRC). In 

this work, a simple model form of short range correlation of Ref. [14] will be 

adopted,  i.e. 

])rr([exp1)r( 2
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The radial integral  
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where the first term gives zero contribution, the second and the third term 

can be combined together as  
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From the recursion relation of spherical Bessel function: 
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Therefore, the form factor of eq. (15) takes the form:  
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     The proportionality constant N can be determined from the form factor 

evaluated at q=k, i.e. substituting  q=k in eq. (20), we obtain  
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The reduced transition probability )(CJB  is written in terms of the form 

factor in the limit kq  (photon point) as [10].  
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      In eq(22), the form factor at the photon point q=k is related to the transition 

strength B(CJ). Thus using eq(22) in eq(20) leads to give 
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where [10]:                    
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Introducing eq.(24) into eq.(23) , we obtain: 
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      The proportionality constant N can be determined by adjusting the reduced 

transition probability B(CJ)  using eq. (25) with the experimental value of 

B(CJ). 

3-RESULTS, DISCUSSIONS AND CONCLUSIONS 

     The inelastic longitudinal C2 form factors of  
20

Ne nucleus are presented in 

figure (1) and of 
24

Mg nucleus in figures (2) and (3). Here, the calculated 

longitudinal C2 form factors are plotted as function of the momentum transfer 

(q) for the transitions [7,15,16,17], 

 ffii TJTJ   0200 1

  (Ex=1.634MeV,B(C2)=292.07±37.72e
2
.fm

4
)in
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20
Ne, 0200 1

    (Ex=1.37MeV,B(C2)=428.9±8.74e
2
.fm

4
)and 0200 2

  (Ex 

=4.238MeV, B(C2)=22.37±0.05 e
2
.fm

4
) in 

24
Mg. In these figures, the dash 

curves represent the contribution of the model space where the configuration 

mixing is taken into account, the dash- dotted curves represent the core 

polarization contribution, the solid curves represent the total contribution, 

which is obtained by taking the model space together with the core polarization 

effects into consideration and the circle symbols represent the experimental 

data of 
20

Ne and 
24

Mg. The OBDM elements for the above transitions are given 

in table (1) for 
20

Ne and 
24

Mg. These figures show that the contribution of the 

model space can not reproduce the experimental data since it underestimates 

the data for all values of momentum transfer.  Considering the effect of core 

polarization together with the model space (the solid curves), leads to give an 

enhancement to the longitudinal C2 form factors and consequently to make the 

calculated results to be in a satisfactory description with those of the 

experimental data for all values of momentum transfer q . 

     The inelastic longitudinal C4 form factors of  
20

Ne and 
24

Mg nuclei are 

presented in figures (4) and (5) respectively. Here, the calculated longitudinal 

C4 form factors are plotted as function of the momentum transfer (q) for the 

transitions [7,15,16,17],  ffii TJTJ   , 0400 1

  ( Ex=4.25 MeV, 

B(C4)=38±8x10
3
 e

2
.fm

8
 ) in

 20
Ne and 0400 1

   (Ex =6.0MeV, B(C4)= 43± 

6 x10
3
 e

2
.fm

8
 ) in 

24
Mg. The OBDM elements for the above transitions are 

given in table (2) for 
20

Ne and 
24

Mg. These figures show that the contribution 

of the model space can not reproduce the experimental data since it 

underestimates the data for all values of momentum transfer. 

   Finally It is concluded that the model space and the core polarization effects, 

which represent the collective modes, are essential in obtaining a remarkable 

agreement between the calculated longitudinal C2 and C4 form factors and 

those of experimental data.    

Table( 1 ):The one-body transition density matrix elements for 0 to 
2 transitions in the  

20
Ne and 

24
Mg nuclei[7]. 

 

Nucleus 

 
 Ex  

(MeV) 

 

T
 

 

                                                    2j-2j'  

 

  5-5        5-1        5-3        1-5       1-3        3-5       3-1           3-3     

 
20

Ne  

 

1. 634 

 

0.0 

 

0.4010    0.4399    0.0882     0.3757  0.1533   -0.1032    -0.2177      0.0947 
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24

Mg 

 

1. 37 

 

4.238 

 

0.0 

 

 

-0.6176   -0.3232   -0.3197   -0.4255   -0.1523  0.3155    0.1473     -0.0653  

 

0.1700     0.0552     0.0990    0.0609    -0.0799   -0.2739  -0.0065    0.1850 

 

 

 

Table( 2 ):The one-body transition density matrix elements for 0 to 
4 transitions in the  

20
Ne and 

24
Mg nuclei[7].   

 

Nucleus 

 

 

 

Ex  

(MeV)  

 

T
 

 

 

2j-2j' 

   

 5-5                      5-3                     3-5 

    

 
20

Ne 

 

4.25 

 

0.0 

 

 

-0.4106                -0.257               0.2931 

  
24

Mg  

 

6.0 

 

0.0 

 

 

0.2394                  0.2739            -0.4697 
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Figure (1): Inelastic longitudinal C2 form factor for 
20

Ne nucleus. 
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Figure (2): Inelastic longitudinal C2 form factor for 
24

Mg nucleus. 
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Figure (3): Inelastic longitudinal C2 form factor for 
24

Mg nucleus. 
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Figure (4): Inelastic longitudinal C4 form factor for 
20

Ne nucleus. 
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Figure (5): Inelastic longitudinal C4 form factor for 
24

Mg nucleus. 
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