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ABSTRACT

The inelastic longitudinal electron scattering form factors F(q)'s, an
expression for the transition charge density are studied where the deformation
in nuclear collective modes is taken into consideration besides the shell model
transition density. The core polarization transition density is evaluated by
adopting the shape of Tassie model together with form of the ground state two-
body charge density distributions which included the effect of short range
correlation(SRC). It is noticed that the core polarization effects which represent
the collective modes are essential in obtaining a good agreement between the
calculated inelastic longitudinal F(q)'s and those of experimental data for ®Ne
and Mg nuclei.



1-INTRODUCTION

Inelastic scattering of medium energy electron provides a well-understood
probe of the charge, current and magnetization densities which characterized
nuclear excitations. In light nuclei, where the plan-wave Born approximation is
quate accurate, provided a simple correction to the momentum transfer for
Coulomb distortion is made, the connection between the measured form
factors and the transition densities is direct and is simply expressed as Bessel
transform. Also, it is for light nuclei that the most extensive microscopic
calculations of the transition densities can be performed and tested[1].

Large basis space projected Hartree-Fock wave functions were used by
Amos and Steward [2] to calculate the longitudinal and transverse form factors
from the excitations of 2*;and 4%; states in **C, *°Ne and **Mg. The result
obtained using such large basis space models of structure were compared with
limited basis space (shell-model) predictions to show that momentum-transfer-
dependent corrections can be quite diverse. Karataglidis et. al. [3] compared
between the calculation of transverse electric form factor using the standard
expression for the electric multipole operator and those obtained by invoking
current conservation. The results of E2 transitions in *°C, ®Ne, **Mg and **Si
were found that the form factors yielded by the various operators differ
significantly when the conventional 07w shell model wave function is
used.The charge density distribution of **Mg, #Si and *2S nuclei were
calculated by Mashaan [4] using the wave function of a harmonic oscillator on
the assumption that the occupation number of the states in real nuclei differ
from the prediction of the simple shell model. The elastic electron scattering
form factors of the considered nuclei were calculated using the ground state
charge density distribution.Coulomb form factors of C4 transitions in even-
even N = Z sd-shell nuclei (*®Ne, Mg, %Si and %:S) have been discussed by
Radhi [5] taking into account higher-energy configurations outside the sd-shell
model space which are called core polarization effects. Higher configurations
are taken into account through a microscopic theory, which allows particle-hole
excitations from the 1s and 1p shells core orbits and also from the 2s1d-shell
orbits to the higher allowed orbits with excitations up to 44@. The effect of

core polarization was found essential in both the transition strengths and
momentum transfer dependence of form factors, and gives a remarkably good
agreement with the measured data with no adjustable parameters.The
calculations were based on the Wildenthal interaction for the sd-shell model
space and on the modified surface delta interaction (MSDI)for the core
polarization effects. Shell-model wave functions obtained from a unified
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treatment of the structure of the positive parity states in sd- shell nuclei have
been used by Flaih [6] to calculate the feature of the inelastic transition from

J7 (0" —2" and 4") states in this region.

The purpose of the present work are to calculate the longitudinal C2 and
C4 form factors for ®Ne and Mg nuclei depending on the ground state two
body charge density distributions which included the effect of short range
correlation (SRC). The Wildenthal (W) [7] interactions are used to get the sd-
shell model space wave functions. The two-particle wave functions are those of
the harmonic oscillator (HO) potential with size parameter b chosen to
reproduce the measured root mean square charge radius of the nuclei
considered in this work. The results will be compared with the available
experimental data and for different range of momentum transfer(q).

2-THEORY

2-1 Inelastic Longitudinal Form Factors

Inelastic longitudinal electron scattering form factors involving angular
momentum J and momentum transfer ¢ which can be written as [8].

Rl = ar (@] )] @ Fuof

.................. (1)

where fJL(q) is the longitudinal electron scattering operator. The nuclear
states have well defined isospin T, /t therefore the form factors of eq (1) may

be written in terms of the matrix elements reduced in both angular momentum
and isospin [9] .
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where T is restricted by the following selection rule:
[ Te T |<STSTe 4T 3)
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and T, = % . The bracket ( ) in eq (2) is the three — j symbol and the
reduced matrix elements in spin and isospin space of the longitudinal operator
between the final and initial many particles states of the system including the
configuration mixing are given in terms of the One Body Density Matrix
(OBDM) elements times the single particle matrix elements of the longitudinal
operator [10], i.e.

<f |75 | i>=§OBDM TG f,3,a,b) <b It | a>
..................... 4)

The OBDM elements are calculated in terms of the isospin-reduced matrix
elements [7], i.e.

OBDI\/I(TZ):(_]_)TfTZ(Tf 0 Tij\/z OBDM (A T =0)

-T, 0 T, 2
T 1 T =
o, (1) TZ[ f ,}/EOBDM(AT 1)
-T, 0 T,
................ (5)
The OBDM(AT ) is defined [7] as :
~ AT .
<fH[aJ*><aj,] |>
OBDM (i, f, j, j',AT) =

V23 +1 J2AT +1
(6)
The operatora+j creates a neutron or proton in the single nucleon state j and the

operatoraj' annihilates a neutron or proton in the single nucleon state j'.

2-2 Core — Polarization Effects

The model space matrix elements is not adequate to describe the absolute
strength of the observed gamma-ray transition probabilities, because of the
polarization in nature of the core protons by the model space protons and
neutrons [11]. Therefore the many particle reduced matrix elements of the
longitudinal operator, consists of two parts one is for the model space and the
other is for core Polarization matrix element [12].
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where the model space matrix element in eq.(7) has the form [12].
ms . © . ms )
<f Ty (rz.) l>=eiIdrr21J(qr)pJ,fz (i, f.r)
0

............................. (8)

The model space transition density p; (1, f,r) is expressed as the sum of

the product of the OBDM times the single particle matrix elements, and is
given by [7].

ms ms

Py (1) = SOBDMG£.3,5. 727 (11Y | ')Rm 1) Re ()
ji'(ms

.............. (9)

The core- polarization matrix element in eq. (7) takes the following form
[12].

<f

(10)

core core

fJL(TZ1q)“i> =eijdr i) pg (D)
0

core
where p ,is the Core- Polarization transition density which depends on the

model used for core polarization. To take the core- polarization effects into
consideration, the model space transition density is added to the core-
polarization transition density that describes the collective modes of nuclei.
The total transition density becomes

. ms . core .
Py, 8N =p, T+ p 5 (LFr)

(11)
In the present work, the shape of the Tassie Model (TM)[13] is employed for
core-polarization.

2-3 Tassie — Model

This model has been used to describe gamma-transition and the excitation
of nuclei by electron scattering. It is the multiple analysis of the inelastic
scattering. For a uniform charge distribution this model is reduced to the usual
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liquid drop model. Tassie—Model is an attempt to a model with more elasticity
and modification that permits for a non-uniform charge and mass density
distribution. According to this model, the core- polarization transition density
depends on the ground state charge density of the nucleus. In this work, the
ground state charge density is formulated in terms of the two-body charge
density for all occupied shells including the core. According to the collective
modes of nuclei, the core polarization transition density is given by the Tassie
shape [13].
PG, 1) =N (gt Pl LD

: 2 dr
.......................................... (12)

where N is a proportionality constant and p, is the ground state two — body
charge density distribution, which is given

(W | P2y | ) =X i P2 [ )] i) ]

i

.................................. (13)
where: ()= o 1) {001 )+ (=111,
.................... (14)

and i and j are all the required quantum numbers, i.e.
IEnHEU J|1m|1t|,mt| and JEnjygji inmjytjymtj
where the functions f (r;;) are the two — body short range correlation (SRC). In

this work, a simple model form of short range correlation of Ref. [14] will be
adopted, i.e.

f(ry)=1-exp[- B(r;—1.)° ]
The Coulomb form factor for this model becomes:-

Ar 1% 5. :
Fr(q) = —2[r?jy@an) pTe@, f,r)dr
5 (@) 20, +1 Z{£ ;@) py=(, 1.1

182l L0 ’”}chm) Fe(@)
r
.................................... (15)

The radial integral [dr r’*j, (qr)w
0 r

+N [drr?j; (ar)r’
0

can be written as:-
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................... (16)

where the first term gives zero contribution, the second and the third term
can be combined together as

2 . d J+1].
—qfdrritp, |,f,r{ +—} r

q£ Po )d(qr) ar j; (ar)
...................................... (17)

From the recursion relation of spherical Bessel function:

{ d +J—+1}jj(qr):jj_l(qr) ..........................................

d(ar) ar

(18)

© o dp i f) R .
.‘.gdr r’ lh(qr)%z—qurrJ ljJ_l,oo(l, f,r)

........................... (19)

Therefore, the form factor of eq. (15) takes the form:
1/2
A 1|7 ,. ms < .
Fi(a) = =22, (gr dr—Ng([drr’* r
5 (@) (2Ji+1j z{g AN py q£ Po 13- (ar)

XFomn () Frg () o (20)

The proportionality constant N can be determined from the form factor
evaluated at g=k, i.e. substituting g=k in eq. (20), we obtain

[drr?j; (k) P G, £,0)— F - (k) Z |2+l
0 z Ar

K[ drr¥*p, i, £,1) jyy (k)
0

................................... Q1)
The reduced transition probability B(CJ) is written in terms of the form

factor in the limit ¢ = K (photon point) as [10].

N =




[(23 +)Uf 22
kZJ

B(CJ) = e Freof

T
........................................... (22)
In eq(22), the form factor at the photon point q=k is related to the transition
strength B(CJ). Thus using eq(22) in eq(20) leads to give

Tdr r2j, (kr) o3 i, f,r)—\/(z‘]‘ +1)B(CY) 5
0

N (23 +DN

der r* o, (0, £,1) ;4 (kr)
...................... O (23)
. (kr)’
(kr)=——2
Jj (k) (23 +N
where [10]:

k J-1
Jig (kr):%

................................. (24)
Introducing eq.(24) into eq.(23) , we obtain:

Jare?2 pie (i, £,r) - /(23 +DB(CI)
N = 0

23+ [drr® py (i, f,1)
0

.................................. (25)

The proportionality constant N can be determined by adjusting the reduced
transition probability B(CJ) using eq. (25) with the experimental value of
B(CJ).

3-RESULTS, DISCUSSIONS AND CONCLUSIONS

The inelastic longitudinal C2 form factors of *Ne nucleus are presented in
figure (1) and of **Mg nucleus in figures (2) and (3). Here, the calculated
longitudinal C2 form factors are plotted as function of the momentum transfer
(@) for the transitions [7,15,16,17],

(37T, 537 T,)070 - 27 0(E,=1.634MeV,B(C2)=292.07+37.72¢%fm*)in
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“Ne, 0°0 —» 2/ 0 (Ex=1.37MeV,B(C2)=428.948.74¢°.fm*)and 0* 0 — 2 0 (Ex
=4.238MeV, B(C2)=22.37+0.05 e’.fm?) in #*Mg. In these figures, the dash
curves represent the contribution of the model space where the configuration
mixing is taken into account, the dash- dotted curves represent the core
polarization contribution, the solid curves represent the total contribution,
which is obtained by taking the model space together with the core polarization
effects into consideration and the circle symbols represent the experimental
data of “°Ne and 2*Mg. The OBDM elements for the above transitions are given
in table (1) for ®Ne and 2*Mg. These figures show that the contribution of the
model space can not reproduce the experimental data since it underestimates
the data for all values of momentum transfer. Considering the effect of core
polarization together with the model space (the solid curves), leads to give an
enhancement to the longitudinal C2 form factors and consequently to make the
calculated results to be in a satisfactory description with those of the
experimental data for all values of momentum transfer q .

The inelastic longitudinal C4 form factors of ?°Ne and **Mg nuclei are
presented in figures (4) and (5) respectively. Here, the calculated longitudinal
C4 form factors are plotted as function of the momentum transfer (q) for the

transitions  [7,15,16,17], (37T, >J7T,), 0°0—>4;0( E=4.25 MeV,

B(C4)=388x10° e%.fm® ) in ®°Ne and 0" 0 — 4; 0 (E, =6.0MeV, B(C4)= 43+
6 x10° e®fm® ) in *Mg. The OBDM elements for the above transitions are
given in table (2) for ?°Ne and *Mg. These figures show that the contribution
of the model space can not reproduce the experimental data since it
underestimates the data for all values of momentum transfer.

Finally It is concluded that the model space and the core polarization effects,
which represent the collective modes, are essential in obtaining a remarkable
agreement between the calculated longitudinal C2 and C4 form factors and
those of experimental data.

Table( 1 ):The one-body transition density matrix elements for 0*to
2* transitions in the °Ne and Mg nuclei[7].

Nucleus E, AT 2j-2j'
(MeV)

m 0.4010 0.4399 0.0882 0.3757 0.1533 -0.1032 -0.2177  0.0947




“Mg J 137 0.0 J§ -0.6176 -0.3232 -0.3197 -0.4255 -0.1523 0.3155 0.1473 -0.0653

4.238 0.1700 0.0552 0.0990 0.0609 -0.0799 -0.2739 -0.0065 0.1850

Table( 2 ):The one-body transition density matrix elements for 07to
4* transitions in the *°Ne and **Mg nuclei[7].

0.2739 -0.4697
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Figure (1): Inelastic longitudinal C2 form factor for “Ne nucleus.
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Figure (2): Inelastic longitudinal C2 form factor for *Mg nucleus.
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Figure (3): Inelastic longitudinal C2 form factor for *Mg nucleus.
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Figure (4): Inelastic longitudinal C4 form factor for *Ne nucleus.
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Figure (5): Inelastic longitudinal C4 form factor for Mg nucleus.
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